1
|
Fauss GNK, Hudson KE, Grau JW. Role of Descending Serotonergic Fibers in the Development of Pathophysiology after Spinal Cord Injury (SCI): Contribution to Chronic Pain, Spasticity, and Autonomic Dysreflexia. BIOLOGY 2022; 11:234. [PMID: 35205100 PMCID: PMC8869318 DOI: 10.3390/biology11020234] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/27/2022] [Accepted: 01/29/2022] [Indexed: 12/12/2022]
Abstract
As the nervous system develops, nerve fibers from the brain form descending tracts that regulate the execution of motor behavior within the spinal cord, incoming sensory signals, and capacity to change (plasticity). How these fibers affect function depends upon the transmitter released, the receptor system engaged, and the pattern of neural innervation. The current review focuses upon the neurotransmitter serotonin (5-HT) and its capacity to dampen (inhibit) neural excitation. A brief review of key anatomical details, receptor types, and pharmacology is provided. The paper then considers how damage to descending serotonergic fibers contributes to pathophysiology after spinal cord injury (SCI). The loss of serotonergic fibers removes an inhibitory brake that enables plasticity and neural excitation. In this state, noxious stimulation can induce a form of over-excitation that sensitizes pain (nociceptive) circuits, a modification that can contribute to the development of chronic pain. Over time, the loss of serotonergic fibers allows prolonged motor drive (spasticity) to develop and removes a regulatory brake on autonomic function, which enables bouts of unregulated sympathetic activity (autonomic dysreflexia). Recent research has shown that the loss of descending serotonergic activity is accompanied by a shift in how the neurotransmitter GABA affects neural activity, reducing its inhibitory effect. Treatments that target the loss of inhibition could have therapeutic benefit.
Collapse
Affiliation(s)
| | | | - James W. Grau
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX 77843, USA; (G.N.K.F.); (K.E.H.)
| |
Collapse
|
2
|
Garcia-Ramirez DL, Ha NT, Bibu S, Stachowski NJ, Dougherty KJ. Spinal Cord Injury Alters Spinal Shox2 Interneurons by Enhancing Excitatory Synaptic Input and Serotonergic Modulation While Maintaining Intrinsic Properties in Mouse. J Neurosci 2021; 41:5833-5848. [PMID: 34006587 PMCID: PMC8265802 DOI: 10.1523/jneurosci.1576-20.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 05/03/2021] [Accepted: 05/05/2021] [Indexed: 12/11/2022] Open
Abstract
Neural circuitry generating locomotor rhythm and pattern is located in the spinal cord. Most spinal cord injuries (SCIs) occur above the level of spinal locomotor neurons; therefore, these circuits are a target for improving motor function after SCI. Despite being relatively intact below the injury, locomotor circuitry undergoes substantial plasticity with the loss of descending control. Information regarding cell type-specific plasticity within locomotor circuits is limited. Shox2 interneurons (INs) have been linked to locomotor rhythm generation and patterning, making them a potential therapeutic target for the restoration of locomotion after SCI. The goal of the present study was to identify SCI-induced plasticity at the level of Shox2 INs in a complete thoracic transection model in adult male and female mice. Whole-cell patch-clamp recordings of Shox2 INs revealed minimal changes in intrinsic excitability properties after SCI. However, afferent stimulation resulted in mixed excitatory and inhibitory input to Shox2 INs in uninjured mice which became predominantly excitatory after SCI. Shox2 INs were differentially modulated by serotonin (5-HT) in a concentration-dependent manner in uninjured conditions but following SCI, 5-HT predominantly depolarized Shox2 INs. 5-HT7 receptors mediated excitatory effects on Shox2 INs from both uninjured and SCI mice, but activation of 5-HT2B/2C receptors enhanced excitability of Shox2 INs only after SCI. Overall, SCI alters sensory afferent input pathways to Shox2 INs and 5-HT modulation of Shox2 INs to enhance excitatory responses. Our findings provide relevant information regarding the locomotor circuitry response to SCI that could benefit strategies to improve locomotion after SCI.SIGNIFICANCE STATEMENT Current therapies to gain locomotor control after spinal cord injury (SCI) target spinal locomotor circuitry. Improvements in therapeutic strategies will require a better understanding of the SCI-induced plasticity within specific locomotor elements and their controllers, including sensory afferents and serotonergic modulation. Here, we demonstrate that excitability and intrinsic properties of Shox2 interneurons, which contribute to the generation of the locomotor rhythm and pattering, remain intact after SCI. However, SCI induces plasticity in both sensory afferent pathways and serotonergic modulation, enhancing the activation and excitation of Shox2 interneurons. Our findings will impact future strategies looking to harness these changes with the ultimate goal of restoring functional locomotion after SCI.
Collapse
Affiliation(s)
- D Leonardo Garcia-Ramirez
- Marion Murray Spinal Cord Research Center, Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania 19129
| | - Ngoc T Ha
- Marion Murray Spinal Cord Research Center, Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania 19129
| | - Steve Bibu
- Marion Murray Spinal Cord Research Center, Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania 19129
| | - Nicholas J Stachowski
- Marion Murray Spinal Cord Research Center, Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania 19129
| | - Kimberly J Dougherty
- Marion Murray Spinal Cord Research Center, Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania 19129
| |
Collapse
|
3
|
Mayo JN, Kauer SD, Brumley MR, Bearden SE. Pericytes improve locomotor recovery after spinal cord injury in male and female neonatal rats. Microcirculation 2020; 27:e12646. [PMID: 32608116 DOI: 10.1111/micc.12646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/06/2020] [Accepted: 06/23/2020] [Indexed: 12/15/2022]
Abstract
OBJECTIVE It is not known how activation of the hypoxia-inducible factor (HIF) pathway in pericytes, cells of the microvascular wall, influences new capillary growth. We tested the hypothesis that HIF-activated pericytes promote angiogenesis in a neonatal model of spinal cord injury (SCI). METHODS Human placental pericytes stimulated with cobalt chloride and naïve pericytes were injected into the site of a thoracic hemi-section of the spinal cord in rat pups on postnatal day three (P3). Hindlimb motor recovery and Doppler blood flow perfusion at the site of transection were measured on P10. Immunohistochemistry was used to visualize vessel and neurofilament density for quantification. RESULTS Injection of HIF-activated pericytes resulted in greater vascular density in males but did not result in improved motor function for males or females. Injection of non-HIF-activated pericytes resulted improved motor function recovery in both sexes (males, 2.722 ± 0.31-fold score improvement; females, 3.824 ± 0.58-fold score improvement, P < .05) but produced no significant changes in vessel density. CONCLUSIONS HIF-activated pericytes promote vascular density in males post-SCI. Acute delivery of non-HIF-activated pericytes at the site of injury can improve motor recovery post-SCI.
Collapse
Affiliation(s)
- Jamie N Mayo
- IDEAS 2.0 Centre of Innovation, VA Salt Lake City Health Care System, Salt Lake City, UT, USA.,Division of Epidemiology, Department of Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA.,Department of Biological Sciences, Idaho State University, Pocatello, ID, USA
| | - Sierra D Kauer
- Department of Neurology, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Michele R Brumley
- Department of Psychology, Idaho State University, Pocatello, ID, USA
| | - Shawn E Bearden
- Department of Biological Sciences, Idaho State University, Pocatello, ID, USA
| |
Collapse
|
4
|
De Deurwaerdère P, Bharatiya R, Chagraoui A, Di Giovanni G. Constitutive activity of 5-HT receptors: Factual analysis. Neuropharmacology 2020; 168:107967. [DOI: 10.1016/j.neuropharm.2020.107967] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/26/2019] [Accepted: 01/12/2020] [Indexed: 12/16/2022]
|
5
|
Ganzer PD, Beringer CR, Shumsky JS, Nwaobasi C, Moxon KA. Serotonin receptor and dendritic plasticity in the spinal cord mediated by chronic serotonergic pharmacotherapy combined with exercise following complete SCI in the adult rat. Exp Neurol 2018. [PMID: 29526741 DOI: 10.1016/j.expneurol.2018.03.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Severe spinal cord injury (SCI) damages descending motor and serotonin (5-HT) fiber projections leading to paralysis and serotonin depletion. 5-HT receptors (5-HTRs) subsequently upregulate following 5-HT fiber degeneration, and dendritic density decreases indicative of atrophy. 5-HT pharmacotherapy or exercise can improve locomotor behavior after SCI. One might expect that 5-HT pharmacotherapy acts on upregulated spinal 5-HTRs to enhance function, and that exercise alone can influence dendritic atrophy. In the current study, we assessed locomotor recovery and spinal proteins influenced by SCI and therapy. 5-HT, 5-HT2AR, 5-HT1AR, and dendritic densities were quantified both early (1 week) and late (9 weeks) after SCI, and also following therapeutic interventions (5-HT pharmacotherapy, bike therapy, or a combination). Interestingly, chronic 5-HT pharmacotherapy largely normalized spinal 5-HTR upregulation following injury. Improvement in locomotor behavior was not correlated to 5-HTR density. These results support the hypothesis that chronic 5-HT pharmacotherapy can mediate recovery following SCI, despite acting on largely normal spinal 5-HTR levels. We next assessed spinal dendritic plasticity and its potential role in locomotor recovery. Single therapies did not normalize the loss of dendritic density after SCI. Groups displaying significantly atrophied dendritic processes were rarely able to achieve weight supported open-field locomotion. Only a combination of 5-HT pharmacotherapy and bike therapy enabled significant open-field weigh-supported stepping, mediated in part by restoring spinal dendritic density. These results support the use of combined therapies to synergistically impact multiple markers of spinal plasticity and improve motor recovery.
Collapse
Affiliation(s)
- Patrick D Ganzer
- School of Biomedical Engineering, Science and Health Systems, Drexel University, 3141 Chestnut St., Philadelphia, PA 19104, United States.
| | - Carl R Beringer
- School of Biomedical Engineering, Science and Health Systems, Drexel University, 3141 Chestnut St., Philadelphia, PA 19104, United States
| | - Jed S Shumsky
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, 2900 Queen Lane, Philadelphia, PA 19129, United States
| | - Chiemela Nwaobasi
- School of Biomedical Engineering, Science and Health Systems, Drexel University, 3141 Chestnut St., Philadelphia, PA 19104, United States
| | - Karen A Moxon
- School of Biomedical Engineering, Science and Health Systems, Drexel University, 3141 Chestnut St., Philadelphia, PA 19104, United States; Department of Neurobiology and Anatomy, Drexel University College of Medicine, 2900 Queen Lane, Philadelphia, PA 19129, United States
| |
Collapse
|
6
|
Teaching Adult Rats Spinalized as Neonates to Walk Using Trunk Robotic Rehabilitation: Elements of Success, Failure, and Dependence. J Neurosci 2017; 36:8341-55. [PMID: 27511008 DOI: 10.1523/jneurosci.2435-14.2016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 06/10/2016] [Indexed: 01/22/2023] Open
Abstract
UNLABELLED Robot therapy promotes functional recovery after spinal cord injury (SCI) in animal and clinical studies. Trunk actions are important in adult rats spinalized as neonates (NTX rats) that walk autonomously. Quadrupedal robot rehabilitation was tested using an implanted orthosis at the pelvis. Trunk cortical reorganization follows such rehabilitation. Here, we test the functional outcomes of such training. Robot impedance control at the pelvis allowed hindlimb, trunk, and forelimb mechanical interactions. Rats gradually increased weight support. Rats showed significant improvement in hindlimb stepping ability, quadrupedal weight support, and all measures examined. Function in NTX rats both before and after training showed bimodal distributions, with "poor" and "high weight support" groupings. A total of 35% of rats initially classified as "poor" were able to increase their weight-supported step measures to a level considered "high weight support" after robot training, thus moving between weight support groups. Recovered function in these rats persisted on treadmill with the robot both actuated and nonactuated, but returned to pretraining levels if they were completely disconnected from the robot. Locomotor recovery in robot rehabilitation of NTX rats thus likely included context dependence and/or incorporation of models of robot mechanics that became essential parts of their learned strategy. Such learned dependence is likely a hurdle to autonomy to be overcome for many robot locomotor therapies. Notwithstanding these limitations, trunk-based quadrupedal robot rehabilitation helped the rats to visit mechanical states they would never have achieved alone, to learn novel coordinations, and to achieve major improvements in locomotor function. SIGNIFICANCE STATEMENT Neonatal spinal transected rats without any weight support can be taught weight support as adults by using robot rehabilitation at trunk. No adult control rats with neonatal spinal transections spontaneously achieve similar changes. The robot rehabilitation system can be inactivated and the skills that were learned persist. Responding rats cannot be detached from the robot altogether, a dependence develops in the skill learned. From data and analysis here, the likelihood of such rats to respond to the robot therapy can also now be predicted. These results are all novel. Understanding trunk roles in voluntary and spinal reflex integration after spinal cord injury and in recovery of function are broadly significant for basic and clinical understanding of motor function.
Collapse
|
7
|
Dugan EA, Shumsky JS. A combination therapy of neural and glial restricted precursor cells and chronic quipazine treatment paired with passive cycling promotes quipazine-induced stepping in adult spinalized rats. J Spinal Cord Med 2015; 38:792-804. [PMID: 25329574 PMCID: PMC4725813 DOI: 10.1179/2045772314y.0000000274] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
INTRODUCTION In order to develop optimal treatments to promote recovery from complete spinal cord injury (SCI), we examined the combination of: (1) a cellular graft of neural and glial restricted precursor (NRP/GRP) cells, (2) passive exercise, and (3) chronic quipazine treatment on behavioral outcomes and compared them with the individual treatment elements. NRP/GRP cells were transplanted at the time of spinalization. METHODS Daily passive exercise began 1 week after injury to give sufficient time for the animals to recover. Chronic quipazine administration began 2 weeks after spinalization to allow for sufficient receptor upregulation permitting the expression of its behavioral effects. Behavioral measures consisted of the Basso, Beattie, and Bresnahan (BBB) locomotor score and percent of weight-supported steps and hops on a treadmill. RESULTS Rats displayed an increased response to quipazine (BBB ≥ 9) beginning at 8 weeks post-injury in all the animals that received the combination therapy. This increase in BBB score was persistent through the end of the study (12 weeks post-injury). CONCLUSION Unlike the individual treatment groups which never achieved weight support, the combination therapy animals were able to perform uncoordinated weight-supported stepping without a body weight support system while on a moving treadmill (6.5 m per minute) and were capable of supporting their own weight in stance during open field locomotion testing. No regeneration of descending serotonergic projections into and through the lesion cavity was observed. Furthermore, these results are a testament to the capacity of the lumbar spinal cord, when properly stimulated, to sustain functioning locomotor circuitry following complete SCI.
Collapse
Affiliation(s)
- Elizabeth A. Dugan
- Correspondence to: Elizabeth A. Dugan, University of Miami, Miami Project to Cure Paralysis, 1095 NW 14th Terrace, Miami, FL 33136, USA.
| | - Jed S. Shumsky
- Drexel University College of Medicine, Philadelphia, PA, USA
| |
Collapse
|
8
|
Gackière F, Vinay L. Serotonergic modulation of post-synaptic inhibition and locomotor alternating pattern in the spinal cord. Front Neural Circuits 2014; 8:102. [PMID: 25221477 PMCID: PMC4148025 DOI: 10.3389/fncir.2014.00102] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 08/05/2014] [Indexed: 11/16/2022] Open
Abstract
The central pattern generators (CPGs) for locomotion, located in the lumbar spinal cord, are functional at birth in the rat. Their maturation occurs during the last few days preceding birth, a period during which the first projections from the brainstem start to reach the lumbar enlargement of the spinal cord. Locomotor burst activity in the mature intact spinal cord alternates between flexor and extensor motoneurons through reciprocal inhibition and between left and right sides through commisural inhibitory interneurons. By contrast, all motor bursts are in phase in the fetus. The alternating pattern disappears after neonatal spinal cord transection which suppresses supraspinal influences upon the locomotor networks. This article will review the role of serotonin (5-HT), in particular 5-HT2 receptors, in shaping the alternating pattern. For instance, pharmacological activation of these receptors restores the left-right alternation after injury. Experiments aimed at either reducing the endogenous level of serotonin in the spinal cord or blocking the activation of 5-HT2 receptors. We then describe recent evidence that the action of 5-HT2 receptors is mediated, at least in part, through a modulation of chloride homeostasis. The postsynaptic action of GABA and glycine depends on the intracellular concentration of chloride ions which is regulated by a protein in the plasma membrane, the K+-Cl− cotransporter (KCC2) extruding both K+ and Cl− ions. Absence or reduction of KCC2 expression leads to a depolarizing action of GABA and glycine and a marked reduction in the strength of postsynaptic inhibition. This latter situation is observed early during development and in several pathological conditions, such as after spinal cord injury, thereby causing spasticity and chronic pain. It was recently shown that specific activation of 5-HT2A receptors is able to up-regulate KCC2, restore endogenous inhibition and reduce spasticity.
Collapse
Affiliation(s)
- Florian Gackière
- Institut de Neurosciences de la Timone, UMR 7289, CNRS, Aix Marseille Université Marseille, France
| | - Laurent Vinay
- Institut de Neurosciences de la Timone, UMR 7289, CNRS, Aix Marseille Université Marseille, France
| |
Collapse
|
9
|
Strain MM, Kauer SD, Kao T, Brumley MR. Inter- and intralimb adaptations to a sensory perturbation during activation of the serotonin system after a low spinal cord transection in neonatal rats. Front Neural Circuits 2014; 8:80. [PMID: 25071461 PMCID: PMC4094843 DOI: 10.3389/fncir.2014.00080] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 06/23/2014] [Indexed: 12/12/2022] Open
Abstract
Activation of the serotonin system has been shown to induce locomotor activity following a spinal cord transection. This study examines how the isolated spinal cord adapts to a sensory perturbation during activation of the serotonergic system. Real-time and persistent effects of a perturbation were examined in intact and spinal transected newborn rats. Rats received a spinal surgery (sham or low thoracic transection) on postnatal day 1 and were tested 9 days later. At test, subjects were treated with the serotonergic receptor agonist quipazine (3.0 mg/kg) to induce stepping behavior. Half of the subjects experienced range of motion (ROM) restriction during stepping, while the other half did not. Differences in stepping behavior (interlimb coordination) and limb trajectories (intralimb coordination) were found to occur in both intact and spinal subjects. Adaptations were seen in the forelimbs and hindlimbs. Also, real-time and persistent effects of ROM restriction (following removal of the perturbation) were seen in ROM-restricted subjects. This study demonstrates the sensitivity of the isolated spinal cord to sensory feedback in conjunction with serotonin modulation.
Collapse
Affiliation(s)
- Misty M Strain
- Department of Psychology, Texas A&M University College Station, TX, USA
| | - Sierra D Kauer
- Department of Psychology, Idaho State University Pocatello, ID, USA
| | - Tina Kao
- Department of Psychology, City University of New York Brooklyn, NY, USA ; Department of Psychology, New York University New York, NY, USA ; Department of Neuroscience, Columbia University New York, NY, USA
| | | |
Collapse
|
10
|
Moxon KA, Oliviero A, Aguilar J, Foffani G. Cortical reorganization after spinal cord injury: always for good? Neuroscience 2014; 283:78-94. [PMID: 24997269 DOI: 10.1016/j.neuroscience.2014.06.056] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 06/09/2014] [Accepted: 06/25/2014] [Indexed: 12/29/2022]
Abstract
Plasticity constitutes the basis of behavioral changes as a result of experience. It refers to neural network shaping and re-shaping at the global level and to synaptic contacts remodeling at the local level, either during learning or memory encoding, or as a result of acute or chronic pathological conditions. 'Plastic' brain reorganization after central nervous system lesions has a pivotal role in the recovery and rehabilitation of sensory and motor dysfunction, but can also be "maladaptive". Moreover, it is clear that brain reorganization is not a "static" phenomenon but rather a very dynamic process. Spinal cord injury immediately initiates a change in brain state and starts cortical reorganization. In the long term, the impact of injury - with or without accompanying therapy - on the brain is a complex balance between supraspinal reorganization and spinal recovery. The degree of cortical reorganization after spinal cord injury is highly variable, and can range from no reorganization (i.e. "silencing") to massive cortical remapping. This variability critically depends on the species, the age of the animal when the injury occurs, the time after the injury has occurred, and the behavioral activity and possible therapy regimes after the injury. We will briefly discuss these dependencies, trying to highlight their translational value. Overall, it is not only necessary to better understand how the brain can reorganize after injury with or without therapy, it is also necessary to clarify when and why brain reorganization can be either "good" or "bad" in terms of its clinical consequences. This information is critical in order to develop and optimize cost-effective therapies to maximize functional recovery while minimizing maladaptive states after spinal cord injury.
Collapse
Affiliation(s)
- K A Moxon
- School of Biomedical Engineering, Science and Health Systems, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104, USA.
| | - A Oliviero
- Hospital Nacional de Parapléjicos, SESCAM, Finca la Peraleda s/n, 45071 Toledo, Spain
| | - J Aguilar
- Hospital Nacional de Parapléjicos, SESCAM, Finca la Peraleda s/n, 45071 Toledo, Spain
| | - G Foffani
- Hospital Nacional de Parapléjicos, SESCAM, Finca la Peraleda s/n, 45071 Toledo, Spain.
| |
Collapse
|
11
|
Spinal cord maturation and locomotion in mice with an isolated cortex. Neuroscience 2013; 253:235-44. [DOI: 10.1016/j.neuroscience.2013.08.057] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 07/23/2013] [Accepted: 08/21/2013] [Indexed: 02/05/2023]
|
12
|
Weight-bearing locomotion in the developing opossum, Monodelphis domestica following spinal transection: remodeling of neuronal circuits caudal to lesion. PLoS One 2013; 8:e71181. [PMID: 23951105 PMCID: PMC3741377 DOI: 10.1371/journal.pone.0071181] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 06/26/2013] [Indexed: 12/17/2022] Open
Abstract
Complete spinal transection in the mature nervous system is typically followed by minimal axonal repair, extensive motor paralysis and loss of sensory functions caudal to the injury. In contrast, the immature nervous system has greater capacity for repair, a phenomenon sometimes called the infant lesion effect. This study investigates spinal injuries early in development using the marsupial opossum Monodelphis domestica whose young are born very immature, allowing access to developmental stages only accessible in utero in eutherian mammals. Spinal cords of Monodelphis pups were completely transected in the lower thoracic region, T10, on postnatal-day (P)7 or P28 and the animals grew to adulthood. In P7-injured animals regrown supraspinal and propriospinal axons through the injury site were demonstrated using retrograde axonal labelling. These animals recovered near-normal coordinated overground locomotion, but with altered gait characteristics including foot placement phase lags. In P28-injured animals no axonal regrowth through the injury site could be demonstrated yet they were able to perform weight-supporting hindlimb stepping overground and on the treadmill. When placed in an environment of reduced sensory feedback (swimming) P7-injured animals swam using their hindlimbs, suggesting that the axons that grew across the lesion made functional connections; P28-injured animals swam using their forelimbs only, suggesting that their overground hindlimb movements were reflex-dependent and thus likely to be generated locally in the lumbar spinal cord. Modifications to propriospinal circuitry in P7- and P28-injured opossums were demonstrated by changes in the number of fluorescently labelled neurons detected in the lumbar cord following tracer studies and changes in the balance of excitatory, inhibitory and neuromodulatory neurotransmitter receptors’ gene expression shown by qRT-PCR. These results are discussed in the context of studies indicating that although following injury the isolated segment of the spinal cord retains some capability of rhythmic movement the mechanisms involved in weight-bearing locomotion are distinct.
Collapse
|
13
|
Cristante AF, Filho TEPB, Oliveira RP, Marcon RM, Ferreira R, Santos GB. Effects of antidepressant and treadmill gait training on recovery from spinal cord injury in rats. Spinal Cord 2013; 51:501-7. [PMID: 23567756 DOI: 10.1038/sc.2013.18] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
STUDY DESIGN Experimental, controlled, animal study. OBJECTIVES To evaluate the influences of antidepressant treatment, treadmill gait training and a combination of these therapies in rats with experimental, acute spinal cord injury (SCI). SETTING Brazil. METHODS 48 Wistar rats were given standardized SCI; rats were then randomly assigned to four treatment groups: (1) motor rehabilitation therapy for 1 hour daily (gait training); (2) daily treatment with the antidepressant, fluoxetine (0.3 ml per 100 g intraperitoneally), beginning 24 h after the trauma; (3) combined fluoxetine treatment and gait training, or (4) untreated (controls). Neurological recovery was tested with the Basso, Beattie and Bresnahan (BBB) scale at 2, 7, 14, 21, 28 ,35 and 42 days after injury. Moreover, on day 42, all rats underwent a motor-evoked potential test (MEP); then, after euthanasia, histopathological evaluation was conducted in the area of SCI. RESULTS Based on the BBB scale, the combined treatment group showed significantly greater improvement compared with the other three groups, from the 14th to the 42nd day of observation. The MEP revealed that all treated groups showed significant improvement compared with the control group (P<0.02 for latency and P<0.01 for amplitude). CONCLUSION Our results indicated that a combination of antidepressant and treadmill gait training was superior to either treatment alone for improving functional deficits in rats with experimental, acute SCI.
Collapse
Affiliation(s)
- A F Cristante
- Department of Orthopaedics and Traumatology, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Pauloo, São Paulo, Brazil.
| | | | | | | | | | | |
Collapse
|
14
|
Ren LQ, Wienecke J, Chen M, Møller M, Hultborn H, Zhang M. The time course of serotonin 2C receptor expression after spinal transection of rats: an immunohistochemical study. Neuroscience 2013; 236:31-46. [PMID: 23337537 DOI: 10.1016/j.neuroscience.2012.12.063] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 12/03/2012] [Accepted: 12/21/2012] [Indexed: 01/05/2023]
Abstract
In the spinal cord serotonin (5-HT) systems modulate the spinal network via various 5-HT receptors. Serotonin 2A receptor and serotonin 2C receptor (5-HT2A and 2C receptors) are likely the most important 5-HT receptors for enhancing the motoneuron excitability by facilitating the persistent inward current (PIC), and thus play an important role for the pathogenesis of spasticity after spinal cord injury. In conjunction with our 5-HT2A receptor study, using a same sacral spinal transection rat model we have in this study examined 5-HT2C receptor immunoreactivity (5-HT2CR-IR) changes at seven different time intervals after spinal injury. We found that 5-HT2CR-IR was widely distributed in different regions of the spinal gray matter and was predominantly located in the neuronal somata and their dendrites although it seemed also present in axonal fibers in the superficial dorsal horn. 5-HT2CR-IR in different regions of the spinal gray matter was seen to be increased at 14days after transection (with an average ∼1.3-fold higher than in sham-operated group) but did not reach a significant level until at 21days (∼1.4-fold). The increase sustained thereafter and a plateau level was reached at 45days (∼1.7-fold higher), a value similar as that at 60days. When 5-HT2CR-IR analysis was confined to the ventral horn motoneuron somata (including a proportion of proximal dendrites) a significant increase was not detected until 45days post-operation. 5-HT2CR upregulation in the spinal gray matter is confirmed with Western blot in the rats 60days post-operation. The time course of 5-HT2CR upregulation in the spinal gray matter and motoneurons was positively correlated with the development of tail spasticity (clinical scores). This indicates that 5-HT2CR is probably an important factor underlying this pathophysiological development by increasing the excitability of both motoneurons and interneurons.
Collapse
Affiliation(s)
- L-Q Ren
- Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | | |
Collapse
|
15
|
Ganzer PD, Moxon KA, Knudsen EB, Shumsky JS. Serotonergic pharmacotherapy promotes cortical reorganization after spinal cord injury. Exp Neurol 2012; 241:84-94. [PMID: 23262119 DOI: 10.1016/j.expneurol.2012.12.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 12/06/2012] [Indexed: 01/17/2023]
Abstract
Cortical reorganization plays a significant role in recovery of function after injury of the central nervous system. The neural mechanisms that underlie this reorganization may be the same as those normally responsible for skilled behaviors that accompany extended sensory experience and, if better understood, could provide a basis for further promoting recovery of function after injury. The work presented here extends studies of spontaneous cortical reorganization after spinal cord injury to the role of rehabilitative strategies on cortical reorganization. We use a complete spinal transection model to focus on cortical reorganization in response to serotonergic (5-HT) pharmacotherapy without any confounding effects from spared fibers left after partial lesions. 5-HT pharmacotherapy has previously been shown to improve behavioral outcome after SCI but the effect on cortical organization is unknown. After a complete spinal transection in the adult rat, 5-HT pharmacotherapy produced more reorganization in the sensorimotor cortex than would be expected by transection alone. This reorganization was dose dependent, extended into intact (forelimb) motor cortex, and, at least in the hindlimb sensorimotor cortex, followed a somatotopic arrangement. Animals with the greatest behavioral outcome showed the greatest extent of cortical reorganization suggesting that the reorganization is likely to be in response to both direct effects of 5-HT on cortical circuits and indirect effects in response to the behavioral improvement below the level of the lesion.
Collapse
Affiliation(s)
- Patrick D Ganzer
- School of Biomedical Engineering, Science and Health Systems, Drexel University, 3141 Chestnut St., Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|
16
|
Moxon KA, Kao T, Shumsky JS. Role of cortical reorganization on the effect of 5-HT pharmacotherapy for spinal cord injury. Exp Neurol 2012; 240:17-27. [PMID: 23159333 DOI: 10.1016/j.expneurol.2012.10.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Revised: 09/26/2012] [Accepted: 10/24/2012] [Indexed: 10/27/2022]
Abstract
Cortical reorganization or expansion of the intact cortical regions into the deafferented cortex after complete spinal transection in neonatally spinalized rats was shown to be essential for increases in weight-supported stepping at adulthood. The novel somatotopic organization identified in these animals can be induced by exercise or spinal transplants that bridge the site of injury. However, the role of cortical reorganization in increased weight-supported (WS) stepping after pharmacotherapy is unknown. For the neonatally spinalized rat model, the 5-HT(2C) receptor agonist 1-(m-chlorophenyl)-piperazine hydrochloride (mCPP) increases the number of WS steps taken when administered to adult rats spinalized as neonates (mCPP+) though not all animals showed this effect (mCPP-). Since no differences in the behavior of the animals off-drug has been demonstrated, it is unclear why acute administration of 5-HT affects only a subset of animals. One possibility is that differences in cortical organization between mCPP+ and mCPP- may contribute to the differences in the functional effect of mCPP. To test this, we recorded from single neurons in the deafferented hindlimb sensorimotor cortex during passive sensory stimulation of the cutaneous surface of the forepaws and during active sensorimotor stimulation of the forepaws while the animals locomoted on a motorized treadmill. Our results show that neurons recorded from mCPP+ animals increased their responsiveness to both passive and active stimulation off-drug in comparison to neurons from mCPP- animals. These data suggest that differences in the cortical organization of mCPP+ compared to mCPP- animals may be at least partially responsible for the effect of a 5-HT(2C) receptor agonist on functional outcome.
Collapse
Affiliation(s)
- Karen A Moxon
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, 2900 Queen Lane, Philadelphia, PA 19129, USA.
| | | | | |
Collapse
|
17
|
Cristante AF, Barros Filho TEPD, Marcon RM, Letaif OB, Rocha IDD. Therapeutic approaches for spinal cord injury. Clinics (Sao Paulo) 2012; 67:1219-24. [PMID: 23070351 PMCID: PMC3460027 DOI: 10.6061/clinics/2012(10)16] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Accepted: 08/23/2012] [Indexed: 01/02/2023] Open
Abstract
This study reviews the literature concerning possible therapeutic approaches for spinal cord injury. Spinal cord injury is a disabling and irreversible condition that has high economic and social costs. There are both primary and secondary mechanisms of damage to the spinal cord. The primary lesion is the mechanical injury itself. The secondary lesion results from one or more biochemical and cellular processes that are triggered by the primary lesion. The frustration of health professionals in treating a severe spinal cord injury was described in 1700 BC in an Egyptian surgical papyrus that was translated by Edwin Smith; the papyrus reported spinal fractures as a "disease that should not be treated." Over the last biological or pharmacological treatment method. Science is unraveling the mechanisms of cell protection and neuroregeneration, but clinically, we only provide supportive care for patients with spinal cord injuries. By combining these treatments, researchers attempt to enhance the functional recovery of patients with spinal cord injuries. Advances in the last decade have allowed us to encourage the development of experimental studies in the field of spinal cord regeneration. The combination of several therapeutic strategies should, at minimum, allow for partial functional recoveries for these patients, which could improve their quality of life.
Collapse
Affiliation(s)
- Alexandre Fogaça Cristante
- Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, Instituto de Ortopedia e Traumatologia (IOT), Grupo de Coluna, São Paulo/SP, Brazil
| | | | | | | | | |
Collapse
|
18
|
Kao T, Shumsky JS, Knudsen EB, Murray M, Moxon KA. Functional role of exercise-induced cortical organization of sensorimotor cortex after spinal transection. J Neurophysiol 2011; 106:2662-74. [PMID: 21865438 DOI: 10.1152/jn.01017.2010] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Spinal cord transection silences neuronal activity in the deafferented cortex to cutaneous stimulation of the body and untreated animals show no improvement in functional outcome (weight-supported stepping) with time after lesion. However, adult rats spinalized since neonates that receive exercise therapy exhibit greater functional recovery and exhibit more cortical reorganization. This suggests that the change in the somatotopic organization of the cortex may be functionally relevant. To address this issue, we chronically implanted arrays of microwire electrodes into the infragranular layers of the hindlimb somatosensory cortex of adult rats neonatally transected at T8/T9 that received exercise training (spinalized rats) and of normal adult rats. Multiple, single neuron activity was recorded during passive sensory stimulation, when the animals were anesthetized, and during active sensorimotor stimulation during treadmill-induced locomotion when the animal was awake and free to move. Our results demonstrate that cortical neurons recorded from the spinalized rats that received exercise 1) had higher spontaneous firing rates, 2) were more likely to respond to both sensory and sensorimotor stimulations of the forelimbs, and also 3) responded with more spikes per stimulus than those recorded from normal rats, suggesting expansion of the forelimb map into the hindlimb map. During treadmill locomotion the activity of neurons recorded from neonatally spinalized rats was greater during weight-supported steps on the treadmill compared with the neuronal activity during nonweight supported steps. We hypothesize that this increased activity is related to the ability of the animal to take weight supported steps and that, therefore, these changes in cortical organization after spinal cord injury are relevant for functional recovery.
Collapse
Affiliation(s)
- T Kao
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | | | | | | | | |
Collapse
|
19
|
Yuan H, Xu S, Wang Y, Xu H, Wang C, Zhu Q, Yang RK, Chen X, Yang PC, Shi X. Corticotrophin-releasing hormone (CRH) facilitates axon outgrowth. Spinal Cord 2010; 48:850-6. [PMID: 20458328 DOI: 10.1038/sc.2010.47] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE To evaluate the role of corticotrophin-releasing hormone (CRH) in facilitating axon outgrowth. BACKGROUND Injured neural tissue is difficult to regenerate; the mechanism has not been fully understood. METHODS A rat model of spinal cord transection injury was developed. Levels of BDNF, CRH and oligodendrocyte glycoprotein (OMgp) in injured spinal cord were monitored dynamically after surgery. Cellular interaction among rat dorsal root ganglia (DRG) cells, oligocondrocytes and microglial cells was observed with a coculture model. The axon outgrowth from DRG cells was examined by confocal microscopy. RESULTS After spinal cord transection, levels of BDNF and CRH increased the next day and decreased afterward, whereas OMgp levels increased from day 3. Administration with BDNF suppressed the levels of OMgp in vitro. The results from a coculture model showed that CRH increased microglial cells to release BDNF; BDNF inhibited OMgp levels in oligodendrocytes and enhanced the axon outgrowth from DRG cells. CONCLUSIONS This study shows that CRH has the ability to facilitate the outgrowth of axon in spinal neurons, which has therapeutic potential in the treatment of spinal cord injury.
Collapse
Affiliation(s)
- H Yuan
- Department of Anesthesiology, Changzheng Hospital, The Second Military Medical University, Shanghai, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Tillakaratne NJK, Guu JJ, de Leon RD, Bigbee AJ, London NJ, Zhong H, Ziegler MD, Joynes RL, Roy RR, Edgerton VR. Functional recovery of stepping in rats after a complete neonatal spinal cord transection is not due to regrowth across the lesion site. Neuroscience 2010; 166:23-33. [PMID: 20006680 PMCID: PMC2820384 DOI: 10.1016/j.neuroscience.2009.12.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Accepted: 12/03/2009] [Indexed: 01/15/2023]
Abstract
Rats receiving a complete spinal cord transection (ST) at a neonatal stage spontaneously can recover significant stepping ability, whereas minimal recovery is attained in rats transected as adults. In addition, neonatally spinal cord transected rats trained to step more readily improve their locomotor ability. We hypothesized that recovery of stepping in rats receiving a complete spinal cord transection at postnatal day 5 (P5) is attributable to changes in the lumbosacral neural circuitry and not to regeneration of axons across the lesion. As expected, stepping performance measured by several kinematics parameters was significantly better in ST (at P5) trained (treadmill stepping for 8 weeks) than age-matched non-trained spinal rats. Anterograde tracing with biotinylated dextran amine showed an absence of labeling of corticospinal or rubrospinal tract axons below the transection. Retrograde tracing with Fast Blue from the spinal cord below the transection showed no labeled neurons in the somatosensory motor cortex of the hindlimb area, red nucleus, spinal vestibular nucleus, and medullary reticular nucleus. Retrograde labeling transsynaptically via injection of pseudorabies virus (Bartha) into the soleus and tibialis anterior muscles showed no labeling in the same brain nuclei. Furthermore, re-transection of the spinal cord at or rostral to the original transection did not affect stepping ability. Combined, these results clearly indicate that there was no regeneration across the lesion after a complete spinal cord transection in neonatal rats and suggest that this is an important model to understand the higher level of locomotor recovery in rats attributable to lumbosacral mechanisms after receiving a complete ST at a neonatal compared to an adult stage.
Collapse
Affiliation(s)
- N J K Tillakaratne
- Department of Physiological Science, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Hayashi Y, Jacob-Vadakot S, Dugan EA, McBride S, Olexa R, Simansky K, Murray M, Shumsky JS. 5-HT precursor loading, but not 5-HT receptor agonists, increases motor function after spinal cord contusion in adult rats. Exp Neurol 2009; 221:68-78. [PMID: 19840787 DOI: 10.1016/j.expneurol.2009.10.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2004] [Revised: 09/01/2009] [Accepted: 10/03/2009] [Indexed: 12/13/2022]
Abstract
Serotonergic (5-HT) receptors are upregulated following spinal cord transection. Stimulation by administration of serotonergic receptor agonists has been successful in improving hindlimb function. We tested whether this strategy would be successful in incomplete injury models (moderate or severe thoracic contusion) where descending projections are partially spared which should produce less denervation-induced receptor upregulation. Adult rats received midthoracic moderate (MOD: 25 mm drop) or severe (SEV: 50 mm drop) contusion injuries. Distribution of 5-HT and its transporter and expression of 5-HT(2C) receptors were evaluated in lumbar spinal cord and motor response to 5-HT receptor activation was assessed using open field locomotion (BBB) score, percent weight supported treadmill stepping (%WS) and evaluation of hindlimb muscle activation (tremor and serotonin syndrome). 5-HT immunostaining 3 months post-contusion revealed few 5-HT fibers caudal to the severe contusion, and more spared caudal to the moderate contusion. The distribution of 5-HT transporter paralleled 5-HT staining, but was more greatly reduced. Thus serotonin reuptake may be less efficient in the injured spinal cord. Immunostaining for the 5-HT(2C) receptor in the dorsal and ventral horns at L5 showed significant upregulation in SEV, compared to sham or MOD rats. Neither 5-HT(2C) nor 5-HT(1A) receptor agonists, alone or in combination, nor the serotonin transporter inhibitor d-fenfluramine modified BBB scores or %WS in either group. Despite the increased sensitivity of post-synaptic targets, agonist treatment did not improve function in SEV rats. We conclude that selective 5-HT(2C) or 5-HT(1A) receptor activation was not effective in improving hindlimb function after incomplete lesions. In contrast, the 5-HT precursor 5-hydroxytryptophan (L-5-HTP), which leads to activation of all classes of 5-HT receptors, increased both %WS and hindlimb activity in the MOD group. While no side effects were observed in normal or MOD rats, SEV rats displayed hindlimb tremors and 33% mortality, indicating hypersensitivity to the precursor.
Collapse
Affiliation(s)
- Y Hayashi
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Otoshi CK, Walwyn WM, Tillakaratne NJK, Zhong H, Roy RR, Edgerton VR. Distribution and localization of 5-HT(1A) receptors in the rat lumbar spinal cord after transection and deafferentation. J Neurotrauma 2009; 26:575-84. [PMID: 19260781 DOI: 10.1089/neu.2008.0640] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The serotonergic system is highly plastic, capable of adapting to changing afferent information in diverse mammalian systems. We hypothesized that removing supraspinal and/or peripheral input would play an important role in defining the distribution of one of the most prevalent serotonergic receptors, the 5-HT(1A) receptor (R), in the spinal cord. We investigated the distribution of this receptor in response to a complete thoracic (T7-T8) spinal cord transection (eliminating supraspinal input), or to spinal cord isolation (eliminating both supraspinal and peripheral input) in adult rats. Using two antibodies raised against either the second extracellular region (ECL(2)) or the third intracellular region (ICL(3)) of the 5-HT(1A)R, we compared the 5-HT(1A)R levels and distributions in specific laminae of the L3-L5 segments among the control, spinal cord-transected, and spinal cord-isolated groups. Each antibody labeled different populations of 5-HT(1A)R: ECL(2) labeled receptors in the axon hillock, whereas ICL(3) labeled receptors predominantly throughout the soma and proximal dendrites. Spinal cord transection increased the number of ECL(2)-positive cells in the medial region of laminae III-IV and lamina VII, and the mean length of the labeled axon hillocks in lamina IX. The number of ICL(3)-labeled cells was higher in lamina VII and in both the medial and lateral regions of lamina IX in the spinal cord-transected compared to the control group. In contrast, the length and number of ECL(2)-immunolabeled processes and ICL(3)-immunolabeled cells were similar in the spinal cord-isolated and control groups. Combined, these data demonstrate that the upregulation in 5-HT(1A)R that occurs with spinal cord transection alone is dependent on the presence of sensory input.
Collapse
Affiliation(s)
- Chad K Otoshi
- Department of Physiological Science, University of California-Los Angeles, Los Angeles, California 90095-1606, USA
| | | | | | | | | | | |
Collapse
|
23
|
Abstract
Exercise-induced cortical plasticity is associated with improved functional outcome after brain or nerve injury. Exercise also improves functional outcomes after spinal cord injury, but its effects on cortical plasticity are not known. The goal of this investigation was to study the effect of moderate exercise (treadmill locomotion, 3 min/d, 5 d/week) on the somatotopic organization of forelimb and hindlimb somatosensory cortex (SI) after neonatal thoracic transection. We used adult rats spinalized as neonates because some of these animals develop weight-supported stepping, and, therefore, the relationship between cortical plasticity and stepping could also be examined. Acute, single-neuron mapping was used to determine the percentage of cortical cells responding to cutaneous forelimb stimulation in normal, spinalized, and exercised spinalized rats. Multiple single-neuron recording from arrays of chronically implanted microwires examined the magnitude of response of these cells in normal and exercised spinalized rats. Our results show that exercise not only increased the percentage of responding cells in the hindlimb SI but also increased the magnitude of the response of these cells. This increase in response magnitude was correlated with behavioral outcome measures. In the forelimb SI, neonatal transection reduced the percentage of responding cells to forelimb stimulation, but exercise reversed this loss. This restoration in the percentage of responding cells after exercise was accompanied by an increase in their response magnitude. Therefore, the increase in responsiveness of hindlimb SI to forelimb stimulation after neonatal transection and exercise may be due, in part, to the effect of exercise on the forelimb SI.
Collapse
|
24
|
Moxon KA, Hallman S, Aslani A, Kalkhoran NM, Lelkes PI. Bioactive properties of nanostructured porous silicon for enhancing electrode to neuron interfaces. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2008; 18:1263-81. [PMID: 17939885 DOI: 10.1163/156856207782177882] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Many different types of microelectrodes have been developed for use as a direct brain-machine interface (BMI) to chronically recording single-neuron action potentials from ensembles of neurons. Unfortunately, the recordings from these microelectrode devices are not consistent and often last for only on the order of months. For most microelectrode types, the loss of these recordings is not due to failure of the electrodes, but most likely due to damage to surrounding tissue that results in the formation of non-conductive glial scar. Since the extracellular matrix consists of nanostructured fibrous protein assemblies, we have postulated that neurons may prefer a more complex surface structure than the smooth surface typical of thin-film microelectrodes. This porous structure could then act as a drug-delivery reservoir to deliver bioactive agents to aid in the repair or survival of cells around the microelectrode, further reducing the glial scar. We, therefore, investigated the suitability of a nanoporous silicon surface layer to increase the biocompatibility of our thin film ceramic-insulated multisite electrodes. In vitro testing demonstrated increased extension of neurites from PC12 pheochromocytoma cells on porous silicon surfaces compared to smooth silicon surfaces. Moreover, the size of the pores and the pore coverage did not interfere with this bioactive surface property, suggesting that large highly porous nanostructured surfaces can be used for drug delivery. The most porous nanoporous surfaces were then tested in vivo and found to be more biocompatible than smooth surface, producing less glial activation and allowing more neurons to remain close to the device. Collectively, these results support our hypothesis that nanoporous silicon may be an ideal material to improve biocompatibility of chronically implanted microelectrodes. The next step in this work will be to apply these surfaces to active microelectrodes, use them to deliver bioactive agents, and test that they do improve neural recordings.
Collapse
Affiliation(s)
- K A Moxon
- Drexel, University, School of Biomedical Engineering, 3141 Chestnut Street, Philadelphia, PA 19104, USA.
| | | | | | | | | |
Collapse
|
25
|
Leiser SC, Moxon KA. Responses of Trigeminal Ganglion Neurons during Natural Whisking Behaviors in the Awake Rat. Neuron 2007; 53:117-33. [PMID: 17196535 DOI: 10.1016/j.neuron.2006.10.036] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2006] [Revised: 08/23/2006] [Accepted: 10/31/2006] [Indexed: 11/30/2022]
Abstract
Rats use their whiskers to locate and discriminate tactile features of their environment. Mechanoreceptors surrounding each whisker encode and transmit sensory information from the environment to the brain via afferents whose cell bodies lie in the trigeminal ganglion (Vg). These afferents are classified as rapidly (RA) or slowly (SA) adapting by their response to stimulation. The activity of these cells in the awake behaving rat is yet unknown. Therefore, we developed a method to chronically record Vg neurons during natural whisking behaviors and found that all cells exhibited (1) no neuronal activity when the whiskers were not in motion, (2) increased activity when the rat whisked, with activity correlated to whisk frequency, and (3) robust increases in activity when the whiskers contacted an object. Moreover, we observed distinct differences in the firing rates between RA and SA cells, suggesting that they encode distinct aspects of stimuli in the awake rat.
Collapse
Affiliation(s)
- Steven C Leiser
- Drexel University, Department of Neurobiology and Anatomy, Philadelphia, PA 19129, USA
| | | |
Collapse
|