1
|
Bale R, Doshi G. Deciphering the role of siRNA in anxiety and depression. Eur J Pharmacol 2024; 981:176868. [PMID: 39128805 DOI: 10.1016/j.ejphar.2024.176868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 07/02/2024] [Accepted: 08/05/2024] [Indexed: 08/13/2024]
Abstract
Anxiety and depression are central nervous system illnesses that are among the most prevalent medical concerns of the twenty-first century. Patients with this condition and their families bear psychological, financial, and societal hardship. There are currently restrictions when utilizing the conventional course of treatment. RNA interference is expected to become an essential approach in anxiety and depression due to its potent and targeted gene silencing. Silencing of genes by post-transcriptional modification is the mechanism of action of small interfering RNA (siRNA). The suppression of genes linked to disease is typically accomplished by siRNA molecules in an efficient and targeted manner. Unfavourable immune responses, off-target effects, naked siRNA instability, nuclease vulnerability, and the requirement to create an appropriate delivery method are some of the challenges facing the clinical application of siRNA. This review focuses on the use of siRNA in the treatment of anxiety and depression.
Collapse
Affiliation(s)
- Rajeshwari Bale
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V L M Road, Vile Parle (w), Mumbai, 400056, India
| | - Gaurav Doshi
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V L M Road, Vile Parle (w), Mumbai, 400056, India.
| |
Collapse
|
2
|
Danan D, Todder D, Zohar J, Cohen H. Is PTSD-Phenotype Associated with HPA-Axis Sensitivity? Feedback Inhibition and Other Modulating Factors of Glucocorticoid Signaling Dynamics. Int J Mol Sci 2021; 22:ijms22116050. [PMID: 34205191 PMCID: PMC8200046 DOI: 10.3390/ijms22116050] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 01/12/2023] Open
Abstract
Previously, we found that basal corticosterone pulsatility significantly impacts the vulnerability for developing post-traumatic stress disorder (PTSD). Rats that exhibited PTSD-phenotype were characterized by blunted basal corticosterone pulsatility amplitude and a blunted corticosterone response to a stressor. This study sought to identify the mechanisms underlining both the loss of pulsatility and differences in downstream responses. Serial blood samples were collected manually via jugular vein cannula at 10-min intervals to evaluate suppression of corticosterone following methylprednisolone administration. The rats were exposed to predator scent stress (PSS) after 24 h, and behavioral responses were assessed 7 days post-exposure for retrospective classification into behavioral response groups. Brains were harvested for measurements of the glucocorticoid receptor, mineralocorticoid receptor, FK506-binding protein-51 and arginine vasopressin in specific brain regions to assess changes in hypothalamus–pituitary–adrenal axis (HPA) regulating factors. Methylprednisolone produced greater suppression of corticosterone in the PTSD-phenotype group. During the suppression, the PTSD-phenotype rats showed a significantly more pronounced pulsatile activity. In addition, the PTSD-phenotype group showed distinct changes in the ventral and dorsal CA1, dentate gyrus as well as in the paraventricular nucleus and supra-optic nucleus. These results demonstrate a pre-trauma vulnerability state that is characterized by an over-reactivity of the HPA and changes in its regulating factors.
Collapse
Affiliation(s)
- Dor Danan
- Anxiety and Stress Research Unit, Beer-Sheva Mental Health Center, Ministry of Health, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84170, Israel; (D.D.); (D.T.)
| | - Doron Todder
- Anxiety and Stress Research Unit, Beer-Sheva Mental Health Center, Ministry of Health, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84170, Israel; (D.D.); (D.T.)
| | - Joseph Zohar
- Post-Trauma Center, Sheba Medical Center, Tel Aviv 52621, Israel;
| | - Hagit Cohen
- Anxiety and Stress Research Unit, Beer-Sheva Mental Health Center, Ministry of Health, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84170, Israel; (D.D.); (D.T.)
- Correspondence: ; Tel.: +972-544-369106
| |
Collapse
|
3
|
Iemolo A, Montilla-Perez P, Lai IC, Meng Y, Nolan S, Wen J, Rusu I, Dulcis D, Telese F. A cell type-specific expression map of NCoR1 and SMRT transcriptional co-repressors in the mouse brain. J Comp Neurol 2020; 528:2218-2238. [PMID: 32072640 DOI: 10.1002/cne.24886] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 12/12/2019] [Accepted: 02/12/2020] [Indexed: 12/11/2022]
Abstract
The ability to rapidly change gene expression patterns is essential for differentiation, development, and functioning of the brain. Throughout development, or in response to environmental stimuli, gene expression patterns are tightly regulated by the dynamic interplay between transcription activators and repressors. Nuclear receptor corepressor 1 (NCoR1) and silencing mediator for retinoid or thyroid-hormone receptors (SMRT) are the best characterized transcriptional co-repressors from a molecular point of view. They mediate epigenetic silencing of gene expression in a wide range of developmental and homeostatic processes in many tissues, including the brain. For instance, NCoR1 and SMRT regulate neuronal stem cell proliferation and differentiation during brain development and they have been implicated in learning and memory. However, we still have a limited understanding of their regional and cell type-specific expression in the brain. In this study, we used fluorescent immunohistochemistry to map their expression patterns throughout the adult mouse brain. Our findings reveal that NCoR1 and SMRT share an overall neuroanatomical distribution, and are detected in both excitatory and inhibitory neurons. However, we observed striking differences in their cell type-specific expression in glial cells. Specifically, all oligodendrocytes express NCoR1, but only a subset express SMRT. In addition, NCoR1, but not SMRT, was detected in a subset of astrocytes and in the microglia. These novel observations are corroborated by single cell transcriptomics and emphasize how NCoR1 and SMRT may contribute to distinct biological functions, suggesting an exclusive role of NCoR1 in innate immune responses in the brain.
Collapse
Affiliation(s)
- Attilio Iemolo
- Department of Medicine, University of California San Diego, La Jolla, California
| | | | - I-Chi Lai
- Department of Psychiatry, University of California San Diego, La Jolla, California
| | - Yinuo Meng
- Department of Medicine, University of California San Diego, La Jolla, California
| | - Syreeta Nolan
- Department of Medicine, University of California San Diego, La Jolla, California
| | - Junneng Wen
- Department of Medicine, University of California San Diego, La Jolla, California
| | - Iulia Rusu
- Department of Medicine, University of California San Diego, La Jolla, California
| | - Davide Dulcis
- Department of Psychiatry, University of California San Diego, La Jolla, California
| | - Francesca Telese
- Department of Medicine, University of California San Diego, La Jolla, California
| |
Collapse
|
4
|
Scaffold attachment factor B: distribution and interaction with ERα in the rat brain. Histochem Cell Biol 2020; 153:323-338. [PMID: 32086573 DOI: 10.1007/s00418-020-01853-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2020] [Indexed: 10/24/2022]
Abstract
Scaffold attachment factor (SAFB) 1 and its homologue SAFB2 are multifunctional proteins that are involved in various cellular mechanisms, including chromatin organization and transcriptional regulation, and are also corepressors of estrogen receptor alpha (ERα). Both SAFBs are expressed at high levels in the brain. However, the distributions of SAFB1 and SAFB2 have yet to be characterized in detail and it is unclear whether both proteins interact with ERα in the brain. In this study, we investigated the expression and distribution of both SAFBs and their interaction with ERα in adult male rat brain. Immunohistochemical staining showed that SAFB1 and SAFB2 have a similar distribution pattern and are widely expressed throughout the brain. Double-fluorescence immunohistochemical and immunocytochemical analyses in primary cultures showed that the two SAFB proteins are localized in nuclei of neurons, astrocytes, and oligodendrocytes. Of note, SAFB2 was also found in cytoplasmic regions in these cell lineages. Both SAFB proteins were also expressed in ERα-positive cells in the medial preoptic area (MPOA) and arcuate and ventromedial hypothalamic nuclei. Co-immunoprecipitation experiments revealed that both SAFB proteins from the MPOA reciprocally interact with endogenous ERα. These results indicate that, in addition to a role in basal cellular function in the brain, the SAFB proteins may serve as ERα corepressors in hormone-sensitive regions.
Collapse
|
5
|
Thomas MA, Tran V, Ryu V, Xue B, Bartness TJ. AgRP knockdown blocks long-term appetitive, but not consummatory, feeding behaviors in Siberian hamsters. Physiol Behav 2017; 190:61-70. [PMID: 29031552 DOI: 10.1016/j.physbeh.2017.10.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 08/24/2017] [Accepted: 10/06/2017] [Indexed: 12/25/2022]
Abstract
Arcuate hypothalamus-derived agouti-related protein (AgRP) and neuropeptide Y (NPY) are critical for maintaining energy homeostasis. Fasting markedly upregulates AgRP/NPY expression and circulating ghrelin, and exogenous ghrelin treatment robustly increases acute food foraging and food intake, and chronic food hoarding behaviors in Siberian hamsters. We previously demonstrated that 3rd ventricular AgRP injection robustly stimulates acute and chronic food hoarding, largely independent of food foraging and intake. By contrast, 3rd ventricular NPY injection increases food foraging, food intake, and food hoarding, but this effect is transient and gone by 24h post-injection. Because of this discrepancy in AgRP/NPY-induced ingestive behaviors, we tested whether selective knockdown of AgRP blocks fasting and ghrelin-induced increases in food hoarding. AgRP gene knockdown by a novel DICER small interfering RNA (AgRP-DsiRNA) blocked food-deprivation induced increases in AgRP expression, but had no effect on NPY expression. AgRP-DsiRNA attenuated acute (1day), and significantly decreased chronic (4-6days), food deprivation-induced increases in food hoarding. In addition, AgRP-DsiRNA treatment blocked exogenous ghrelin-induced increases in food hoarding through day 3, but had no effect on basal food foraging, food intake, or food hoarding prior to ghrelin treatment. Lastly, chronic AgRP knockdown had no effect on body mass, fat mass, or lean mass in either food deprived or ad libitum fed hamsters. These data collectively suggest that the prolonged increase in food hoarding behavior following energetic challenges, and food deprivation especially, is primarily regulated by downstream AgRP signaling.
Collapse
Affiliation(s)
- M Alex Thomas
- Department of Biology, Georgia State University, Atlanta, GA 30302, USA; Center for Obesity Reversal, Georgia State University, Atlanta, GA 30302, USA
| | - Vy Tran
- Department of Biology, Georgia State University, Atlanta, GA 30302, USA; Center for Obesity Reversal, Georgia State University, Atlanta, GA 30302, USA
| | - Vitaly Ryu
- Department of Biology, Georgia State University, Atlanta, GA 30302, USA; Center for Obesity Reversal, Georgia State University, Atlanta, GA 30302, USA
| | - Bingzhong Xue
- Department of Biology, Georgia State University, Atlanta, GA 30302, USA; Center for Obesity Reversal, Georgia State University, Atlanta, GA 30302, USA; Neuroscience Institute, Georgia State University, Atlanta, GA, 30302, USA.
| | - Timothy J Bartness
- Department of Biology, Georgia State University, Atlanta, GA 30302, USA; Center for Obesity Reversal, Georgia State University, Atlanta, GA 30302, USA; Neuroscience Institute, Georgia State University, Atlanta, GA, 30302, USA
| |
Collapse
|
6
|
Peroxisome proliferator-activated receptor γ controls ingestive behavior, agouti-related protein, and neuropeptide Y mRNA in the arcuate hypothalamus. J Neurosci 2015; 35:4571-81. [PMID: 25788674 DOI: 10.1523/jneurosci.2129-14.2015] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Peroxisome proliferator-activated receptor γ (PPARγ) is clinically targeted for type II diabetes treatment; however, rosiglitazone (ROSI), a PPARγ agonist, increases food intake and body/fat mass as side-effects. Mechanisms for these effects and the role of PPARγ in feeding are not understood. Therefore, we tested this role in Siberian hamsters, a model of human energy balance, and C57BL/6 mice. We tested the following: (1) how ROSI and/or GW9662 (2-chloro-5-nitro-N-phenylbenzamide; PPARγ antagonist) injected intraperitoneally or into the third ventricle (3V) affected Siberian hamster feeding behaviors; (2) whether food deprivation (FD) co-increases agouti-related protein (AgRP) and PPARγ mRNA expression in Siberian hamsters and mice; (3) whether intraperitoneally administered ROSI increases AgRP and NPY in ad libitum-fed animals; (4) whether intraperitoneally administered PPARγ antagonism blocks FD-induced increases in AgRP and NPY; and finally, (5) whether intraperitoneally administered PPARγ modulation affects plasma ghrelin. Third ventricular and intraperitoneally administered ROSI increased food hoarding and intake for 7 d, an effect attenuated by 3V GW9662, and also prevented (intraperitoneal) FD-induced feeding. FD hamsters and mice increased AgRP within the arcuate hypothalamic nucleus with concomitant increases in PPARγ exclusively within AgRP/NPY neurons. ROSI increased AgRP and NPY similarly to FD, and GW9662 prevented FD-induced increases in AgRP and NPY in both species. Neither ROSI nor GW9662 affected plasma ghrelin. Thus, we demonstrated that PPARγ activation is sufficient to trigger food hoarding/intake, increase AgRP/NPY, and possibly is necessary for FD-induced increases in feeding and AgRP/NPY. These findings provide initial evidence that FD-induced increases in AgRP/NPY may be a direct PPARγ-dependent process that controls ingestive behaviors.
Collapse
|
7
|
Kigar SL, Auger AP. Epigenetic mechanisms may underlie the aetiology of sex differences in mental health risk and resilience. J Neuroendocrinol 2013; 25:1141-50. [PMID: 23841484 PMCID: PMC4428578 DOI: 10.1111/jne.12074] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Revised: 06/26/2013] [Accepted: 07/07/2013] [Indexed: 01/16/2023]
Abstract
In this review, we propose that experiential and hormonal influences on biological sex during development may produce differences in the epigenome, and that these differences play an important role in gating risk or resilience to a number of neurological and psychiatric disorders. One intriguing hypothesis is that the framework belying sex differences in the brain creates differences in methylation and demethylation patterns, and these in turn confer risk and resilience to mental health disorders. Here, we discuss these concepts with regard to social behaviour in rodent models and briefly discuss their possible relevance to human disease.
Collapse
Affiliation(s)
- S L Kigar
- Molecular and Cellular Pharmacology Training Program, University of Wisconsin-Madison, Madison, WI, USA
| | | |
Collapse
|
8
|
Katsouri L, Blondrath K, Sastre M. Peroxisome proliferator-activated receptor-γ cofactors in neurodegeneration. IUBMB Life 2012; 64:958-64. [DOI: 10.1002/iub.1097] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 09/19/2012] [Indexed: 12/21/2022]
|
9
|
Conway-Campbell BL, Sarabdjitsingh RA, McKenna MA, Pooley JR, Kershaw YM, Meijer OC, de Kloet ER, Lightman SL. Glucocorticoid ultradian rhythmicity directs cyclical gene pulsing of the clock gene period 1 in rat hippocampus. J Neuroendocrinol 2010; 22:1093-1100. [PMID: 20649850 PMCID: PMC4968637 DOI: 10.1111/j.1365-2826.2010.02051.x] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
In vivo glucocorticoid (GC) secretion exhibits a distinctive ultradian rhythmicity. The lipophilic hormone can rapidly diffuse into cells, although only the pulse peak is of sufficient amplitude to activate the low affinity glucocorticoid receptor (GR). Discrete pulses readily access brain regions such as the hippocampus where GR expression is enriched and known to regulate neuronal function, including memory and learning processes. In the present study, we have tested the hypothesis that GR brain targets are responsive to ultradian GC rhythmicity. We have used adrenalectomised rats replaced with pulses of corticosterone to determine the transcriptional effects of ultradian pulses in the hippocampus. Confocal microscopy confirmed that each GC pulse results in transient GR nuclear localisation in hippocampal CA1 neurones. Concomitant GR activation and DNA binding was demonstrated by synthetic glucocorticoid response element oligonucleotide binding, and verified for the Clock gene Period 1 promoter region by chromatin immunoprecipitation assays. Strikingly each GC pulse induced a 'burst' of transcription of Period 1 measured by heterogeneous nuclear RNA quantitative polymerase chain reaction. The net effect of pulsatile GC exposure on accumulation of the mature transcript was also assessed, revealing a plateau of mRNA levels throughout the time course of pulsatile exposure, indicating the pulse timing works optimally for steady state Per1 expression. The plateau dropped to baseline within 120 min of the final pulse, indicating a relatively short half-life for hippocampal Per1. The significance of this strict temporal control is that any perturbation to the pulse frequency or duration would have rapid quantitative effects on the levels of Per1. This in turn could affect hippocampal function, especially circadian related memory and learning processes.
Collapse
Affiliation(s)
- B. L. Conway-Campbell
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, School of Clinical Sciences, University of Bristol, Bristol, UK
| | - R. A. Sarabdjitsingh
- Department of Medical Pharmacology, LACDR and Leiden University Medical Centre, The Netherlands
| | - M. A. McKenna
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, School of Clinical Sciences, University of Bristol, Bristol, UK
| | - J. R. Pooley
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, School of Clinical Sciences, University of Bristol, Bristol, UK
| | - Y. M. Kershaw
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, School of Clinical Sciences, University of Bristol, Bristol, UK
| | - O. C. Meijer
- Department of Medical Pharmacology, LACDR and Leiden University Medical Centre, The Netherlands
| | - E. R. de Kloet
- Department of Medical Pharmacology, LACDR and Leiden University Medical Centre, The Netherlands
| | - S. L. Lightman
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, School of Clinical Sciences, University of Bristol, Bristol, UK
| |
Collapse
|
10
|
Specificity of glucocorticoid receptor primary antibodies for analysis of receptor localization patterns in cultured cells and rat hippocampus. Brain Res 2010; 1331:1-11. [PMID: 20307510 DOI: 10.1016/j.brainres.2010.03.052] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Revised: 03/02/2010] [Accepted: 03/14/2010] [Indexed: 01/09/2023]
Abstract
After glucocorticoid stimulation, glucocorticoid receptors (GRs) are translocated to the nucleus to modulate transcription of glucocorticoid target genes. The subcellular distribution and trafficking of GR in cultured cells has been studied quite intensively using several techniques. However, the intracellular localization of nuclear receptors in ligand-free and stimulated conditions in vivo is still controversial, in part because of inconsistent results with different antibodies. Knowledge of trafficking of GR in vivo could greatly contribute to understanding nuclear receptor signaling. Therefore, in this study we systematically compared a panel of different primary GR antibodies using immunohistochemistry and confocal imaging. Nuclear translocation patterns at different time points after glucocorticoid stimulation were compared in cultured AtT20 cells and rat hippocampal CA1 and dentate gyrus cells. The BuGR2 antibody consistently detected GR nuclear translocation patterns between in vivo and in vitro settings, but the other GR primary antibodies provided contradictory results. While GR H300 and P20 strongly detected nuclear GR immunoreactivity after glucocorticoid stimulation in both CA1 and dentate gyrus cells, the same antibodies provided poor results in cultured cells. The opposite was found for the primary GR M20 antibody. These data indicate that with a particular glucocorticoid receptor antibody the findings in cell culture studies cannot always be extrapolated to in vivo situations. Moreover, different antibodies disclose different features of the glucocorticoid receptor translocation process.
Collapse
|
11
|
Jessen HM, Kolodkin MH, Bychowski ME, Auger CJ, Auger AP. The nuclear receptor corepressor has organizational effects within the developing amygdala on juvenile social play and anxiety-like behavior. Endocrinology 2010; 151:1212-20. [PMID: 20051490 PMCID: PMC2840691 DOI: 10.1210/en.2009-0594] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Nuclear receptor function on DNA is regulated by the balanced recruitment of coregulatory complexes. Recruited proteins that increase gene expression are called coactivators, and those that decrease gene expression are called corepressors. Little is known about the role of corepressors, such as nuclear receptor corepressor (NCoR), on the organization of behavior. We used real-time PCR to show that NCoR mRNA levels are sexually dimorphic, that females express higher levels of NCoR mRNA within the developing amygdala and hypothalamus, and that NCoR mRNA levels are reduced by estradiol treatment. To investigate the functional role of NCoR on juvenile social behavior, we infused small interfering RNA targeted against NCoR within the developing rat amygdala and assessed the enduring impact on juvenile social play behavior, sociability, and anxiety-like behavior. As expected, control males exhibited higher levels of juvenile social play than control females. Reducing NCoR expression during development further increased juvenile play in males only. Interestingly, decreased NCoR expression within the developing amygdala had lasting effects on increasing juvenile anxiety-like behavior in males and females. These data suggest that the corepressor NCoR functions to blunt sex differences in juvenile play behavior, a sexually dimorphic and hormone-dependent behavior, and appears critical for appropriate anxiety-like behavior in juvenile males and females.
Collapse
Affiliation(s)
- Heather M Jessen
- Department of Psychology, University of Wisconsin-Madison, 1202 West Johnson Street, Madison, Wisconsin 53706, USA
| | | | | | | | | |
Collapse
|
12
|
Sarabdjitsingh RA, Isenia S, Polman A, Mijalkovic J, Lachize S, Datson N, de Kloet ER, Meijer OC. Disrupted corticosterone pulsatile patterns attenuate responsiveness to glucocorticoid signaling in rat brain. Endocrinology 2010; 151:1177-86. [PMID: 20080870 DOI: 10.1210/en.2009-1119] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Chronically elevated circulating glucocorticoid levels are although to enhance vulnerability to psychopathology. Here we hypothesized that such sustained glucocorticoid levels, disturbing corticosterone pulsatility, attenuate glucocorticoid receptor signaling and target gene responsiveness to an acute challenge in the rat brain. Rats were implanted with vehicle or 40 or 100% corticosterone pellets known to flatten ultradian and circadian rhythmicity while maintaining daily average levels or mimic pathological conditions. Additionally, recovery from constant exposure was studied in groups that had the pellet removed 24 h prior to the challenge. Molecular markers for receptor responsiveness (receptor levels, nuclear translocation, promoter occupancy, and target gene expression) to an acute challenge mimicking the stress response (3 mg/kg ip) were studied in the hippocampal area. Implantation of 40 and 100% corticosterone pellets dose-dependently down-regulated glucocorticoid receptor and attenuated mineralocorticoid receptor and glucocorticoid receptor translocation to the acute challenge. Interestingly, whereas target gene Gilz expression to the challenge was already attenuated by tonic daily average levels (40%), Sgk-1 was affected only after constant high corticosterone exposure (100%), indicating altered receptor responsiveness due to treatment. Washout of 100% corticosterone recovered all molecular markers (partial), whereas removal of the 40% corticosterone pellet still attenuated responsiveness to the challenge. We propose that corticosteroid pulsatility is crucial in maintaining normal responsiveness to glucocorticoids. Whereas the results with 100% corticosterone are likely attributed to receptor saturation, subtle changes in the pattern of exposure (40%) induces changes at least as severe for glucocorticoid signaling as overt hypercorticism, suggesting an underlying mechanism sensitive to the pattern of hormone exposure.
Collapse
Affiliation(s)
- R Angela Sarabdjitsingh
- Division of Medical Pharmacology, Leiden/Amsterdam Centre for Drug Research/Leiden University Medical Centre, University of Leiden, Einsteinweg 55, P.O. Box 9502, 2300 RA Leiden, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Auger AP, Jessen HM. Corepressors, nuclear receptors, and epigenetic factors on DNA: a tail of repression. Psychoneuroendocrinology 2009; 34 Suppl 1:S39-47. [PMID: 19545950 PMCID: PMC3133443 DOI: 10.1016/j.psyneuen.2009.05.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2009] [Revised: 05/05/2009] [Accepted: 05/19/2009] [Indexed: 12/24/2022]
Abstract
The differential exposure to circulating steroid hormones during brain development can have lasting consequences on brain function and behavior; therefore, the tight control of steroid hormone action within the developing brain is necessary for the expression of appropriate sex-typical behavior patterns later in life. The restricted control of steroid hormone action at the level of the DNA can be accomplished through the recruitment of coregulatory complexes. Nuclear receptor action can either be enhanced by the recruitment of coactivator complexes or suppressed by the formation of corepressor complexes. Alternatively, the regulation of nuclear receptor-mediated gene transcription in the developing brain may involve a dynamic process of coactivator and corepressor function on DNA. It is likely that understanding how different combinations of coregulatory matrixes assembly on DNA will lead to further understanding of heterogeneous responses to nuclear receptor activation. We will discuss how coregulators influence gene transcription and repression, the role of chromatin-binding factors in the regulation of gene transcription, and their potential impact on brain development.
Collapse
Affiliation(s)
- Anthony P Auger
- Psychology Department, 1202 West Johnson Street, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | | |
Collapse
|
14
|
Who's in charge? Nuclear receptor coactivator and corepressor function in brain and behavior. Front Neuroendocrinol 2009; 30:328-42. [PMID: 19401208 PMCID: PMC2720417 DOI: 10.1016/j.yfrne.2009.04.008] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2009] [Revised: 04/15/2009] [Accepted: 04/17/2009] [Indexed: 11/20/2022]
Abstract
Steroid hormones act in brain and throughout the body to regulate a variety of functions, including development, reproduction, stress and behavior. Many of these effects of steroid hormones are mediated by their respective receptors, which are members of the steroid/nuclear receptor superfamily of transcriptional activators. A variety of studies in cell lines reveal that nuclear receptor coregulators are critical in modulating steroid receptor-dependent transcription. Thus, in addition to the availability of the hormone and the expression of its receptor, nuclear receptor coregulators are essential for efficient steroid-dependent transactivation of genes. This review will highlight the importance of nuclear receptor coregulators in modulating steroid-dependent gene expression in brain and the regulation of behavior.
Collapse
|
15
|
Sarabdjitsingh RA, Meijer OC, Schaaf MJ, de Kloet ER. Subregion-specific differences in translocation patterns of mineralocorticoid and glucocorticoid receptors in rat hippocampus. Brain Res 2009; 1249:43-53. [DOI: 10.1016/j.brainres.2008.10.048] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2008] [Revised: 09/07/2008] [Accepted: 10/11/2008] [Indexed: 01/03/2023]
|
16
|
van der Laan S, Sarabdjitsingh RA, Van Batenburg MF, Lachize SB, Li H, Dijkmans TF, Vreugdenhil E, de Kloet ER, Meijer OC. Chromatin immunoprecipitation scanning identifies glucocorticoid receptor binding regions in the proximal promoter of a ubiquitously expressed glucocorticoid target gene in brain. J Neurochem 2008; 106:2515-23. [PMID: 18643788 DOI: 10.1111/j.1471-4159.2008.05575.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
While the actions of glucocorticoids on brain functions have been comprehensively studied, the underlying genomic mechanisms are poorly understood. In this study, we show that glucocorticoid-induced leucine zipper (GILZ) mRNA is strongly and ubiquitously induced in rat brain. To decipher the molecular mechanisms underlying these genomic effects, it is of interest to identify the regulatory sites in the promoter region. Alignment of the rat GILZ promoter with the well-characterized human promoter resulted in poor sequence homology. Consequently, we analyzed the rat 5' flanking sequence by Matrix REDUCE and identified two high-affinity glucocorticoid response elements (GRE) located 2 kb upstream of the transcription start site. These findings were corroborated using the glucocorticoid receptor (GR) expressing Ns-1 PC12 rat cell-line. In these cells, dexamethasone treatment leads to a progressive increase of GILZ mRNA expression levels via a GR-dependent mechanism. Subsequently, using chromatin immunoprecipitation assays we show that the two high-affinity GREs are located within the GR-binding regions. Lastly, we demonstrate using multiple tissue in situ hybridization a marked increase in mRNA expression levels in spleen, thymus, heart, lung, liver, muscle, testis, kidney, colon, ileum, as well as in brain and conclude that the GILZ gene can be used to study glucocorticoid effects in many additional rodent tissues.
Collapse
Affiliation(s)
- Siem van der Laan
- Division of Medical Pharmacology, Leiden/Amsterdam Centre for Drug Research (LACDR), Leiden, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
van der Laan S, Meijer OC. Pharmacology of glucocorticoids: Beyond receptors. Eur J Pharmacol 2008; 585:483-91. [DOI: 10.1016/j.ejphar.2008.01.060] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Revised: 01/11/2008] [Accepted: 01/24/2008] [Indexed: 11/28/2022]
|
18
|
Fitzsimons CP, Ahmed S, Wittevrongel CFW, Schouten TG, Dijkmans TF, Scheenen WJJM, Schaaf MJM, de Kloet ER, Vreugdenhil E. The microtubule-associated protein doublecortin-like regulates the transport of the glucocorticoid receptor in neuronal progenitor cells. Mol Endocrinol 2008; 22:248-62. [PMID: 17975023 PMCID: PMC5419639 DOI: 10.1210/me.2007-0233] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2007] [Accepted: 10/23/2007] [Indexed: 02/05/2023] Open
Abstract
In neuronal cells, activated glucocorticoid receptor (GR) translocates to the nucleus guided by the cytoskeleton. However, the detailed mechanisms underlying GR translocation remain unclear. Using gain and loss of function studies, we report here for the first time that the microtubule-associated protein doublecortin-like (DCL) controls GR translocation to the nucleus. DCL overexpression in COS-1 cells, neuroblastoma cells, and rat hippocampus organotypic slice cultures impaired GR translocation and decreased GR-dependent transcriptional activity, measured by a specific reporter gene assay, in COS-1 cells. Moreover, DCL and GR directly interact on microtubule bundles formed by DCL overexpression. A C-terminal truncated DCL with conserved microtubule-bundling activity did not influence GR translocation. In N1E-115 mouse neuroblastoma cells and neuronal progenitor cells in rat hippocampus organotypic slice cultures, laser-scanning confocal microscopy showed colabeling of endogenously expressed DCL and GR. In these systems, RNA-interference-mediated DCL knockdown hampered GR translocation. Thus, we conclude that DCL expression is tightly regulated to adequately control GR transport. Because DCL is primarily expressed in neuronal progenitor cells, our results introduce this microtubule-associated protein as a new modulator of GR signaling in this cell type and suggest the existence of cell-specific mechanisms regulating GR translocation to the nucleus.
Collapse
Affiliation(s)
- Carlos P Fitzsimons
- Leiden/Amsterdam Center for Drug Research/Medical Pharmacology Department, Einsteinweg 55, Leiden, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
van der Laan S, Lachize SB, Vreugdenhil E, de Kloet ER, Meijer OC. Nuclear receptor coregulators differentially modulate induction and glucocorticoid receptor-mediated repression of the corticotropin-releasing hormone gene. Endocrinology 2008; 149:725-32. [PMID: 18006628 DOI: 10.1210/en.2007-1234] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Nuclear receptor coregulators are proteins that modulate the transcriptional activity of steroid receptors and may explain cell-specific effects of glucocorticoid receptor action. Based on the uneven distribution of a number of coregulators in CRH-expressing cells in the hypothalamus of the rat brain, we tested the hypothesis that these proteins are involved as mediators in the glucocorticoid-induced repression of the CRH promoter. Therefore, we assessed the role of coregulator proteins on both induction and repression of CRH in the AtT-20 cell line, a model system for CRH repression by glucocorticoids. The steroid receptor coactivator 1a (SRC1a), SRC-1e, nuclear corepressor (N-CoR), and silencing mediator of the retinoid and thyroid hormone receptor (SMRT) were studied in this system. We show that the concentration of glucocorticoid receptor and the type of ligand, i.e. corticosterone or dexamethasone, determines the repression. Furthermore, overexpression of SRC1a, but not SRC1e, increased both efficacy and potency of the glucocorticoid receptor-mediated repression of the forskolin-induced CRH promoter. Unexpectedly, cotransfection of the corepressors N-CoR and SMRT did not affect the corticosterone-dependent repression but resulted in a marked decrease of the forskolin stimulation of the CRH gene. Altogether, our data demonstrate that 1) the concentration of the receptor, 2) the type of ligand, and 3) the coregulator recruited all determine the expression and the repression of the CRH gene. We conclude that modulation of coregulator activity may play a role in the control of the hypothalamus-pituitary-adrenal axis.
Collapse
Affiliation(s)
- S van der Laan
- Division of Medical Pharmacology, Leiden/Amsterdam Centre for Drug Research and Leiden University Medical Centre, 2300 RA, Leiden, The Netherlands.
| | | | | | | | | |
Collapse
|
20
|
Ostroumov K, Grandolfo M, Nistri A. The effects induced by the sulphonylurea glibenclamide on the neonatal rat spinal cord indicate a novel mechanism to control neuronal excitability and inhibitory neurotransmission. Br J Pharmacol 2006; 150:47-57. [PMID: 17128288 PMCID: PMC2013857 DOI: 10.1038/sj.bjp.0706943] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND AND PURPOSE Using the neonatal rat spinal cord in vitro, we investigated the action of glibenclamide, a drug possessing dual pharmacological effects, namely block of K(ATP) channels and of the cystic fibrosis transmembrane conductance regulator (CFTR). EXPERIMENTAL APPROACH Intra- and extracellular recordings were performed on motoneurons and interneurons. RT-PCR and western immunoblotting were used to determine gene and protein expression. KEY RESULTS Glibenclamide (50 microM) facilitated mono- and polysynaptic reflexes, hyperpolarized motoneuron resting potential, increased action potential amplitude, decreased Renshaw cell-mediated recurrent inhibition, and increased network excitability by depressing GABA- and glycine-mediated transmission. The action of glibenclamide was mimicked by tolbutamide (500 microM) or the CFTR blocker diphenylamine-2,2-dicarboxylic acid (500 microM). The action of glibenclamide was independent from pharmacological inhibition of the Na(+)-K(+) pump with strophanthidin (4 microM) and was associated with a negative shift in the extrapolated reversal potential for CI(-) dependent synaptic inhibition. On interneurons, intracellularly-applied 8-bromo-cAMP elicited an inward current and resistance decrease; effects antagonized by the selective CFTR antagonist, CFTR(inh)-172 (5 microM). RT-PCR and western immunoblotting indicated strong expression of the CFTR in neonatal rat spinal cord. CONCLUSIONS AND IMPLICATIONS These data suggest the CFTR expressed in motoneurons and interneurons of the neonatal spinal cord is involved in the control of Cl(-) homeostasis and neuronal excitability. CFTR appeared to contribute to the relatively depolarized equilibrium potential for synaptic inhibition, an important process to control hyperexcitability and seizure-predisposition in neonates.
Collapse
Affiliation(s)
- K Ostroumov
- Neurobiology Sector and SPINAL Project, International School for Advanced Studies (SISSA), Trieste 34014, Italy
| | | | | |
Collapse
|
21
|
Abstract
Stress-induced glucocorticoid hormones support coping with and adaptation to different stressors. They act to modulate gene expression in a tissue and stressor-specific manner through activation of corticosteroid receptors, which act as transcription factors. Here, a number of recent insights in gene regulation under the influence of glucocorticoids are discussed. Emphasis is put on distinct classes of target genes that may be defined, based on categorization of (combinations of) transcription factor binding sites in responsive genes. These categories depend on insights into different mechanisms of transcriptional regulation, such as transactivation vs transrepression, and high affinity vs low affinity hormone receptor response elements. It is argued that such classes, based on mechanistic understanding of transcription regulation, in combination with the availability of complete genomic sequences and expression data from different organs, may enhance our understanding of the way in which organisms deal with different forms of stress.
Collapse
Affiliation(s)
- O C Meijer
- Division of Medical Pharmacology, Leiden/Amsterdam Center for Drug Research and Leiden University Medical Center, PO Box 9503, Leiden, 2300 RA, The Netherlands.
| |
Collapse
|