1
|
Nakashima M, Shiroshima T, Fukaya M, Sugawara T, Sakagami H, Yamazawa K. C-terminal truncations in IQSEC2: implications for synaptic localization, guanine nucleotide exchange factor activity, and neurological manifestations. J Hum Genet 2024; 69:119-123. [PMID: 38200111 DOI: 10.1038/s10038-023-01210-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 01/12/2024]
Abstract
IQSEC2 gene on chromosome Xq11.22 encodes a member of guanine nucleotide exchange factor (GEF) protein that is implicated in the activation of ADP-ribosylation factors (Arfs) at the postsynaptic density (PSD), and plays a crucial role in synaptic transmission and dendritic spine formation. Alterations in IQSEC2 have been linked to X-linked intellectual developmental disorders including epilepsy and behavioral abnormalities. Of interest, truncating variants at the C-terminus of IQSEC2 can cause severe phenotypes, akin to truncating variants located in other regions. Here, we present a 5-year-old boy with severe intellectual disability and progressive epilepsy. The individual carried a nonsense variant p.Q1227* in the last exon of the IQSEC2 gene that was supposed to escape nonsense-mediated mRNA decay, thereby leading to a translation of C-terminus truncated IQSEC2 protein with residual activity. The functional analyses showed that the GEF activity of IQSEC2 Q1227* was compromised, and that the IQSEC2 Q1227* lacked preferential synaptic localization due to the absence of functional domains for binding to scaffolding proteins in the PSD. The impaired GEF activity and disrupted synaptic localization of the mutant IQSEC2 protein could impact dendritic and spine development in neurons, potentially explaining the patient's severe neurological manifestations. Our findings indicate that C-terminal truncations in IQSEC2, previously not well-characterized, may have significant pathogenic implications.
Collapse
Affiliation(s)
- Moeko Nakashima
- Department of Medical Genetics, NHO Tokyo Medical Center, Tokyo, 152-8902, Japan
| | - Tomoko Shiroshima
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, 252-0374, Japan
| | - Masahiro Fukaya
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, 252-0374, Japan
| | - Takeyuki Sugawara
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, 252-0374, Japan
| | - Hiroyuki Sakagami
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, 252-0374, Japan.
| | - Kazuki Yamazawa
- Department of Medical Genetics, NHO Tokyo Medical Center, Tokyo, 152-8902, Japan.
| |
Collapse
|
2
|
Shokhen M, Walikonis R, Uversky VN, Allbeck A, Zezelic C, Feldman D, Levy NS, Levy AP. Molecular modeling of ARF6 dysregulation caused by mutations in IQSEC2. J Biomol Struct Dyn 2024; 42:1268-1279. [PMID: 37078745 DOI: 10.1080/07391102.2023.2199085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 03/29/2023] [Indexed: 04/21/2023]
Abstract
IQSEC2 gene mutations are associated with epilepsy, autism, and intellectual disability. The primary function IQSEC2, mediated via its Sec 7 domain, is to act as a guanine nucleotide exchange factor for ARF6. We sought to develop a molecular model, which may explain the aberrant Sec 7 activity on ARF6 of different human IQSEC2 mutations. We integrated experimental data of IQSEC2 mutants with protein structure prediction by the RaptorX server combined with molecular modeling and molecular dynamics simulations. Normally, apocalmodulin (apoCM) binds to IQSEC2 resulting in its N-terminal fragment inhibiting access of its Sec 7 domain to ARF6. An increase in Ca2+ concentration destabilizes the interaction of IQSEC2 with apoCM and removes steric hindrance of Sec 7 binding with ARF6. Mutations at amino acid residue 350 of IQSEC2 result in loss of steric hindrance of Sec 7 binding with ARF6 leading to constitutive activation of ARF6 by Sec 7. On the other hand, a mutation at amino acid residue 359 of IQSEC2 results in constitutive hindrance of Sec 7 binding to ARF6 leading to the loss of the ability of IQSEC2 to activate ARF6. These studies provide a model for dysregulation of IQSEC2 Sec 7 activity by mutant IQSEC2 proteins.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Michael Shokhen
- Department of Chemistry, Bar Ilan University, Ramat Gan, Israel
| | - Randall Walikonis
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut, USA
| | - Vladimir N Uversky
- Department of Molecular Medicine and Byrd Alzheimer's Center and Research Institute, University of South Florida, Tampa, Florida, USA
| | - Amnon Allbeck
- Department of Chemistry, Bar Ilan University, Ramat Gan, Israel
| | - Camryn Zezelic
- Technion Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Danielle Feldman
- Technion Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Nina S Levy
- Technion Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Andrew P Levy
- Technion Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
3
|
Bai G, Li H, Qin P, Guo Y, Yang W, Lian Y, Ye F, Chen J, Wu M, Huang R, Li J, Lu Y, Zhang M. Ca2+-induced release of IQSEC2/BRAG1 autoinhibition under physiological and pathological conditions. J Cell Biol 2023; 222:e202307117. [PMID: 37787765 PMCID: PMC10548395 DOI: 10.1083/jcb.202307117] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/31/2023] [Accepted: 09/14/2023] [Indexed: 10/04/2023] Open
Abstract
IQSEC2 (aka BRAG1) is a guanine nucleotide exchange factor (GEF) highly enriched in synapses. As a top neurodevelopmental disorder risk gene, numerous mutations are identified in Iqsec2 in patients with intellectual disabilities accompanied by other developmental, neurological, and psychiatric symptoms, though with poorly understood underlying molecular mechanisms. The atomic structures of IQSECs, together with biochemical analysis, presented in this study reveal an autoinhibition and Ca2+-dependent allosteric activation mechanism for all IQSECs and rationalize how each identified Iqsec2 mutation can alter the structure and function of the enzyme. Transgenic mice modeling two pathogenic variants of Iqsec2 (R359C and Q801P), with one activating and the other inhibiting the GEF activity of the enzyme, recapitulate distinct clinical phenotypes in patients. Our study demonstrates that different mutations on one gene such as Iqsec2 can have distinct neurological phenotypes and accordingly will require different therapeutic strategies.
Collapse
Affiliation(s)
- Guanhua Bai
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Kowloon, China
| | - Hao Li
- Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
| | - Pengwei Qin
- Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
| | - Yiqing Guo
- Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
| | - Wanfa Yang
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Kowloon, China
| | - Yinmiao Lian
- Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
| | - Fei Ye
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Kowloon, China
| | - Jianxin Chen
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
- School of Life Science and Technology, Shanghai Tech University, Shanghai, China
| | - Meiling Wu
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Ruifeng Huang
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Jinsong Li
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
- School of Life Science and Technology, Shanghai Tech University, Shanghai, China
| | - Youming Lu
- Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
| | - Mingjie Zhang
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Kowloon, China
- Greater Bay Biomedical Innocenter, Shenzhen Bay Laboratory, Shenzhen, China
| |
Collapse
|
4
|
Sun D, Guo Y, Tang P, Li H, Chen L. Arf6 as a therapeutic target: Structure, mechanism, and inhibitors. Acta Pharm Sin B 2023; 13:4089-4104. [PMID: 37799386 PMCID: PMC10547916 DOI: 10.1016/j.apsb.2023.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/28/2023] [Accepted: 06/02/2023] [Indexed: 10/07/2023] Open
Abstract
ADP-ribosylation factor 6 (Arf6), a small G-protein of the Ras superfamily, plays pivotal roles in multiple cellular events, including exocytosis, endocytosis, actin remodeling, plasma membrane reorganization and vesicular transport. Arf6 regulates the progression of cancer through the activation of cell motility and invasion. Aberrant Arf6 activation is a potential therapeutic target. This review aims to understand the comprehensive function of Arf6 for future cancer therapy. The Arf6 GEFs, protein structure, and roles in cancer have been summarized. Comprehending the mechanism underlying Arf6-mediated cancer cell growth and survival is essential. The structural features of Arf6 and its efforts are discussed and may be contributed to the discovery of future novel protein-protein interaction inhibitors. In addition, Arf6 inhibitors and mechanism of action are listed in the table. This review further emphasizes the crucial roles in drug resistance and attempts to offer an outlook of Arf6 in cancer therapy.
Collapse
Affiliation(s)
- Dejuan Sun
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yuanyuan Guo
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Piyu Tang
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Hua Li
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Lixia Chen
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
5
|
Liu X, Zhang S, Wan L, Zhang X, Wang H, Zhang H, Zhu G, Liang Y, Yan H, Zhang B, Yang G. IQSEC2-related encephalopathy in male children: Novel mutations and phenotypes. Front Mol Neurosci 2022; 15:984776. [PMID: 36267700 PMCID: PMC9577604 DOI: 10.3389/fnmol.2022.984776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
The isoleucine–glutamine (IQ) motif and Sec7 domain-containing protein 2 (IQSEC2) gene, located at Xp11. 2, are associated with nervous system diseases, such as epilepsy, autism, and intellectual disabilities. Gender-related differences in the severity of phenotype severity have been described previously. Here, we report the details of seven male children with IQSEC2 mutations from different families. During this investigation, we explored the relationship between the genotype and phenotype of IQSEC2 mutations; to do so, we recruited seven children with pathogenic/likely pathogenic IQSEC2 mutations who were diagnosed with global developmental delay and/or epilepsy. Their clinical features were assessed, and Trio-based whole-exome sequencing (trio WES) was conducted in seven pedigrees. A variety of algorithms and computational tools were used to calculate the pathogenicity, protein stability, conservation, side chain properties, and protein-protein interactions of mutated proteins. The seven patients ranged in age from 18 months to 5 years. Among them, six children were found to have both developmental delay and epilepsy, and one child only exhibited developmental delay. Four novel mutations (c.316C > T, c.443_4 44dup, c.3235T > C, and c.1417G > T) were newly reported. Two patients did not have truncated aberrant proteins caused by missense mutations. Still, they did have severe phenotypes, such as early-onset epilepsy in infancy, because the mutations were located in domains like the pleckstrin homology and IQ calmodulin-binding motif domains. The bioinformatics analysis also proved that missense mutations may be located in the functional region, which affects protein stability and is harmful. In summary, severe phenotypes, such as early-onset epilepsy in infancy, occur in male patients with a missense mutation in specific domains (e.g., pleckstrin homology and IQ calmodulin-binding motif domains). Some female individuals with IQSEC2 mutations may be asymptomatic because of the skewed inactivation of the X chromosome.
Collapse
Affiliation(s)
- Xinting Liu
- Department of Pediatrics, The First Medical Center, Chinese PLA General Hospital, Beijing, China
- Senior Department of Pediatrics, The Seventh Medical Center of PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Shan Zhang
- Medical School of Chinese PLA, Beijing, China
- Fuxing Road Clinic, Jingnan Medical District, Chinese PLA General Hospital, Beijing, China
| | - Lin Wan
- Department of Pediatrics, The First Medical Center, Chinese PLA General Hospital, Beijing, China
- Senior Department of Pediatrics, The Seventh Medical Center of PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Xiaoli Zhang
- Department of Pediatrics, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Haiping Wang
- Department of Pediatric Neurology, Hangzhou Children's Hospital, Hangzhou, China
| | - Hongwei Zhang
- Department of Neurology, Jinan Children's Hospital, Jinan, China
| | - Gang Zhu
- Department of Pediatrics, The First Medical Center, Chinese PLA General Hospital, Beijing, China
- Senior Department of Pediatrics, The Seventh Medical Center of PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Yan Liang
- Department of Pediatrics, The First Medical Center, Chinese PLA General Hospital, Beijing, China
- Senior Department of Pediatrics, The Seventh Medical Center of PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Huimin Yan
- Department of Pediatrics, The First Medical Center, Chinese PLA General Hospital, Beijing, China
- Senior Department of Pediatrics, The Seventh Medical Center of PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Bo Zhang
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
- Biostatistics and Research Design Center, Institutional Centers for Clinical and Translational Research, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
- Bo Zhang
| | - Guang Yang
- Department of Pediatrics, The First Medical Center, Chinese PLA General Hospital, Beijing, China
- Senior Department of Pediatrics, The Seventh Medical Center of PLA General Hospital, Beijing, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- *Correspondence: Guang Yang
| |
Collapse
|
6
|
Shoubridge C, Dudding-Byth T, Pasquier L, Goel H, Yap P, Mcconnell V. IQSEC2-related encephalopathy in males due to missense variants in the PH domain. Clin Genet 2022; 102:72-77. [PMID: 35347702 PMCID: PMC9325495 DOI: 10.1111/cge.14136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/25/2022] [Accepted: 03/25/2022] [Indexed: 11/29/2022]
Abstract
Pathogenic variants in IQ motif and SEC7 domain containing protein 2 (IQSEC2) gene cause a variety of neurodevelopmental disorders, with intellectual disability as a uniform feature. We report five cases, each with a novel missense variant in the pleckstrin homology (PH) domain of the IQSEC2 protein. Male patients all present with moderate to profound intellectual disability, significant delays or absent language and speech and variable seizures. We describe the phenotypic spectrum associated with missense variants in PH domain of IQSEC2, further delineating the genotype–phenotype correlation for this X‐linked gene.
Collapse
Affiliation(s)
- Cheryl Shoubridge
- Robinson Research Institute, and Adelaide Medical School, University of Adelaide, South Australia, Australia
| | | | - Laurent Pasquier
- CHU Rennes, Service de Génétique Clinique, Centre de Référence Déficiences Intellectuelles Hôpital Sud, Rennes, France
| | - Himanshu Goel
- Hunter Genetics, Waratah, New South Wales, Australia
| | - Patrick Yap
- Genetic Health Service New Zealand (Northern Hub), Auckland, New Zealand
| | - Vivienne Mcconnell
- Northern Ireland Regional Genetics Service, Belfast City Hospital, Belfast Health & Social Care Trust, Belfast, UK
| |
Collapse
|
7
|
Kane O, McCoy A, Jada R, Borisov V, Zag L, Zag A, Schragenheim-Rozales K, Shalgi R, Levy NS, Levy AP, Marsh ED. Characterization of spontaneous seizures and EEG abnormalities in a mouse model of the human A350V IQSEC2 mutation and identification of a possible target for precision medicine based therapy. Epilepsy Res 2022; 182:106907. [DOI: 10.1016/j.eplepsyres.2022.106907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 02/01/2022] [Accepted: 03/11/2022] [Indexed: 11/16/2022]
|
8
|
Jada R, Zag L, Borisov V, Levy NS, Netser S, Jabarin R, Wagner S, Schragenheim-Rozales K, Shalgi R, Levy AP. Housing of A350V IQSEC2 pups at 37 °C ambient temperature prevents seizures and permits the development of social vocalizations in adulthood. Int J Hyperthermia 2021; 38:1495-1501. [PMID: 34666607 DOI: 10.1080/02656736.2021.1988730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
OBJECTIVES Mutations in the human IQSEC2 gene are associated with drug-resistant epilepsy and severe behavioral dysfunction. We have focused on understanding one human IQSEC2 missense mutation (A350V) for which we have created a corresponding A350V IQSEC2 mouse model by CRISPR which demonstrates seizures when the mice are 15-20 days old and impaired social vocalizations in adulthood. We observed that a child with the A350V mutation stops having seizures when experiencing a fever of greater than 38 °C. In this study, we first sought to determine if we could recapitulate this phenomenon in A350V 15-20 day old mice using a previously established protocol to raise body temperature to 39 °C achieved by housing the mice at 37 °C. We then sought to determine if mice in whom seizure activity had been prevented as pups would develop social vocalization activity in adulthood. METHODS 15-20 day old A350V male mice were housed either at 37 °C or 22 °C. Ultrasonic vocalizations of these mice were assessed at 8-10 weeks in response to a female stimulus. RESULTS Housing of 15-20 day old A350V mice at 37 °C resulted in a reduction in lethal seizures to 2% (1/41) compared to 45% (48/108) in mice housed at 22 °C, p = 0.0001. Adult A350V mice who had been housed at 37 °C as pups displayed a significant improvement in the production of social vocalizations. CONCLUSION Raising the body temperature by raising the ambient temperature might provide a means to reduce seizures associated with the A350V IQSEC2 mutation and thereby allow for an improved neurodevelopmental trajectory.
Collapse
Affiliation(s)
- Reem Jada
- Technion Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Liron Zag
- Technion Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Veronika Borisov
- Technion Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Nina S Levy
- Technion Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Shai Netser
- Faculty of Natural Sciences, Sagol Department of Neurobiology, University of Haifa, Haifa, Israel
| | - Renad Jabarin
- Faculty of Natural Sciences, Sagol Department of Neurobiology, University of Haifa, Haifa, Israel
| | - Shlomo Wagner
- Faculty of Natural Sciences, Sagol Department of Neurobiology, University of Haifa, Haifa, Israel
| | | | - Reut Shalgi
- Technion Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Andrew P Levy
- Technion Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
9
|
Mehta A, Shirai Y, Kouyama-Suzuki E, Zhou M, Yoshizawa T, Yanagawa T, Mori T, Tabuchi K. IQSEC2 Deficiency Results in Abnormal Social Behaviors Relevant to Autism by Affecting Functions of Neural Circuits in the Medial Prefrontal Cortex. Cells 2021; 10:2724. [PMID: 34685703 PMCID: PMC8534507 DOI: 10.3390/cells10102724] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/08/2021] [Accepted: 10/09/2021] [Indexed: 12/28/2022] Open
Abstract
IQSEC2 is a guanine nucleotide exchange factor (GEF) for ADP-ribosylation factor 6 (Arf6), of which protein is exclusively localized to the postsynaptic density of the excitatory synapse. Human genome studies have revealed that the IQSEC2 gene is associated with X-linked neurodevelopmental disorders, such as intellectual disability (ID), epilepsy, and autism. In this study, we examined the behavior and synapse function in IQSEC2 knockout (KO) mice that we generated using CRIPSR/Cas9-mediated genome editing to solve the relevance between IQSEC2 deficiency and the pathophysiology of neurodevelopmental disorders. IQSEC2 KO mice exhibited autistic behaviors, such as overgrooming and social deficits. We identified that up-regulation of c-Fos expression in the medial prefrontal cortex (mPFC) induced by social stimulation was significantly attenuated in IQSEC2 KO mice. Whole cell electrophysiological recording identified that synaptic transmissions mediated by α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR), N-methyl-D-aspartate receptor (NMDAR), and γ-aminobutyric acid receptor (GABAR) were significantly decreased in pyramidal neurons in layer 5 of the mPFC in IQSEC2 KO mice. Reexpression of IQSEC2 isoform 1 in the mPFC of IQSEC2 KO mice using adeno-associated virus (AAV) rescued both synaptic and social deficits, suggesting that impaired synaptic function in the mPFC is responsible for social deficits in IQSEC2 KO mice.
Collapse
Affiliation(s)
- Anuradha Mehta
- Department of Molecular and Cellular Physiology, Shinshu University School of Medicine, Matsumoto 390-8621, Japan; (A.M.); (Y.S.); (E.K.-S.); (M.Z.); (T.M.)
| | - Yoshinori Shirai
- Department of Molecular and Cellular Physiology, Shinshu University School of Medicine, Matsumoto 390-8621, Japan; (A.M.); (Y.S.); (E.K.-S.); (M.Z.); (T.M.)
| | - Emi Kouyama-Suzuki
- Department of Molecular and Cellular Physiology, Shinshu University School of Medicine, Matsumoto 390-8621, Japan; (A.M.); (Y.S.); (E.K.-S.); (M.Z.); (T.M.)
| | - Mengyun Zhou
- Department of Molecular and Cellular Physiology, Shinshu University School of Medicine, Matsumoto 390-8621, Japan; (A.M.); (Y.S.); (E.K.-S.); (M.Z.); (T.M.)
| | - Takahiro Yoshizawa
- Research Center for Advanced Science and Technology, Shinshu University, Matsumoto 390-8621, Japan;
| | - Toru Yanagawa
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan;
| | - Takuma Mori
- Department of Molecular and Cellular Physiology, Shinshu University School of Medicine, Matsumoto 390-8621, Japan; (A.M.); (Y.S.); (E.K.-S.); (M.Z.); (T.M.)
- Department of NeuroHealth Innovation, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Matsumoto 390-8621, Japan
| | - Katsuhiko Tabuchi
- Department of Molecular and Cellular Physiology, Shinshu University School of Medicine, Matsumoto 390-8621, Japan; (A.M.); (Y.S.); (E.K.-S.); (M.Z.); (T.M.)
- Department of NeuroHealth Innovation, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Matsumoto 390-8621, Japan
| |
Collapse
|
10
|
Lichtman D, Bergmann E, Kavushansky A, Cohen N, Levy NS, Levy AP, Kahn I. Structural and functional brain-wide alterations in A350V Iqsec2 mutant mice displaying autistic-like behavior. Transl Psychiatry 2021; 11:181. [PMID: 33753721 PMCID: PMC7985214 DOI: 10.1038/s41398-021-01289-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 02/15/2021] [Accepted: 02/24/2021] [Indexed: 12/21/2022] Open
Abstract
IQSEC2 is an X-linked gene that is associated with autism spectrum disorder (ASD), intellectual disability, and epilepsy. IQSEC2 is a postsynaptic density protein, localized on excitatory synapses as part of the NMDA receptor complex and is suggested to play a role in AMPA receptor trafficking and mediation of long-term depression. Here, we present brain-wide structural volumetric and functional connectivity characterization in a novel mouse model with a missense mutation in the IQ domain of IQSEC2 (A350V). Using high-resolution structural and functional MRI, we show that animals with the A350V mutation display increased whole-brain volume which was further found to be specific to the cerebral cortex and hippocampus. Moreover, using a data-driven approach we identify putative alterations in structure-function relations of the frontal, auditory, and visual networks in A350V mice. Examination of these alterations revealed an increase in functional connectivity between the anterior cingulate cortex and the dorsomedial striatum. We also show that corticostriatal functional connectivity is correlated with individual variability in social behavior only in A350V mice, as assessed using the three-chamber social preference test. Our results at the systems-level bridge the impact of previously reported changes in AMPA receptor trafficking to network-level disruption and impaired social behavior. Further, the A350V mouse model recapitulates similarly reported brain-wide changes in other ASD mouse models, with substantially different cellular-level pathologies that nonetheless result in similar brain-wide alterations, suggesting that novel therapeutic approaches in ASD that result in systems-level rescue will be relevant to IQSEC2 mutations.
Collapse
Affiliation(s)
- Daniela Lichtman
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, 31096, Israel
| | - Eyal Bergmann
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, 31096, Israel
| | - Alexandra Kavushansky
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, 31096, Israel
| | - Nadav Cohen
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, 31096, Israel
| | - Nina S Levy
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, 31096, Israel
| | - Andrew P Levy
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, 31096, Israel.
| | - Itamar Kahn
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, 31096, Israel.
| |
Collapse
|
11
|
IQSEC2 mutation associated with epilepsy, intellectual disability, and autism results in hyperexcitability of patient-derived neurons and deficient synaptic transmission. Mol Psychiatry 2021; 26:7498-7508. [PMID: 34535765 PMCID: PMC8873005 DOI: 10.1038/s41380-021-01281-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 07/09/2021] [Accepted: 08/24/2021] [Indexed: 12/03/2022]
Abstract
Mutations in the IQSEC2 gene are associated with drug-resistant, multifocal infantile and childhood epilepsy; autism; and severe intellectual disability (ID). We used induced pluripotent stem cell (iPSC) technology to obtain hippocampal neurons to investigate the neuropathology of IQSEC2-mediated disease. The neurons were characterized at three-time points during differentiation to assess developmental progression. We showed that immature IQSEC2 mutant dentate gyrus (DG) granule neurons were extremely hyperexcitable, exhibiting increased sodium and potassium currents compared to those of CRISPR-Cas9-corrected isogenic controls, and displayed dysregulation of genes involved in differentiation and development. Immature IQSEC2 mutant cultured neurons exhibited a marked reduction in the number of inhibitory neurons, which contributed further to hyperexcitability. As the mutant neurons aged, they became hypoexcitable, exhibiting reduced sodium and potassium currents and a reduction in the rate of synaptic and network activity, and showed dysregulation of genes involved in synaptic transmission and neuronal differentiation. Mature IQSEC2 mutant neurons were less viable than wild-type mature neurons and had reduced expression of surface AMPA receptors. Our studies provide mechanistic insights into severe infantile epilepsy and neurodevelopmental delay associated with this mutation and present a human model for studying IQSEC2 mutations in vitro.
Collapse
|
12
|
van der Spek SJF, Koopmans F, Paliukhovich I, Ramsden SL, Harvey K, Harvey RJ, Smit AB, Li KW. Glycine Receptor Complex Analysis Using Immunoprecipitation-Blue Native Gel Electrophoresis-Mass Spectrometry. Proteomics 2020; 20:e1900403. [PMID: 31984645 DOI: 10.1002/pmic.201900403] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Indexed: 11/07/2022]
Abstract
The pentameric glycine receptor (GlyR), comprising the α1 and β subunits, is a major inhibitory ionotropic receptor in brainstem and spinal cord. GlyRs interact with gephyrin (GPHN), a scaffold protein that anchors the GlyR in the plasma membrane and enables it to form clusters in glycinergic postsynapses. Using an interaction proteomics approach, evidence of the ArfGEFs IQ motif and Sec7 domain 3 (IQSEC3) and IQ motif and Sec7 domain 2 (IQSEC2) as two novel synaptic proteins interacting with GlyR complexes is provided. When the affinity-isolated GlyR complexes are fractionated by blue native gel electrophoresis and characterized by mass spectrometry, GlyR α1β-GPHN appears as the most abundant complex with a molecular weight of ≈1 MDa, and GlyR α1β-GPHN-IQSEC3 as a minor protein complex of ≈1.2 MDa. A third GlyR α1β-GPHN-IQSEC2 complex exists at the lowest amount with a mass similar to the IQSEC3 containing complex. Using yeast two-hybrid it is demonstrated that IQSEC3 interacts with the GlyR complex by binding to the GPHN G domain at the N-terminal of the IQSEC3 IQ-like domain. The data provide direct evidence of the interaction of IQSEC3 with GlyR-GPHN complexes, underscoring a potential role of these ArfGEFs in the function of glycinergic synapses.
Collapse
Affiliation(s)
- Sophie J F van der Spek
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
| | - Frank Koopmans
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
| | - Iryna Paliukhovich
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
| | - Sarah L Ramsden
- Department of Pharmacology, UCL School of Pharmacy, 29-39 Brunswick square, WC1N 1AX, London, UK
| | - Kirsten Harvey
- Department of Pharmacology, UCL School of Pharmacy, 29-39 Brunswick square, WC1N 1AX, London, UK
| | - Robert J Harvey
- School of Health and Sport Sciences, University of the Sunshine Coast, Locked Bag 4, Maroochydore DC, Queensland, 4558, Australia.,Sunshine Coast Health Institute, Birtinya, Queensland, 4575, Australia
| | - August B Smit
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
| | - Ka Wan Li
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
| |
Collapse
|
13
|
Altered excitatory transmission onto hippocampal interneurons in the IQSEC2 mouse model of X-linked neurodevelopmental disease. Neurobiol Dis 2020; 137:104758. [PMID: 31978606 DOI: 10.1016/j.nbd.2020.104758] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 12/16/2019] [Accepted: 01/20/2020] [Indexed: 02/01/2023] Open
Abstract
Mutations in the X-linked gene IQSEC2 are associated with multiple cases of epilepsy, epileptic encephalopathy, intellectual disability and autism spectrum disorder, the mechanistic understanding and successful treatment of which remain a significant challenge in IQSEC2 and related neurodevelopmental genetic diseases. To investigate disease etiology, we studied behaviors and synaptic function in IQSEC2 deficient mice. Hemizygous Iqsec2 null males exhibit growth deficits, hyperambulation and hyperanxiety phenotypes. Adult hemizygotes experience lethal spontaneous seizures, but paradoxically have a significantly increased threshold to electrically induced limbic seizures and relative resistance to chemically induced seizures. Although there are no gross defects in brain morphology, hemizygotes exhibit stark hippocampal reactive astrogliosis. Electrophysiological recordings of hippocampal neurons reveal increased excitatory drive specifically onto interneurons, and significant alterations in intrinsic electrical properties specific to the interneuron population. As they age, hemizygotes also develop an increased abundance of parvalbumin-positive interneurons in the hippocampus, neurons in which IQSEC2 is expressed in addition to the excitatory neurons. These findings point to a novel role of IQSEC2 in hippocampal interneuron synaptic function and development with implications for a class of intractable neurodevelopmental diseases.
Collapse
|
14
|
Kim H, Jung H, Jung H, Kwon SK, Ko J, Um JW. The small GTPase ARF6 regulates GABAergic synapse development. Mol Brain 2020; 13:2. [PMID: 31907062 PMCID: PMC6945580 DOI: 10.1186/s13041-019-0543-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 12/23/2019] [Indexed: 01/05/2023] Open
Abstract
ADP ribosylation factors (ARFs) are a family of small GTPases composed of six members (ARF1-6) that control various cellular functions, including membrane trafficking and actin cytoskeletal rearrangement, in eukaryotic cells. Among them, ARF1 and ARF6 are the most studied in neurons, particularly at glutamatergic synapses, but their roles at GABAergic synapses have not been investigated. Here, we show that a subset of ARF6 protein is localized at GABAergic synapses in cultured hippocampal neurons. In addition, we found that knockdown (KD) of ARF6, but not ARF1, triggered a reduction in the number of GABAergic synaptic puncta in mature cultured neurons in an ARF activity-dependent manner. ARF6 KD also reduced GABAergic synaptic density in the mouse hippocampal dentate gyrus (DG) region. Furthermore, ARF6 KD in the DG increased seizure susceptibility in an induced epilepsy model. Viewed together, our results suggest that modulating ARF6 and its regulators could be a therapeutic strategy against brain pathologies involving hippocampal network dysfunction, such as epilepsy.
Collapse
Affiliation(s)
- Hyeonho Kim
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungangdae-Ro, Hyeonpoong-eup, Dalseong-gun, Daegu, 42988, South Korea
| | - Hyeji Jung
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungangdae-Ro, Hyeonpoong-eup, Dalseong-gun, Daegu, 42988, South Korea
| | - Hyunsu Jung
- Division of Life Sciences, Korea University, Seoul, 02841, South Korea.,Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology, Seoul, 02792, South Korea
| | - Seok-Kyu Kwon
- Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology, Seoul, 02792, South Korea
| | - Jaewon Ko
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungangdae-Ro, Hyeonpoong-eup, Dalseong-gun, Daegu, 42988, South Korea
| | - Ji Won Um
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungangdae-Ro, Hyeonpoong-eup, Dalseong-gun, Daegu, 42988, South Korea.
| |
Collapse
|
15
|
Petersen A, Brown JC, Gerges NZ. BRAG1/IQSEC2 as a regulator of small GTPase-dependent trafficking. Small GTPases 2020; 11:1-7. [PMID: 29363391 PMCID: PMC6959296 DOI: 10.1080/21541248.2017.1361898] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 07/25/2017] [Accepted: 07/27/2017] [Indexed: 10/18/2022] Open
Abstract
Precise trafficking events, such as those that underlie synaptic transmission and plasticity, require complex regulation. G-protein signaling plays an essential role in the regulation of membrane and protein trafficking. However, it is not well understood how small GTPases and their regulatory proteins coordinate such specific events. Our recent publication focused on a highly abundant synaptic GEF, BRAG1, whose physiologic relevance was unknown. We find that BRAG1s GEF activity is required for activity-dependent trafficking of AMPARs. Moreover, BRAG1 bidirectionally regulates synaptic transmission in a manner independent of this activity. In addition to the GEF domain, BRAG1 contains several functional domains whose roles are not yet understood but may mediate protein-protein interactions and regulatory effects necessary for its role in regulation of AMPAR trafficking. In this commentary, we explore the potential for BRAG1 to provide specificity of small GTPase signaling, coordinating activity-dependent activation of small GTPase activity with signaling and scaffolding molecules involved in trafficking through its GEF activity and other functional domains.
Collapse
Affiliation(s)
- Amber Petersen
- Department of Cell Biology, Neurobiology and Anatomy, The Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Joshua C. Brown
- Department of Psychiatry and Behavioral Science, Medical University of South Carolina, Charleston, SC, USA
| | - Nashaat Z. Gerges
- Department of Cell Biology, Neurobiology and Anatomy, The Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Department of Biopharmaceutical Sciences, School of Pharmacy, The Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
16
|
Choi MH, Yang JO, Min JS, Lee JJ, Jun SY, Lee YJ, Yoon JY, Jeon SJ, Byeon I, Kang JW, Kim NS. A Novel X-Linked Variant of IQSEC2 is Associated with Lennox-Gastaut Syndrome and Mild Intellectual Disability in Three Generations of a Korean Family. Genet Test Mol Biomarkers 2019; 24:54-58. [PMID: 31829726 DOI: 10.1089/gtmb.2019.0177] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Aim: Lennox-Gastaut syndrome (LGS) is a severe type of childhood-onset epilepsy with multiple types of seizures, specific discharges on electroencephalography, and intellectual disability. However, LGS-related genes are largely unknown. To identify causative genes related to LGS, we collected and analyzed data from a three-generation Korean family in which one member had LGS and two had intellectual disability. Methods: Genomic DNAs were extracted from blood samples of all participants and used in whole-exome sequencing (WES). Genetic variants were detected by the Genome Analysis Toolkit and confirmed by Sanger sequencing. Variant pathogenicity was evaluated by prediction programs and the American College of Medical Genetics criteria. The LGS patient had generalized slow spike-and-wave discharges, multiple types of seizures, and developmental delay. Results: Analyses of the WES data from the family revealed a novel variant (c.1048G>A, p.Ala350Thr) in the IQ motif and Sec7 domain 2 (IQSEC2). This variant is within a highly evolutionarily conserved IQ-like motif, indicating a decrease in the calmodulin-binding capacity or α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid transmission. The hemizygous variant in the male with LGS was a maternally inherited X-linked variant from the heterozygous maternal grandmother and mother, both of whom had intellectual disability. Conclusion: These findings indicate that the variant of IQSEC2 triggered both LGS and intellectual disability dependent on sex in this family. We report a novel X-linked inherited IQSEC2 variant for LGS and intellectual disability, which enhances the spectrum of variants in the IQ-like motif of IQSEC2.
Collapse
Affiliation(s)
- Min-Hyuk Choi
- Rare-Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea.,Department of Functional Genomics, Korea University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Jin Ok Yang
- Korean BioInformation Center (KOBIC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Ju-Sik Min
- Rare-Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Jeong-Ju Lee
- Rare-Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Soo-Young Jun
- Rare-Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Yong-Jae Lee
- Rare-Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Ji-Yong Yoon
- Rare-Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Su-Jin Jeon
- Rare-Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea.,Department of Functional Genomics, Korea University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Iksu Byeon
- Korean BioInformation Center (KOBIC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Joon-Won Kang
- Department of Pediatrics and Medical Science, Chungnam National University Hospital, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Nam-Soon Kim
- Rare-Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea.,Department of Functional Genomics, Korea University of Science and Technology (UST), Daejeon, Republic of Korea
| |
Collapse
|
17
|
Ansar M, Chung HL, Al-Otaibi A, Elagabani MN, Ravenscroft TA, Paracha SA, Scholz R, Abdel Magid T, Sarwar MT, Shah SF, Qaisar AA, Makrythanasis P, Marcogliese PC, Kamsteeg EJ, Falconnet E, Ranza E, Santoni FA, Aldhalaan H, Al-Asmari A, Faqeih EA, Ahmed J, Kornau HC, Bellen HJ, Antonarakis SE. Bi-allelic Variants in IQSEC1 Cause Intellectual Disability, Developmental Delay, and Short Stature. Am J Hum Genet 2019; 105:907-920. [PMID: 31607425 DOI: 10.1016/j.ajhg.2019.09.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 09/11/2019] [Indexed: 12/30/2022] Open
Abstract
We report two consanguineous families with probands that exhibit intellectual disability, developmental delay, short stature, aphasia, and hypotonia in which homozygous non-synonymous variants were identified in IQSEC1 (GenBank: NM_001134382.3). In a Pakistani family, the IQSEC1 segregating variant is c.1028C>T (p.Thr343Met), while in a Saudi Arabian family the variant is c.962G>A (p.Arg321Gln). IQSEC1-3 encode guanine nucleotide exchange factors for the small GTPase ARF6 and their loss affects a variety of actin-dependent cellular processes, including AMPA receptor trafficking at synapses. The ortholog of IQSECs in the fly is schizo and its loss affects growth cone guidance at the midline in the CNS, also an actin-dependent process. Overexpression of the reference IQSEC1 cDNA in wild-type flies is lethal, but overexpression of the two variant IQSEC1 cDNAs did not affect viability. Loss of schizo caused embryonic lethality that could be rescued to 2nd instar larvae by moderate expression of the human reference cDNA. However, the p.Arg321Gln and p.Thr343Met variants failed to rescue embryonic lethality. These data indicate that the variants behave as loss-of-function mutations. We also show that schizo in photoreceptors is required for phototransduction. Finally, mice with a conditional Iqsec1 deletion in cortical neurons exhibited an increased density of dendritic spines with an immature morphology. The phenotypic similarity of the affecteds and the functional experiments in flies and mice indicate that IQSEC1 variants are the cause of a recessive disease with intellectual disability, developmental delay, and short stature, and that axonal guidance and dendritic projection defects as well as dendritic spine dysgenesis may underlie disease pathogenesis.
Collapse
|
18
|
Jackson MR, Loring KE, Homan CC, Thai MH, Määttänen L, Arvio M, Jarvela I, Shaw M, Gardner A, Gecz J, Shoubridge C. Heterozygous loss of function of IQSEC2/ Iqsec2 leads to increased activated Arf6 and severe neurocognitive seizure phenotype in females. Life Sci Alliance 2019; 2:2/4/e201900386. [PMID: 31439632 PMCID: PMC6706959 DOI: 10.26508/lsa.201900386] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 07/25/2019] [Accepted: 08/15/2019] [Indexed: 12/30/2022] Open
Abstract
Clinical presentations of mutations in the IQSEC2 gene on the X-chromosome initially implicated to cause non-syndromic intellectual disability (ID) in males have expanded to include early onset seizures in males as well as in females. The molecular pathogenesis is not well understood, nor the mechanisms driving disease expression in heterozygous females. Using a CRISPR/Cas9-edited Iqsec2 KO mouse model, we confirm the loss of Iqsec2 mRNA expression and lack of Iqsec2 protein within the brain of both founder and progeny mice. Both male (52%) and female (46%) Iqsec2 KO mice present with frequent and recurrent seizures. Focusing on Iqsec2 KO heterozygous female mice, we demonstrate increased hyperactivity, altered anxiety and fear responses, decreased social interactions, delayed learning capacity and decreased memory retention/novel recognition, recapitulating psychiatric issues, autistic-like features, and cognitive deficits present in female patients with loss-of-function IQSEC2 variants. Despite Iqsec2 normally acting to activate Arf6 substrate, we demonstrate that mice modelling the loss of Iqsec2 function present with increased levels of activated Arf6. We contend that loss of Iqsec2 function leads to altered regulation of activated Arf6-mediated responses to synaptic signalling and immature synaptic networks. We highlight the importance of IQSEC2 function for females by reporting a novel nonsense variant c.566C > A, p.(S189*) in an elderly female patient with profound intellectual disability, generalised seizures, and behavioural disturbances. Our human and mouse data reaffirm IQSEC2 as another disease gene with an unexpected X-chromosome heterozygous female phenotype. Our Iqsec2 mouse model recapitulates the phenotypes observed in human patients despite the differences in the IQSEC2/Iqsec2 gene X-chromosome inactivation between the species.
Collapse
Affiliation(s)
- Matilda R Jackson
- Intellectual Disability Research, Adelaide Medical School, The University of Adelaide, Adelaide, Australia.,Department of Paediatrics, Robinson Research Institute, University of Adelaide, Adelaide, Australia
| | - Karagh E Loring
- Intellectual Disability Research, Adelaide Medical School, The University of Adelaide, Adelaide, Australia.,Department of Paediatrics, Robinson Research Institute, University of Adelaide, Adelaide, Australia
| | - Claire C Homan
- Department of Paediatrics, Robinson Research Institute, University of Adelaide, Adelaide, Australia
| | - Monica Hn Thai
- Intellectual Disability Research, Adelaide Medical School, The University of Adelaide, Adelaide, Australia
| | - Laura Määttänen
- Department of Child Neurology, Turku University Hospital, Turku, Finland
| | - Maria Arvio
- Department of Child Neurology, Turku University Hospital, Turku, Finland.,Joint Authority for Päijät-Häme Social and Health Care, Lahti, Finland.,PEDEGO, Oulu University Hospital, Oulu, Finland
| | - Irma Jarvela
- Department of Medical Genetics, University of Helsinki, Helsinki, Finland
| | - Marie Shaw
- Department of Paediatrics, Robinson Research Institute, University of Adelaide, Adelaide, Australia
| | - Alison Gardner
- Department of Paediatrics, Robinson Research Institute, University of Adelaide, Adelaide, Australia
| | - Jozef Gecz
- Department of Paediatrics, Robinson Research Institute, University of Adelaide, Adelaide, Australia.,South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Cheryl Shoubridge
- Intellectual Disability Research, Adelaide Medical School, The University of Adelaide, Adelaide, Australia .,Department of Paediatrics, Robinson Research Institute, University of Adelaide, Adelaide, Australia
| |
Collapse
|
19
|
Levy NS, Umanah GKE, Rogers EJ, Jada R, Lache O, Levy AP. IQSEC2-Associated Intellectual Disability and Autism. Int J Mol Sci 2019; 20:ijms20123038. [PMID: 31234416 PMCID: PMC6628259 DOI: 10.3390/ijms20123038] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 06/19/2019] [Indexed: 01/02/2023] Open
Abstract
Mutations in IQSEC2 cause intellectual disability (ID), which is often accompanied by seizures and autism. A number of studies have shown that IQSEC2 is an abundant protein in excitatory synapses and plays an important role in neuronal development as well as synaptic plasticity. Here, we review neuronal IQSEC2 signaling with emphasis on those aspects likely to be involved in autism. IQSEC2 is normally bound to N-methyl-D-aspartate (NMDA)-type glutamate receptors via post synaptic density protein 95 (PSD-95). Activation of NMDA receptors results in calcium ion influx and binding to calmodulin present on the IQSEC2 IQ domain. Calcium/calmodulin induces a conformational change in IQSEC2 leading to activation of the SEC7 catalytic domain. GTP is exchanged for GDP on ADP ribosylation factor 6 (ARF6). Activated ARF6 promotes downregulation of surface α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type glutamate receptors through a c-jun N terminal kinase (JNK)-mediated pathway. NMDA receptors, AMPA receptors, and PSD-95 are all known to be adversely affected in autism. An IQSEC2 transgenic mouse carrying a constitutively active mutation (A350V) shows autistic features and reduced levels of surface AMPA receptor subunit GluA2. Sec7 activity and AMPA receptor recycling are presented as two targets, which may respond to drug treatment in IQSEC2-associated ID and autism.
Collapse
Affiliation(s)
- Nina S Levy
- Technion Israel Institute of Technology, 1 Efron St., Haifa, 3525422, Israel.
| | - George K E Umanah
- Department of Neurology, Johns Hopkins University, Baltimore, MD 21205, USA.
| | - Eli J Rogers
- Technion Israel Institute of Technology, 1 Efron St., Haifa, 3525422, Israel.
| | - Reem Jada
- Technion Israel Institute of Technology, 1 Efron St., Haifa, 3525422, Israel.
| | - Orit Lache
- Technion Israel Institute of Technology, 1 Efron St., Haifa, 3525422, Israel.
| | - Andrew P Levy
- Technion Israel Institute of Technology, 1 Efron St., Haifa, 3525422, Israel.
| |
Collapse
|
20
|
Radley JA, O'Sullivan RB, Turton SE, Cox H, Vogt J, Morton J, Jones E, Smithson S, Lachlan K, Rankin J, Clayton-Smith J, Willoughby J, Elmslie FF, Sansbury FH, Cooper N, Balasubramanian M. Deep phenotyping of 14 new patients with IQSEC2
variants, including monozygotic twins of discordant phenotype. Clin Genet 2019; 95:496-506. [PMID: 30666632 DOI: 10.1111/cge.13507] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 01/09/2019] [Accepted: 01/11/2019] [Indexed: 01/22/2023]
Affiliation(s)
- Jessica A. Radley
- West Midlands Regional Clinical Genetics Service and Birmingham Health Partners; Birmingham Women's and Children's Hospitals NHS Foundation Trust; Birmingham UK
| | | | - Sarah E. Turton
- West Midlands Regional Genetics Laboratory Birmingham Women's and Children's Hospitals NHS Foundation Trust; Birmingham UK
| | - Helen Cox
- West Midlands Regional Clinical Genetics Service and Birmingham Health Partners; Birmingham Women's and Children's Hospitals NHS Foundation Trust; Birmingham UK
| | - Julie Vogt
- West Midlands Regional Clinical Genetics Service and Birmingham Health Partners; Birmingham Women's and Children's Hospitals NHS Foundation Trust; Birmingham UK
| | - Jenny Morton
- West Midlands Regional Clinical Genetics Service and Birmingham Health Partners; Birmingham Women's and Children's Hospitals NHS Foundation Trust; Birmingham UK
| | - Elizabeth Jones
- Manchester Centre for Genomic Medicine, Manchester University Hospitals NHS Foundation Trust; Manchester UK
- Division of Evolution and Genomic Sciences, School of Biological Sciences; University of Manchester; Manchester UK
| | - Sarah Smithson
- University Hospitals Bristol NHS Foundation Trust; Clinical Genetics, St. Michael's Hospital; Bristol UK
| | - Katherine Lachlan
- Wessex Clinical Genetics Service; University Hospitals of Southampton NHS Trust; Southampton UK
| | - Julia Rankin
- Peninsula Clinical Genetics; Royal Devon and Exeter NHS Trust; Exeter UK
| | - Jill Clayton-Smith
- Manchester Centre for Genomic Medicine, Manchester University Hospitals NHS Foundation Trust; Manchester UK
- Division of Evolution and Genomic Sciences, School of Biological Sciences; University of Manchester; Manchester UK
| | - Josh Willoughby
- Sheffield Diagnostic Genetics Service; Sheffield Children's NHS Foundation Trust; Sheffield UK
| | - Frances F. Elmslie
- South West Thames Regional Genetics Service; St George's University Hospitals NHS Foundation Trust; London UK
| | - Francis H. Sansbury
- University Hospitals Bristol NHS Foundation Trust; Clinical Genetics, St. Michael's Hospital; Bristol UK
- All Wales Medical Genetics Service, Cardiff and Vale University Health Board, Institute of Medical Genetics; University Hospital of Wales; Cardiff UK
| | - Nicola Cooper
- West Midlands Regional Clinical Genetics Service and Birmingham Health Partners; Birmingham Women's and Children's Hospitals NHS Foundation Trust; Birmingham UK
| | - Meena Balasubramanian
- Sheffield Clinical Genetics Service; Sheffield Children's NHS Foundation Trust; Sheffield UK
- Academic Unit of Child Health, Department of Oncology and Metabolism; University of Sheffield; Sheffield UK
| | | |
Collapse
|
21
|
Rogers EJ, Jada R, Schragenheim-Rozales K, Sah M, Cortes M, Florence M, Levy NS, Moss R, Walikonis RS, Palty R, Shalgi R, Lichtman D, Kavushansky A, Gerges NZ, Kahn I, Umanah GKE, Levy AP. An IQSEC2 Mutation Associated With Intellectual Disability and Autism Results in Decreased Surface AMPA Receptors. Front Mol Neurosci 2019; 12:43. [PMID: 30842726 PMCID: PMC6391579 DOI: 10.3389/fnmol.2019.00043] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 02/01/2019] [Indexed: 12/30/2022] Open
Abstract
We have recently described an A350V mutation in IQSEC2 associated with intellectual disability, autism and epilepsy. We sought to understand the molecular pathophysiology of this mutation with the goal of developing targets for drug intervention. We demonstrate here that the A350V mutation results in interference with the binding of apocalmodulin to the IQ domain of IQSEC2. We further demonstrate that this mutation results in constitutive activation of the guanine nucleotide exchange factor (GEF) activity of IQSEC2 resulting in increased production of the active form of Arf6. In a CRISPR generated mouse model of the A350V IQSEC2 mutation, we demonstrate that the surface expression of GluA2 AMPA receptors in mouse hippocampal tissue was significantly reduced in A350V IQSEC2 mutant mice compared to wild type IQSEC2 mice and that there is a significant reduction in basal synaptic transmission in the hippocampus of A350V IQSEC2 mice compared to wild type IQSEC2 mice. Finally, the A350V IQSEC2 mice demonstrated increased activity, abnormal social behavior and learning as compared to wild type IQSEC2 mice. These findings suggest a model of how the A350V mutation in IQSEC2 may mediate disease with implications for targets for drug therapy. These studies provide a paradigm for a personalized approach to precision therapy for a disease that heretofore has no therapy.
Collapse
Affiliation(s)
- Eli J Rogers
- Technion Faculty of Medicine, Technion Israel Institute of Technology, Haifa, Israel
| | - Reem Jada
- Technion Faculty of Medicine, Technion Israel Institute of Technology, Haifa, Israel
| | | | - Megha Sah
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, United States
| | - Marisol Cortes
- Department of Neurology, Johns Hopkins University, Baltimore, MD, United States
| | - Matthew Florence
- Department of Biopharmaceutical Sciences and Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Nina S Levy
- Technion Faculty of Medicine, Technion Israel Institute of Technology, Haifa, Israel
| | - Rachel Moss
- Technion Faculty of Medicine, Technion Israel Institute of Technology, Haifa, Israel
| | - Randall S Walikonis
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, United States
| | - Raz Palty
- Technion Faculty of Medicine, Technion Israel Institute of Technology, Haifa, Israel
| | - Reut Shalgi
- Technion Faculty of Medicine, Technion Israel Institute of Technology, Haifa, Israel
| | - Daniela Lichtman
- Technion Faculty of Medicine, Technion Israel Institute of Technology, Haifa, Israel
| | - Alexandra Kavushansky
- Technion Faculty of Medicine, Technion Israel Institute of Technology, Haifa, Israel
| | - Nashaat Z Gerges
- Department of Biopharmaceutical Sciences and Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Itamar Kahn
- Technion Faculty of Medicine, Technion Israel Institute of Technology, Haifa, Israel
| | - George K E Umanah
- Department of Neurology, Johns Hopkins University, Baltimore, MD, United States
| | - Andrew P Levy
- Technion Faculty of Medicine, Technion Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
22
|
Shoubridge C, Harvey RJ, Dudding-Byth T. IQSEC2mutation update and review of the female-specific phenotype spectrum including intellectual disability and epilepsy. Hum Mutat 2018; 40:5-24. [DOI: 10.1002/humu.23670] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 10/11/2018] [Accepted: 10/15/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Cheryl Shoubridge
- Department of Paediatrics; University of Adelaide; Adelaide South Australia 5005 Australia
- Robinson Research Institute; University of Adelaide; Adelaide South Australia 5005 Australia
| | - Robert J. Harvey
- School of Health and Sport Sciences; University of the Sunshine Coast; Maroochydore DC Queensland 4558 Australia
- Sunshine Coast Health Institute; Birtinya Queensland 4575 Australia
| | - Tracy Dudding-Byth
- NSW Genetics of Learning Disability Service; Hunter New England Health Service; New South Wales 2298 Australia
- Grow-Up-Well Priority Research Centre; University of Newcastle; Newcastle New South Wales 2308 Australia
| |
Collapse
|
23
|
Mignot C, McMahon AC, Bar C, Campeau PM, Davidson C, Buratti J, Nava C, Jacquemont ML, Tallot M, Milh M, Edery P, Marzin P, Barcia G, Barnerias C, Besmond C, Bienvenu T, Bruel AL, Brunga L, Ceulemans B, Coubes C, Cristancho AG, Cunningham F, Dehouck MB, Donner EJ, Duban-Bedu B, Dubourg C, Gardella E, Gauthier J, Geneviève D, Gobin-Limballe S, Goldberg EM, Hagebeuk E, Hamdan FF, Hančárová M, Hubert L, Ioos C, Ichikawa S, Janssens S, Journel H, Kaminska A, Keren B, Koopmans M, Lacoste C, Laššuthová P, Lederer D, Lehalle D, Marjanovic D, Métreau J, Michaud JL, Miller K, Minassian BA, Morales J, Moutard ML, Munnich A, Ortiz-Gonzalez XR, Pinard JM, Prchalová D, Putoux A, Quelin C, Rosen AR, Roume J, Rossignol E, Simon MEH, Smol T, Shur N, Shelihan I, Štěrbová K, Vyhnálková E, Vilain C, Soblet J, Smits G, Yang SP, van der Smagt JJ, van Hasselt PM, van Kempen M, Weckhuysen S, Helbig I, Villard L, Héron D, Koeleman B, Møller RS, Lesca G, Helbig KL, Nabbout R, Verbeek NE, Depienne C. IQSEC2-related encephalopathy in males and females: a comparative study including 37 novel patients. Genet Med 2018; 21:837-849. [PMID: 30206421 PMCID: PMC6752297 DOI: 10.1038/s41436-018-0268-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 07/31/2018] [Indexed: 12/19/2022] Open
Abstract
Purpose Variants in IQSEC2, escaping X inactivation, cause X-linked intellectual disability with frequent epilepsy in males and females. We aimed to investigate sex-specific differences. Methods We collected the data of 37 unpublished patients (18 males and 19 females) with IQSEC2 pathogenic variants and 5 individuals with variants of unknown significance and reviewed published variants. We compared variant types and phenotypes in males and females and performed an analysis of IQSEC2 isoforms. Results IQSEC2 pathogenic variants mainly led to premature truncation and were scattered throughout the longest brain-specific isoform, encoding the synaptic IQSEC2/BRAG1 protein. Variants occurred de novo in females but were either de novo (2/3) or inherited (1/3) in males, with missense variants being predominantly inherited. Developmental delay and intellectual disability were overall more severe in males than in females. Likewise, seizures were more frequently observed and intractable, and started earlier in males than in females. No correlation was observed between the age at seizure onset and severity of intellectual disability or resistance to antiepileptic treatments. Conclusion This study provides a comprehensive overview of IQSEC2-related encephalopathy in males and females, and suggests that an accurate dosage of IQSEC2 at the synapse is crucial during normal brain development.
Collapse
Affiliation(s)
- Cyril Mignot
- INSERM, U 1127, CNRS UMR 7225, Sorbonne Universites, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle epiniere, ICM, Paris, France. .,APHP, Hôpital Pitie-Salpetriere, Departement de Genetique et de Cytogenetique; Centre de Reference Deficience Intellectuelle de Causes Rares; GRC UPMC «Deficience Intellectuelle et Autisme», Paris, France.
| | - Aoife C McMahon
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Claire Bar
- APHP, Reference Centre for Rare Epilepsies, Necker-Enfants Malades Hospital, Imagine Institute, Paris Descartes University, Paris, France.,INSERM U1163, Imagine Institute, Paris, France.,Paris Descartes University, Paris, France
| | - Philippe M Campeau
- Division of Medical Genetics, Department of Pediatrics, CHU Sainte-Justine and University of Montreal, Montreal, QC, Canada
| | - Claire Davidson
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Julien Buratti
- APHP, Hôpital Pitie-Salpetriere, Departement de Genetique et de Cytogenetique; Centre de Reference Deficience Intellectuelle de Causes Rares; GRC UPMC «Deficience Intellectuelle et Autisme», Paris, France
| | - Caroline Nava
- INSERM, U 1127, CNRS UMR 7225, Sorbonne Universites, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle epiniere, ICM, Paris, France.,APHP, Hôpital Pitie-Salpetriere, Departement de Genetique et de Cytogenetique; Centre de Reference Deficience Intellectuelle de Causes Rares; GRC UPMC «Deficience Intellectuelle et Autisme», Paris, France
| | | | - Marilyn Tallot
- CHU La Reunion-Groupe Hospitalier Sud Reunion, La Reunion, France
| | - Mathieu Milh
- APHM, Hôpital d'Enfants de La Timone, Service de Neurologie Pediatrique, centre de reference deficiences intellectuelles de cause rare, Marseille, France.,Aix Marseille University, INSERM, MMG, UMR-S 1251, Faculte de medecine, Marseille, France
| | - Patrick Edery
- Service de Genetique, Centre de Reference Anomalies du Developpement, Hospices Civils de Lyon, Bron, France.,INSERM U1028, CNRS UMR5292, Centre de Recherche en Neurosciences de Lyon, GENDEV Team, Universite Claude Bernard Lyon 1, Bron, France.,Claude Bernard Lyon I University, Lyon, France
| | - Pauline Marzin
- APHP, Hôpital Pitie-Salpetriere, Departement de Genetique et de Cytogenetique; Centre de Reference Deficience Intellectuelle de Causes Rares; GRC UPMC «Deficience Intellectuelle et Autisme», Paris, France
| | - Giulia Barcia
- INSERM U1163, Imagine Institute, Paris, France.,Paris Descartes University, Paris, France.,APHP, Service de genetique medicale, Necker-Enfants Malades Hospital, Imagine Institute, Paris Descartes University, Paris, France
| | - Christine Barnerias
- APHP, Unite fonctionnelle de Neurologie, Necker-Enfants Malades Hospital, Imagine Institute, Paris Descartes University, Paris, France
| | - Claude Besmond
- INSERM U1163, Imagine Institute, Paris, France.,Paris Descartes University, Paris, France
| | - Thierry Bienvenu
- APHP, Laboratoire de Genetique et Biologie Moleculaires, Hôpital Cochin, HUPC, Paris, France.,Universite Paris Descartes Paris, Institut de Psychiatrie et de Neurosciences de Paris, Inserm U894, Paris, France
| | - Ange-Line Bruel
- FHU-TRANSLAD, Universite de Bourgogne/CHU Dijon, Dijon, France.,INSERM UMR 1231 GAD team, Genetics of Developmental disorders, Universite de Bourgogne-Franche Comte, Dijon, France
| | - Ledia Brunga
- Division of Neurology, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Berten Ceulemans
- Department of Pediatric Neurology, University Hospital and University of Antwerp, Antwerp, Belgium
| | - Christine Coubes
- Departement de Genetique Medicale, Maladies rares et Medecine Personnalisee, CHU de Montpellier, Montpellier, France
| | - Ana G Cristancho
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Fiona Cunningham
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | | | - Elizabeth J Donner
- Division of Neurology, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Bénédicte Duban-Bedu
- Centre de Genetique Chromosomique, Hôpital St-Vincent-de-Paul, GHICL, Lille, France
| | - Christèle Dubourg
- CHU Rennes, Service de Genetique Moleculaire et Genomique, Rennes, France
| | - Elena Gardella
- Danish Epilepsy Centre Filadelfia, Dianalund, Denmark.,Institute for Regional Health Services, University of Southern Denmark, Odense, Denmark
| | - Julie Gauthier
- Division of Medical Genetics, Department of Pediatrics, CHU Sainte-Justine and University of Montreal, Montreal, QC, Canada
| | - David Geneviève
- Departement de Genetique Medicale, Maladies rares et Medecine Personnalisee, CHU de Montpellier, Montpellier, France.,INSERM U1183, Montpellier, France
| | - Stéphanie Gobin-Limballe
- APHP, Service de genetique medicale, Necker-Enfants Malades Hospital, Imagine Institute, Paris Descartes University, Paris, France
| | - Ethan M Goldberg
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Eveline Hagebeuk
- Stichting Epilepsie Instellingen Nederland, SEIN, Zwolle, The Netherlands
| | - Fadi F Hamdan
- Division of Medical Genetics, Department of Pediatrics, CHU Sainte-Justine and University of Montreal, Montreal, QC, Canada
| | - Miroslava Hančárová
- Department of Biology and Medical Genetics, Charles University 2nd Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| | - Laurence Hubert
- INSERM U1163, Imagine Institute, Paris, France.,Paris Descartes University, Paris, France
| | - Christine Ioos
- APHP, University Hospital of Paris ïle-de-France ouest, Raymond Poincare Hospital, Garches, France
| | - Shoji Ichikawa
- Department of Clinical Diagnostics, Ambry Genetics, Aliso Viejo, CA, USA
| | - Sandra Janssens
- Centre for Medical Genetics Ghent, Ghent University Hospital, C. Heymanslaan 10, Ghent, Belgium
| | - Hubert Journel
- Service de Genetique Medicale, Hôpital Chubert, Vannes, France
| | - Anna Kaminska
- APHP, Department of Clinical Neurophysiology, Necker-Enfants Malades Hospital, Paris, France
| | - Boris Keren
- APHP, Hôpital Pitie-Salpetriere, Departement de Genetique et de Cytogenetique; Centre de Reference Deficience Intellectuelle de Causes Rares; GRC UPMC «Deficience Intellectuelle et Autisme», Paris, France
| | - Marije Koopmans
- Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Caroline Lacoste
- Departement de Genetique Medicale, APHM, Hopital d'Enfants de La Timone, Marseille, France
| | - Petra Laššuthová
- Child Neurology Department, 2nd Faculty of Medicine, Charles University and Motol Hospital, Prague, Czech Republic
| | - Damien Lederer
- Centre de Genetique Humaine, Institut de Pathologie et de Genetique, Gosselies, Belgium
| | - Daphné Lehalle
- FHU-TRANSLAD, Universite de Bourgogne/CHU Dijon, Dijon, France.,Unite fonctionnelle de genetique clinique, Centre Hospitalier Intercommunal de Creteil, Creteil, France
| | | | - Julia Métreau
- APHP, Service de neurologie pediatrique, Hôpital Universitaire Bicetre, Le Kremlin-Bicetre, France
| | - Jacques L Michaud
- Division of Medical Genetics, Department of Pediatrics, CHU Sainte-Justine and University of Montreal, Montreal, QC, Canada
| | - Kathryn Miller
- Department of Pediatrics, Albany Medical Center, Albany, NY, USA
| | - Berge A Minassian
- Division of Neurology, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Joannella Morales
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Marie-Laure Moutard
- APHP, Hôpital Trousseau, service de neuropediatrie, Paris, France.,Sorbonne Universite, GRC n°19, pathologies Congenitales du Cervelet-LeucoDystrophies, APHP, Hôpital Armand Trousseau, Paris, France
| | - Arnold Munnich
- INSERM U1163, Imagine Institute, Paris, France.,Paris Descartes University, Paris, France.,APHP, Service de genetique medicale, Necker-Enfants Malades Hospital, Imagine Institute, Paris Descartes University, Paris, France
| | | | - Jean-Marc Pinard
- Division of Neuropediatrics, CHU Raymond Poincare (APHP), Garches, France
| | - Darina Prchalová
- Department of Biology and Medical Genetics, Charles University 2nd Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| | - Audrey Putoux
- Service de Genetique, Centre de Reference Anomalies du Developpement, Hospices Civils de Lyon, Bron, France.,INSERM U1028, CNRS UMR5292, Centre de Recherche en Neurosciences de Lyon, GENDEV Team, Universite Claude Bernard Lyon 1, Bron, France.,Claude Bernard Lyon I University, Lyon, France
| | - Chloé Quelin
- Service de Genetique Medicale, CLAD Ouest CHU Hôpital Sud, Rennes, France
| | - Alyssa R Rosen
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Joelle Roume
- Unite de Genetique Medicale, Centre de Reference des Maladies rares du Developpement (AnD DI Rares), CHI Poissy-St Germain en Laye, Poissy, France
| | - Elsa Rossignol
- Departments of Pediatrics and Neurosciences, CHU Sainte-Justine and University of Montreal, Montreal, Canada
| | - Marleen E H Simon
- Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Thomas Smol
- Institut de Genetique Medicale, CHRU Lille, Universite de Lille, Lille, France
| | - Natasha Shur
- Department of Pediatrics, Albany Medical Center, Albany, NY, USA
| | - Ivan Shelihan
- Division of Medical Genetics, Department of Pediatrics, CHU Sainte-Justine and University of Montreal, Montreal, QC, Canada
| | - Katalin Štěrbová
- Child Neurology Department, 2nd Faculty of Medicine, Charles University and Motol Hospital, Prague, Czech Republic
| | - Emílie Vyhnálková
- Department of Biology and Medical Genetics, Charles University 2nd Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| | - Catheline Vilain
- Department of Genetics, Hôpital Universitaire des Enfants Reine Fabiola, ULB Center of Human Genetics, Universite Libre de Bruxelles, Brussels, Belgium.,Department of Genetics, Hôpital Erasme, ULB Center of Human Genetics, Universite Libre de Bruxelles, Brussels, Belgium.,Interuniversity Institute of Bioinformatics in Brussels, Universite Libre de Bruxelles, Brussels, Belgium
| | - Julie Soblet
- Department of Genetics, Hôpital Universitaire des Enfants Reine Fabiola, ULB Center of Human Genetics, Universite Libre de Bruxelles, Brussels, Belgium.,Department of Genetics, Hôpital Erasme, ULB Center of Human Genetics, Universite Libre de Bruxelles, Brussels, Belgium.,Interuniversity Institute of Bioinformatics in Brussels, Universite Libre de Bruxelles, Brussels, Belgium
| | - Guillaume Smits
- Department of Genetics, Hôpital Universitaire des Enfants Reine Fabiola, ULB Center of Human Genetics, Universite Libre de Bruxelles, Brussels, Belgium.,Department of Genetics, Hôpital Erasme, ULB Center of Human Genetics, Universite Libre de Bruxelles, Brussels, Belgium.,Interuniversity Institute of Bioinformatics in Brussels, Universite Libre de Bruxelles, Brussels, Belgium
| | - Samuel P Yang
- Clinical Genomics & Predictive Medicine, Providence Medical Group, Dayton, WA, USA
| | | | - Peter M van Hasselt
- Department of Metabolic Diseases, Wilhelmina Children's Hospital, University Medical Center, Utrecht, The Netherlands
| | - Marjan van Kempen
- Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Sarah Weckhuysen
- Neurogenetics Group, Center of Molecular Neurology, VIB, Antwerp, Belgium.,Neurology Department, University Hospital Antwerp, Antwerp, Belgium
| | - Ingo Helbig
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Laurent Villard
- Aix Marseille University, INSERM, MMG, UMR-S 1251, Faculte de medecine, Marseille, France.,Departement de Genetique Medicale, APHM, Hopital d'Enfants de La Timone, Marseille, France
| | - Delphine Héron
- APHP, Hôpital Pitie-Salpetriere, Departement de Genetique et de Cytogenetique; Centre de Reference Deficience Intellectuelle de Causes Rares; GRC UPMC «Deficience Intellectuelle et Autisme», Paris, France
| | - Bobby Koeleman
- Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Rikke S Møller
- CHU Rennes, Service de Genetique Moleculaire et Genomique, Rennes, France.,Danish Epilepsy Centre Filadelfia, Dianalund, Denmark
| | - Gaetan Lesca
- Service de Genetique, Centre de Reference Anomalies du Developpement, Hospices Civils de Lyon, Bron, France.,INSERM U1028, CNRS UMR5292, Centre de Recherche en Neurosciences de Lyon, GENDEV Team, Universite Claude Bernard Lyon 1, Bron, France.,Claude Bernard Lyon I University, Lyon, France
| | - Katherine L Helbig
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Rima Nabbout
- APHP, Reference Centre for Rare Epilepsies, Necker-Enfants Malades Hospital, Imagine Institute, Paris Descartes University, Paris, France.,INSERM U1163, Imagine Institute, Paris, France.,Paris Descartes University, Paris, France
| | - Nienke E Verbeek
- Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Christel Depienne
- INSERM, U 1127, CNRS UMR 7225, Sorbonne Universites, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle epiniere, ICM, Paris, France. .,IGBMC, CNRS UMR 7104/INSERM U964/Universite de Strasbourg, Illkirch, France. .,Institute of Human Genetics, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.
| |
Collapse
|
24
|
Incorrect dosage of IQSEC2, a known intellectual disability and epilepsy gene, disrupts dendritic spine morphogenesis. Transl Psychiatry 2017; 7:e1110. [PMID: 28463240 PMCID: PMC5534949 DOI: 10.1038/tp.2017.81] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 02/23/2017] [Indexed: 12/18/2022] Open
Abstract
There is considerable genetic and phenotypic heterogeneity associated with intellectual disability (ID), specific learning disabilities, attention-deficit hyperactivity disorder, autism and epilepsy. The intelligence quotient (IQ) motif and SEC7 domain containing protein 2 gene (IQSEC2) is located on the X-chromosome and harbors mutations that contribute to non-syndromic ID with and without early-onset seizure phenotypes in both sexes. Although IQ and Sec7 domain mutations lead to partial loss of IQSEC2 enzymatic activity, the in vivo pathogenesis resulting from these mutations is not known. Here we reveal that IQSEC2 has a key role in dendritic spine morphology. Partial loss-of-function mutations were modeled using a lentiviral short hairpin RNA (shRNA) approach, which achieved a 57% knockdown of Iqsec2 expression in primary hippocampal cell cultures from mice. Investigating gross morphological parameters after 8 days of in vitro culture (8DIV) identified a 32% reduction in primary axon length, in contrast to a 27% and 31% increase in the number and complexity of dendrites protruding from the cell body, respectively. This increase in dendritic complexity and spread was carried through dendritic spine development, with a 34% increase in the number of protrusions per dendritic segment compared with controls at 15DIV. Although the number of dendritic spines had normalized by 21DIV, a reduction was noted in the number of immature spines. In contrast, when modeling increased dosage, overexpression of wild-type IQSEC2 led to neurons with shorter axons that were more compact and displayed simpler dendritic branching. Disturbances to dendritic morphology due to knockdown of Iqsec2 were recapitulated in neurons from Iqsec2 knockout mice generated in our laboratory using CRISPR/Cas9 technology. These observations provide evidence of dosage sensitivity for IQSEC2, which normally escapes X-inactivation in females, and links these disturbances in expression to alterations in the morphology of developing neurons.
Collapse
|
25
|
Um JW. Synaptic functions of the IQSEC family of ADP-ribosylation factor guanine nucleotide exchange factors. Neurosci Res 2017; 116:54-59. [DOI: 10.1016/j.neures.2016.06.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 06/15/2016] [Accepted: 06/15/2016] [Indexed: 01/08/2023]
|
26
|
Abstract
The IQSec/BRAG proteins are a subfamily of Arf-nucleotide exchange factors. Since their discovery almost 15 y ago, the BRAGs have been reported to be involved in diverse physiological processes from myoblast fusion, neuronal pathfinding and angiogenesis, to pathophysiological processes including X-linked intellectual disability and tumor metastasis. In this review we will address how, in each of these situations, the BRAGs are thought to regulate the surface levels of adhesive and signaling receptors. While in most cases BRAGs are thought to enhance the endocytosis of these receptors, how they achieve this remains unclear. Similarly, while all 3 BRAG proteins contain calmodulin-binding IQ motifs, little is known about how their activities might be regulated by calcium. These are some of the questions that are likely to form the basis of future research.
Collapse
Affiliation(s)
- Ryan S D'Souza
- a Department of Cell Biology , University of Virginia Health System , Charlottesville , VA , USA
| | - James E Casanova
- a Department of Cell Biology , University of Virginia Health System , Charlottesville , VA , USA
| |
Collapse
|
27
|
Zerem A, Haginoya K, Lev D, Blumkin L, Kivity S, Linder I, Shoubridge C, Palmer EE, Field M, Boyle J, Chitayat D, Gaillard WD, Kossoff EH, Willems M, Geneviève D, Tran-Mau-Them F, Epstein O, Heyman E, Dugan S, Masurel-Paulet A, Piton A, Kleefstra T, Pfundt R, Sato R, Tzschach A, Matsumoto N, Saitsu H, Leshinsky-Silver E, Lerman-Sagie T. The molecular and phenotypic spectrum ofIQSEC2-related epilepsy. Epilepsia 2016; 57:1858-1869. [DOI: 10.1111/epi.13560] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2016] [Indexed: 01/21/2023]
|
28
|
|
29
|
Brown JC, Petersen A, Zhong L, Himelright ML, Murphy JA, Walikonis RS, Gerges NZ. Bidirectional regulation of synaptic transmission by BRAG1/IQSEC2 and its requirement in long-term depression. Nat Commun 2016; 7:11080. [PMID: 27009485 PMCID: PMC4820844 DOI: 10.1038/ncomms11080] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 02/16/2016] [Indexed: 01/09/2023] Open
Abstract
Dysfunction of the proteins regulating synaptic function can cause synaptic plasticity imbalance that underlies neurological disorders such as intellectual disability. A study found that four distinct mutations within BRAG1, an Arf-GEF synaptic protein, each led to X-chromosome-linked intellectual disability (XLID). Although the physiological functions of BRAG1 are poorly understood, each of these mutations reduces BRAG1's Arf-GEF activity. Here we show that BRAG1 is required for the activity-dependent removal of AMPA receptors in rat hippocampal pyramidal neurons. Moreover, we show that BRAG1 bidirectionally regulates synaptic transmission. On one hand, BRAG1 is required for the maintenance of synaptic transmission. On the other hand, BRAG1 expression enhances synaptic transmission, independently of BRAG1 Arf-GEF activity or neuronal activity, but dependently on its C-terminus interactions. This study demonstrates a dual role of BRAG1 in synaptic function and highlights the functional relevance of reduced BRAG1 Arf-GEF activity as seen in the XLID-associated human mutations.
Collapse
Affiliation(s)
- Joshua C Brown
- Department of Cell Biology, Neurobiology and Anatomy, The Medical College of Wisconsin, Milwaukee, Wisconsin 53132 USA
| | - Amber Petersen
- Department of Cell Biology, Neurobiology and Anatomy, The Medical College of Wisconsin, Milwaukee, Wisconsin 53132 USA
| | - Ling Zhong
- Department of Cell Biology, Neurobiology and Anatomy, The Medical College of Wisconsin, Milwaukee, Wisconsin 53132 USA
| | - Miranda L Himelright
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut 06269 USA
| | - Jessica A Murphy
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut 06269 USA
| | - Randall S Walikonis
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut 06269 USA
| | - Nashaat Z Gerges
- Department of Cell Biology, Neurobiology and Anatomy, The Medical College of Wisconsin, Milwaukee, Wisconsin 53132 USA
| |
Collapse
|
30
|
Moey C, Hinze SJ, Brueton L, Morton J, McMullan DJ, Kamien B, Barnett CP, Brunetti-Pierri N, Nicholl J, Gecz J, Shoubridge C. Xp11.2 microduplications including IQSEC2, TSPYL2 and KDM5C genes in patients with neurodevelopmental disorders. Eur J Hum Genet 2016; 24:373-80. [PMID: 26059843 PMCID: PMC4757771 DOI: 10.1038/ejhg.2015.123] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 03/26/2015] [Accepted: 05/06/2015] [Indexed: 01/06/2023] Open
Abstract
Copy number variations are a common cause of intellectual disability (ID). Determining the contribution of copy number variants (CNVs), particularly gains, to disease remains challenging. Here, we report four males with ID with sub-microscopic duplications at Xp11.2 and review the few cases with overlapping duplications reported to date. We established the extent of the duplicated regions in each case encompassing a minimum of three known disease genes TSPYL2, KDM5C and IQSEC2 with one case also duplicating the known disease gene HUWE1. Patients with a duplication encompassing TSPYL2, KDM5C and IQSEC2 without gains of nearby SMC1A and HUWE1 genes have not been reported thus far. All cases presented with ID and significant deficits of speech development. Some patients also manifested behavioral disturbances such as hyperactivity and attention-deficit/hyperactivity disorder. Lymphoblastic cell lines from patients show markedly elevated levels of TSPYL2, KDM5C and SMC1A, transcripts consistent with the extent of their CNVs. The duplicated region in our patients contains several genes known to escape X-inactivation, including KDM5C, IQSEC2 and SMC1A. In silico analysis of expression data in selected gene expression omnibus series indicates that dosage of these genes, especially IQSEC2, is similar in males and females despite the fact they escape from X-inactivation in females. Taken together, the data suggest that gains in Xp11.22 including IQSEC2 cause ID and are associated with hyperactivity and attention-deficit/hyperactivity disorder, and are likely to be dosage-sensitive in males.
Collapse
Affiliation(s)
- Ching Moey
- Department of Paediatrics, School of Paediatrics and Reproductive Health, University of Adelaide, Adelaide, South Australia, Australia
- Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - Susan J Hinze
- Department of Paediatrics, School of Paediatrics and Reproductive Health, University of Adelaide, Adelaide, South Australia, Australia
- Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - Louise Brueton
- Clinical Genetics unit, Birmingham Women's Hospital, Birmingham, UK
| | - Jenny Morton
- Clinical Genetics unit, Birmingham Women's Hospital, Birmingham, UK
| | | | | | | | - Nicola Brunetti-Pierri
- Department of Translational Medicine, Federico II University, Napoli, Italy
- Telethon Institute of Genetics and Medicine, Napoli, Italy
| | | | - Jozef Gecz
- Department of Paediatrics, School of Paediatrics and Reproductive Health, University of Adelaide, Adelaide, South Australia, Australia
- Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - Cheryl Shoubridge
- Department of Paediatrics, School of Paediatrics and Reproductive Health, University of Adelaide, Adelaide, South Australia, Australia
- Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
31
|
Elagabani MN, Briševac D, Kintscher M, Pohle J, Köhr G, Schmitz D, Kornau HC. Subunit-selective N-Methyl-d-aspartate (NMDA) Receptor Signaling through Brefeldin A-resistant Arf Guanine Nucleotide Exchange Factors BRAG1 and BRAG2 during Synapse Maturation. J Biol Chem 2016; 291:9105-18. [PMID: 26884337 DOI: 10.1074/jbc.m115.691717] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Indexed: 11/06/2022] Open
Abstract
The maturation of glutamatergic synapses in the CNS is regulated by NMDA receptors (NMDARs) that gradually change from a GluN2B- to a GluN2A-dominated subunit composition during postnatal development. Here we show that NMDARs control the activity of the small GTPase ADP-ribosylation factor 6 (Arf6) by consecutively recruiting two related brefeldin A-resistant Arf guanine nucleotide exchange factors, BRAG1 and BRAG2, in a GluN2 subunit-dependent manner. In young cortical cultures, GluN2B and BRAG1 tonically activated Arf6. In mature cultures, Arf6 was activated through GluN2A and BRAG2 upon NMDA treatment, whereas the tonic Arf6 activation was not detectable any longer. This shift in Arf6 regulation and the associated drop in Arf6 activity were reversed by a knockdown of BRAG2. Given their sequential recruitment during development, we examined whether BRAG1 and BRAG2 influence synaptic currents in hippocampal CA1 pyramidal neurons using patch clamp recordings in acute slices from mice at different ages. The number of AMPA receptor (AMPAR) miniature events was reduced by depletion of BRAG1 but not by depletion of BRAG2 during the first 2 weeks after birth. In contrast, depletion of BRAG2 during postnatal weeks 4 and 5 reduced the number of AMPAR miniature events and compromised the quantal sizes of both AMPAR and NMDAR currents evoked at Schaffer collateral synapses. We conclude that both Arf6 activation through GluN2B-BRAG1 during early development and the transition from BRAG1- to BRAG2-dependent Arf6 signaling induced by the GluN2 subunit switch are critical for the development of mature glutamatergic synapses.
Collapse
Affiliation(s)
- Mohammad Nael Elagabani
- From the Neuroscience Research Center (NWFZ) and Institute of Biochemistry, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany and
| | - Dušica Briševac
- From the Neuroscience Research Center (NWFZ) and Institute of Biochemistry, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany and
| | | | - Jörg Pohle
- the Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159 Mannheim, Germany
| | - Georg Köhr
- the Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159 Mannheim, Germany
| | | | - Hans-Christian Kornau
- From the Neuroscience Research Center (NWFZ) and Institute of Biochemistry, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany and
| |
Collapse
|
32
|
Lowenthal MS, Markey SP, Dosemeci A. Quantitative mass spectrometry measurements reveal stoichiometry of principal postsynaptic density proteins. J Proteome Res 2015; 14:2528-38. [PMID: 25874902 DOI: 10.1021/acs.jproteome.5b00109] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Quantitative studies are presented of postsynaptic density (PSD) fractions from rat cerebral cortex with the ultimate goal of defining the average copy numbers of proteins in the PSD complex. Highly specific and selective isotope dilution mass spectrometry assays were developed using isotopically labeled polypeptide concatemer internal standards. Interpretation of PSD protein stoichiometry was achieved as a molar ratio with respect to PSD-95 (SAP-90, DLG4), and subsequently, copy numbers were estimated using a consensus literature value for PSD-95. Average copy numbers for several proteins at the PSD were estimated for the first time, including those for AIDA-1, BRAGs, and densin. Major findings include evidence for the high copy number of AIDA-1 in the PSD (144 ± 30)-equivalent to that of the total GKAP family of proteins (150 ± 27)-suggesting that AIDA-1 is an element of the PSD scaffold. The average copy numbers for NMDA receptor sub-units were estimated to be 66 ± 18, 27 ± 9, and 45 ± 15, respectively, for GluN1, GluN2A, and GluN2B, yielding a total of 34 ± 10 NMDA channels. Estimated average copy numbers for AMPA channels and their auxiliary sub-units TARPs were 68 ± 36 and 144 ± 38, respectively, with a stoichiometry of ∼1:2, supporting the assertion that most AMPA receptors anchor to the PSD via TARP sub-units. This robust, quantitative analysis of PSD proteins improves upon and extends the list of major PSD components with assigned average copy numbers in the ongoing effort to unravel the complex molecular architecture of the PSD.
Collapse
Affiliation(s)
- Mark S Lowenthal
- †Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Sanford P Markey
- †Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States.,‡Laboratory of Neurotoxicology, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Ayse Dosemeci
- §Laboratory of Neurobiology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, United States
| |
Collapse
|
33
|
Shoubridge C, Walikonis RS, Gécz J, Harvey RJ. Subtle functional defects in the Arf-specific guanine nucleotide exchange factor IQSEC2 cause non-syndromic X-linked intellectual disability. Small GTPases 2014; 1:98-103. [PMID: 21686261 DOI: 10.4161/sgtp.1.2.13285] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Revised: 07/28/2010] [Accepted: 08/01/2010] [Indexed: 11/19/2022] Open
Abstract
Mutations in IQSEC2, a guanine nucleotide exchange factor for the ADP-ribosylation factor (Arf) family of small GTPases have recently been shown to cause non-syndromic X-linked intellectual disability (ID), characterised by substantial limitations in intellectual functioning and adaptive behaviour. This discovery was revealed by a combination of large-scale resequencing of the X chromosome, and key functional assays that revealed a reduction, but not elimination, of IQSEC2 GEF activity for mutations affecting conserved amino acids in the IQ-like and Sec7 domains. Compromised GTP binding activity of IQSEC2 leading to reduced activation of selected Arf substrates (Arf1, Arf6) is expected to impact on cytoskeletal organization, dendritic spine morphology and synaptic organisation. This study highlights the need for further investigation of the IQSEC gene family and Arf GTPases in neuronal morphology and synaptic function, and suggests that the genes encoding the ArfGEFs IQSEC1 and IQSEC3 should be considered as candidates for screening in autosomal ID.
Collapse
Affiliation(s)
- Cheryl Shoubridge
- Genetics and Molecular Pathology; SA Pathology; The University of Adelaide; Adelaide, Australia
| | | | | | | |
Collapse
|
34
|
Torii T, Miyamoto Y, Tago K, Sango K, Nakamura K, Sanbe A, Tanoue A, Yamauchi J. Arf6 guanine nucleotide exchange factor cytohesin-2 binds to CCDC120 and is transported along neurites to mediate neurite growth. J Biol Chem 2014; 289:33887-903. [PMID: 25326380 DOI: 10.1074/jbc.m114.575787] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mechanism of neurite growth is complicated, involving continuous cytoskeletal rearrangement and vesicular trafficking. Cytohesin-2 is a guanine nucleotide exchange factor for Arf6, an Arf family molecular switch protein, controlling cell morphological changes such as neuritogenesis. Here, we show that cytohesin-2 binds to a protein with a previously unknown function, CCDC120, which contains three coiled-coil domains, and is transported along neurites in differentiating N1E-115 cells. Transfection of the small interfering RNA (siRNA) specific for CCDC120 into cells inhibits neurite growth and Arf6 activation. When neurites start to extend, vesicles containing CCDC120 and cytohesin-2 are transported in an anterograde manner rather than a retrograde one. As neurites continue extension, anterograde vesicle transport decreases. CCDC120 knockdown inhibits cytohesin-2 localization into vesicles containing CCDC120 and diffuses cytohesin-2 in cytoplasmic regions, illustrating that CCDC120 determines cytohesin-2 localization in growing neurites. Reintroduction of the wild type CCDC120 construct into cells transfected with CCDC120 siRNA reverses blunted neurite growth and Arf6 activity, whereas the cytohesin-2-binding CC1 region-deficient CCDC120 construct does not. Thus, cytohesin-2 is transported along neurites by vesicles containing CCDC120, and it mediates neurite growth. These results suggest a mechanism by which guanine nucleotide exchange factor for Arf6 is transported to mediate neurite growth.
Collapse
Affiliation(s)
- Tomohiro Torii
- From the Department of Pharmacology, National Research Institute for Child Health and Development, Setagaya, Tokyo 157-8535,
| | - Yuki Miyamoto
- From the Department of Pharmacology, National Research Institute for Child Health and Development, Setagaya, Tokyo 157-8535
| | - Kenji Tago
- the Graduate School of Medicine, Jichi Medical University, Shimotsuke, Tochigi 329-0498
| | - Kazunori Sango
- the Amyotrophic Lateral Sclerosis/Neuropathy Project, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo 156-8506
| | - Kazuaki Nakamura
- From the Department of Pharmacology, National Research Institute for Child Health and Development, Setagaya, Tokyo 157-8535
| | - Atsushi Sanbe
- the School of Pharmacy, Iwate Medical University, Morioka, Iwate 020-0023, and
| | - Akito Tanoue
- From the Department of Pharmacology, National Research Institute for Child Health and Development, Setagaya, Tokyo 157-8535
| | - Junji Yamauchi
- From the Department of Pharmacology, National Research Institute for Child Health and Development, Setagaya, Tokyo 157-8535, the Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo, Tokyo 113-8510, Japan
| |
Collapse
|
35
|
Adenomatous polyposis coli protein deletion leads to cognitive and autism-like disabilities. Mol Psychiatry 2014; 19:1133-42. [PMID: 24934177 PMCID: PMC4317257 DOI: 10.1038/mp.2014.61] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 04/16/2014] [Accepted: 04/25/2014] [Indexed: 12/14/2022]
Abstract
Intellectual disabilities (IDs) and autism spectrum disorders link to human APC inactivating gene mutations. However, little is known about adenomatous polyposis coli's (APC's) role in the mammalian brain. This study is the first direct test of the impact of APC loss on central synapses, cognition and behavior. Using our newly generated APC conditional knock-out (cKO) mouse, we show that deletion of this single gene in forebrain neurons leads to a multisyndromic neurodevelopmental disorder. APC cKO mice, compared with wild-type littermates, exhibit learning and memory impairments, and autistic-like behaviors (increased repetitive behaviors, reduced social interest). To begin to elucidate neuronal changes caused by APC loss, we focused on the hippocampus, a key brain region for cognitive function. APC cKO mice display increased synaptic spine density, and altered synaptic function (increased frequency of miniature excitatory synaptic currents, modestly enhanced long-term potentiation). In addition, we found excessive β-catenin levels and associated changes in canonical Wnt target gene expression and N-cadherin synaptic adhesion complexes, including reduced levels of presenilin1. Our findings identify some novel functional and molecular changes not observed previously in other genetic mutant mouse models of co-morbid cognitive and autistic-like disabilities. This work thereby has important implications for potential therapeutic targets and the impact of their modulation. We provide new insights into molecular perturbations and cell types that are relevant to human ID and autism. In addition, our data elucidate a novel role for APC in the mammalian brain as a hub that links to and regulates synaptic adhesion and signal transduction pathways critical for normal cognition and behavior.
Collapse
|
36
|
Hongu T, Kanaho Y. Activation machinery of the small GTPase Arf6. Adv Biol Regul 2013; 54:59-66. [PMID: 24139303 DOI: 10.1016/j.jbior.2013.09.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 09/11/2013] [Accepted: 09/12/2013] [Indexed: 11/17/2022]
Abstract
The small GTPase ADP-ribosylation factor 6 (Arf6) plays pivotal roles in a wide variety of cellular events, including exocytosis, endocytosis, actin cytoskeleton reorganization and phosphoinositide metabolism, in various types of cells. To control such a wide variety of actions of Arf6, activation of Arf6 could be precisely controlled by its activators, guanine nucleotide exchange factors (GEFs), in spatial and temporal manners. In this manuscript, we summarize and discuss the characteristics of previously identified GEFs specific to Arf6 and activation machineries of Arf6.
Collapse
Affiliation(s)
- Tsunaki Hongu
- Department of Physiological Chemistry, Faculty of Medicine and Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Yasunori Kanaho
- Department of Physiological Chemistry, Faculty of Medicine and Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan.
| |
Collapse
|
37
|
Distinct synaptic localization patterns of brefeldin A-resistant guanine nucleotide exchange factors BRAG2 and BRAG3 in the mouse retina. J Comp Neurol 2013; 521:860-76. [DOI: 10.1002/cne.23206] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2012] [Revised: 05/11/2012] [Accepted: 07/27/2012] [Indexed: 11/07/2022]
|
38
|
Arf6-GEF BRAG1 regulates JNK-mediated synaptic removal of GluA1-containing AMPA receptors: a new mechanism for nonsyndromic X-linked mental disorder. J Neurosci 2012; 32:11716-26. [PMID: 22915114 DOI: 10.1523/jneurosci.1942-12.2012] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Activity-dependent modifications of excitatory synapses contribute to synaptic maturation and plasticity, and are critical for learning and memory. Consequently, impairments in synapse formation or synaptic transmission are thought to be responsible for several types of mental disabilities. BRAG1 is a guanine nucleotide exchange factor for the small GTP-binding protein Arf6 that localizes to the postsynaptic density of excitatory synapses. Mutations in BRAG1 have been identified in families with X-linked intellectual disability (XLID). These mutations mapped to either the catalytic domain or an IQ-like motif; however, the pathophysiological basis of these mutations remains unknown. Here, we show that the BRAG1 IQ motif binds apo-calmodulin (CaM), and that calcium-induced CaM release triggers a reversible conformational change in human BRAG1. We demonstrate that BRAG1 activity, stimulated by activation of NMDA-sensitive glutamate receptors, depresses AMPA receptor (AMPA-R)-mediated transmission via JNK-mediated synaptic removal of GluA1-containing AMPA-Rs in rat hippocampal neurons. Importantly, a BRAG1 mutant that fails to activate Arf6 also fails to depress AMPA-R signaling, indicating that Arf6 activity is necessary for this process. Conversely, a mutation in the BRAG1 IQ-like motif that impairs CaM binding results in hyperactivation of Arf6 signaling and constitutive depression of AMPA transmission. Our findings reveal a role for BRAG1 in response to neuronal activity with possible clinical relevance to nonsyndromic XLID.
Collapse
|
39
|
Moon IS, Lee HJ, Park IS. Dendritic eIF4E-binding protein 1 (eIF4E-BP1) mRNA is upregulated by neuronal activation. J Korean Med Sci 2012; 27:1241-7. [PMID: 23091324 PMCID: PMC3468763 DOI: 10.3346/jkms.2012.27.10.1241] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 08/10/2012] [Indexed: 01/04/2023] Open
Abstract
Long-term synaptic plasticity requires addition of new proteins at the synaptic site. The local protein synthesis at subsynaptic sites confers advantageous mechanisms that would regulate the protein composition in local domains on a moment-by-moment basis. However, our information on the identities of 'dendritic' mRNAs is very limited. In this study we investigated the expression of the protein and mRNA for eukaryotic translation initiation factor 4E (eIF4E)-binding protein 1 (4EBP1) in cultured rat hippocampal neurons. Immunocytochemistry (ICC) showed that 4EBP1 protein is highly localized to the nucleus. In dendrites most 4EBP1 punctae were not colocalized with those of eIF4E. In situ hybridization (ISH) and Fluorescence ISH (FISH) revealed that 4EBP1 mRNA was present in dendrites. The FISH signals formed clusters along dendrites that colocalized with ICC signals for Staufen, a marker for RNA granules. The neuronal activation by KCl (60 mM, 10 min) significantly increased the density of 4EBP1 FISH signals in the nucleus after 2 hr, and both in the nucleus and dendrites after 6 hr. Our results indicate that 4EBP1 and its mRNA are present in dendrites, and the mRNA is upregulated and transported to dendritic domains in RNA granules upon neuronal activation.
Collapse
Affiliation(s)
- Il Soo Moon
- Department of Anatomy, Dongguk University College of Medicine, and Medical Institute of Dongguk University, Gyeongju, Korea.
| | | | | |
Collapse
|
40
|
Torii T, Miyamoto Y, Nakamura K, Maeda M, Yamauchi J, Tanoue A. Arf6 guanine-nucleotide exchange factor, cytohesin-2, interacts with actinin-1 to regulate neurite extension. Cell Signal 2012; 24:1872-82. [DOI: 10.1016/j.cellsig.2012.05.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Revised: 05/16/2012] [Accepted: 05/24/2012] [Indexed: 10/28/2022]
|
41
|
Abstract
Small GTP-binding proteins of the ADP-ribosylation factor (Arf) family control various cell functional responses including protein transport and recycling between different cellular compartments, phagocytosis, proliferation, cytoskeletal remodelling, and migration. The activity of Arfs is tightly regulated. GTPase-activating proteins (GAPs) inactivate Arfs by stimulating GTP hydrolysis, and guanine nucleotide exchange factors (GEFs) stimulate the conversion of inactive GDP-bound Arf to the active GTP-bound conformation. There is increasing evidence that Arf small GTPases contribute to cancer growth and invasion. Increased expression of Arf6 and of Arf-GEPs, or deregulation Arf-GAP functions have been correlated with enhanced invasive capacity of tumor cells and metastasis. The spatiotemporal specificity of Arf activation is dictated by their GEFs that integrate various signals in stimulated cells. Brefeldin A (BFA), which inactivates a subset of Arf-GEFs, has been very useful for assessing the function of Golgi-localized Arfs. However, specific inhibitors to investigate the individual function of BFA-sensitive and insensitive Arf-GEFs are lacking. In recent years, specific screens have been developed, and new inhibitors with improved selectivity and potency to study cell functional responses regulated by BFA-sensitive and BFA-insensitive Arf pathways have been identified. These inhibitors have been instrumental for our understanding of the spatiotemporal activation of Arf proteins in cells and demonstrate the feasibility of developing small molecules interfering with Arf activation to prevent tumor invasion and metastasis.
Collapse
|
42
|
Sakurai A, Jian X, Lee CJ, Manavski Y, Chavakis E, Donaldson J, Randazzo PA, Gutkind JS. Phosphatidylinositol-4-phosphate 5-kinase and GEP100/Brag2 protein mediate antiangiogenic signaling by semaphorin 3E-plexin-D1 through Arf6 protein. J Biol Chem 2011; 286:34335-45. [PMID: 21795701 DOI: 10.1074/jbc.m111.259499] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The semaphorins are a family of secreted or membrane-bound proteins that are known to guide axons in the developing nervous system. Genetic evidence revealed that a class III semaphorin, semaphorin 3E (Sema3E), and its receptor Plexin-D1 also control the vascular patterning during development. At the molecular level, we have recently shown that Sema3E acts on Plexin-D1 expressed in endothelial cells, thus initiating a novel antiangiogenic signaling pathway that results in the retraction of filopodia in endothelial tip cells. Sema3E induces the rapid disassembly of integrin-mediated adhesive structures, thereby inhibiting endothelial cell adhesion to the extracellular matrix. This process requires the activation of small GTPase Arf6 (ADP-ribosylation factor 6), which regulates intracellular trafficking of β1 integrin. However, the molecular mechanisms by which Sema3E-Plexin-D1 activates Arf6 remained to be identified. Here we show that GEP100 (guanine nucleotide exchange protein 100)/Brag2, a guanine nucleotide exchange factor for Arf6, mediates Sema3E-induced Arf6 activation in endothelial cells. We provide evidence that upon activation by Sema3E, Plexin-D1 recruits phosphatidylinositol-4-phosphate 5-kinase, and its enzymatic lipid product, phosphatidylinositol 4,5-bisphosphate, binds to the pleckstrin homology domain of GEP100. Phosphatidylinositol 4,5-bisphosphate binding to GEP100 enhances its guanine nucleotide exchange factor activity toward Arf6, thus resulting in the disassembly of integrin-mediated focal adhesions and endothelial cell collapse. Our present study reveals a novel phospholipid-regulated antiangiogenic signaling pathway whereby Sema3E activates Arf6 through Plexin-D1 and consequently controls integrin-mediated endothelial cell attachment to the extracellular matrix and migration.
Collapse
Affiliation(s)
- Atsuko Sakurai
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Cho SJ, Lee H, Dutta S, Song J, Walikonis R, Moon IS. Septin 6 regulates the cytoarchitecture of neurons through localization at dendritic branch points and bases of protrusions. Mol Cells 2011; 32:89-98. [PMID: 21544625 PMCID: PMC3887662 DOI: 10.1007/s10059-011-1048-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2010] [Revised: 04/04/2011] [Accepted: 04/06/2011] [Indexed: 10/18/2022] Open
Abstract
Septins, a conserved family of GTP-binding proteins with a conserved role in cytokinesis, are present in eukaryotes ranging from yeast to mammals. Septins are also highly expressed in neurons, which are post-mitotic cells. Septin6 (SEPT6) forms SEPT2/6/7 complexes in vivo. In this study, we produced a very specific SEPT6 antibody. Immunocytochemisty (ICC) of dissociated hippocampal cultures revealed that SEPT6 was highly expressed in neurons. Developmentally, the expression of SEPT6 was very low until stage 3 (axonal outgrowth). Significant expression of SEPT6 began at stage 4 (outgrowth of dendrites). At this stage, SEPT6 clusters were positioned at the branch points of developing dendrites. In maturing and mature neurons (stage 5), SEPT6 clusters were positioned at the base of filopodia and spines, and pre-synaptic boutons. Detergent extraction experiments also indicated that SEPT6 is not a post-synaptic density (PSD) protein. Throughout morphologic development of neurons, SEPT6 always formed tiny rings (external diameter, ∼0.5 μm), which appear to be clusters at low magnification. When a Sept6 RNAi vector was introduced at the early developmental stage (DIV 2), a significant reduction in dendritic length and branch number was evident. Taken together, our results indicate that SEPT6 begins to be expressed at the stage of dendritic outgrowth and regulates the cytoarchitecture.
Collapse
Affiliation(s)
- Sun-Jung Cho
- Department of Anatomy, College of Medicine, Dongguk University, Gyeongju 780-714, Korea
- Present address: Division of Brain Diseases, Center for Biomedical Sciences, National Institute of Health, Osong Health Technology Administration Complex, Cheongwon 363-951, Korea
| | - HyunSook Lee
- Department of Anatomy, College of Medicine, Dongguk University, Gyeongju 780-714, Korea
| | - Samikshan Dutta
- Department of Anatomy, College of Medicine, Dongguk University, Gyeongju 780-714, Korea
| | - Jinyoung Song
- Department of Anatomy, College of Medicine, Dongguk University, Gyeongju 780-714, Korea
- Present address: Department of Pediatrics, Sejong General Hospital, Bucheon 422-711, Korea
| | - Randall Walikonis
- Department of Physiology and Neurobiology, University of Connecticut, CT 06269, USA
| | - Il Soo Moon
- Department of Anatomy, College of Medicine, Dongguk University, Gyeongju 780-714, Korea
| |
Collapse
|
44
|
Fukaya M, Kamata A, Hara Y, Tamaki H, Katsumata O, Ito N, Takeda S, Hata Y, Suzuki T, Watanabe M, Harvey RJ, Sakagami H. SynArfGEF is a guanine nucleotide exchange factor for Arf6 and localizes preferentially at post-synaptic specializations of inhibitory synapses. J Neurochem 2011; 116:1122-37. [PMID: 21198641 DOI: 10.1111/j.1471-4159.2010.07167.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
SynArfGEF, also known as BRAG3 or IQSEC3, is a member of the brefeldin A-resistant Arf-GEF/IQSEC family and was originally identified by screening for mRNA species associated with the post-synaptic density fraction. In this study, we demonstrate that synArfGEF activates Arf6, using Arf pull down and transferrin incorporation assays. Immunohistochemical analysis reveals that synArfGEF is present in somata and dendrites as puncta in close association with inhibitory synapses, whereas immunoelectron microscopic analysis reveals that synArfGEF localizes preferentially at post-synaptic specializations of symmetric synapses. Using yeast two-hybrid and pull down assays, we show that synArfGEF is able to bind utrophin/dystrophin and S-SCAM/MAGI-2 scaffolding proteins that localize at inhibitory synapses. Double immunostaining reveals that synArfGEF co-localizes with dystrophin and S-SCAM in cultured hippocampal neurons and cerebellar cortex, respectively. Both β-dystroglycan and S-SCAM were immunoprecipitated from brain lysates using anti-synArfGEF IgG. Taken together, these findings suggest that synArfGEF functions as a novel regulator of Arf6 at inhibitory synapses and associates with the dystrophin-associated glycoprotein complex and S-SCAM.
Collapse
Affiliation(s)
- Masahiro Fukaya
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Suzuki T. Isolation of Synapse Subdomains by Subcellular Fractionation Using Sucrose Density Gradient Centrifugation. NEUROMETHODS 2011. [DOI: 10.1007/978-1-61779-111-6_4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
46
|
AMPA receptor signaling through BRAG2 and Arf6 critical for long-term synaptic depression. Neuron 2010; 66:768-80. [PMID: 20547133 DOI: 10.1016/j.neuron.2010.05.003] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2010] [Indexed: 11/24/2022]
Abstract
Central nervous system synapses undergo activity-dependent alterations to support learning and memory. Long-term depression (LTD) reflects a sustained reduction of the synaptic AMPA receptor content based on targeted clathrin-mediated endocytosis. Here we report a current-independent form of AMPA receptor signaling, fundamental for LTD. We found that AMPA receptors directly interact via the GluA2 subunit with the synaptic protein BRAG2, which functions as a guanine-nucleotide exchange factor (GEF) for the coat-recruitment GTPase Arf6. BRAG2-mediated catalysis, controlled by ligand-binding and tyrosine phosphorylation of GluA2, activates Arf6 to internalize synaptic AMPA receptors upon LTD induction. Furthermore, acute blockade of the GluA2-BRAG2 interaction and targeted deletion of BRAG2 in mature hippocampal CA1 pyramidal neurons prevents LTD in CA3-to-CA1 cell synapses, irrespective of the induction pathway. We conclude that BRAG2-mediated Arf6 activation triggered by AMPA receptors is the convergent step of different forms of LTD, thus providing an essential mechanism for the control of vesicle formation by endocytic cargo.
Collapse
|
47
|
Torii T, Miyamoto Y, Sanbe A, Nishimura K, Yamauchi J, Tanoue A. Cytohesin-2/ARNO, through its interaction with focal adhesion adaptor protein paxillin, regulates preadipocyte migration via the downstream activation of Arf6. J Biol Chem 2010; 285:24270-81. [PMID: 20525696 DOI: 10.1074/jbc.m110.125658] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The formation of primitive adipose tissue is the initial process in adipose tissue development followed by the migration of preadipocytes into adipocyte clusters. Comparatively little is known about the molecular mechanism controlling preadipocyte migration. Here, we show that cytohesin-2, the guanine-nucleotide exchange factor for the Arf family GTP-binding proteins, regulates migration of mouse preadipocyte 3T3-L1 cells through Arf6. SecinH3, a specific inhibitor of the cytohesin family, markedly inhibits migration of 3T3-L1 cells. 3T3-L1 cells express cytohesin-2 and cytohesin-3, and knockdown of cytohesin-2 with its small interfering RNA effectively decreases cell migration. Cytohesin-2 preferentially acts upstream of Arf6 in this signaling pathway. Furthermore, we find that the focal adhesion protein paxillin forms a complex with cytohesin-2. Paxillin colocalizes with cytohesin-2 at the leading edges of migrating cells. This interaction is mediated by the LIM2 domain of paxillin and the isolated polybasic region of cytohesin-2. Importantly, migration is inhibited by expression of the constructs containing these regions. These results suggest that cytohesin-2, through a previously unexplored complex formation with paxillin, regulates preadipocyte migration and that paxillin plays a previously unknown role as a scaffold protein of Arf guanine-nucleotide exchange factor.
Collapse
Affiliation(s)
- Tomohiro Torii
- Department of Pharmacology, National Research Institute for Child Health and Development, Setagaya, Okura, Tokyo 157-8535, Japan
| | | | | | | | | | | |
Collapse
|
48
|
Shoubridge C, Tarpey PS, Abidi F, Ramsden SL, Rujirabanjerd S, Murphy JA, Boyle J, Shaw M, Gardner A, Proos A, Puusepp H, Raymond FL, Schwartz CE, Stevenson RE, Turner G, Field M, Walikonis RS, Harvey RJ, Hackett A, Futreal PA, Stratton MR, Gécz J. Mutations in the guanine nucleotide exchange factor gene IQSEC2 cause nonsyndromic intellectual disability. Nat Genet 2010; 42:486-8. [PMID: 20473311 PMCID: PMC3632837 DOI: 10.1038/ng.588] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Accepted: 04/07/2010] [Indexed: 12/15/2022]
Abstract
The first family identified as having a nonsyndromic intellectual disability was mapped in 1988. Here we show that a mutation of IQSEC2, encoding a guanine nucleotide exchange factor for the ADP-ribosylation factor family of small GTPases, caused this disorder. In addition to MRX1, IQSEC2 mutations were identified in three other families with X-linked intellectual disability. This discovery was made possible by systematic and unbiased X chromosome exome resequencing.
Collapse
Affiliation(s)
- Cheryl Shoubridge
- Genetics and Molecular Pathology, SA Pathology, Adelaide, Australia.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Moon IS, Cho SJ, Seog DH, Walikonis R. Neuronal activation increases the density of eukaryotic translation initiation factor 4E mRNA clusters in dendrites of cultured hippocampal neurons. Exp Mol Med 2009; 41:601-10. [PMID: 19381064 DOI: 10.3858/emm.2009.41.8.066] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Activity-dependent dendritic translation in CNS neurons is important for the synapse-specific provision of proteins that may be necessary for strengthening of synaptic connections. A major rate-limiting factor during protein synthesis is the availability of eukaryotic translation initiation factor 4E (eIF4E), an mRNA 5-cap-binding protein. In this study we show by fluorescence in situ hybridization (FISH) that the mRNA for eIF4E is present in the dendrites of cultured rat hippocampal neurons. Under basal culture conditions, 58.7 +/-11.6% of the eIF4E mRNA clusters localize with or immediately adjacent to PSD-95 clusters. Neuronal activation with KCl (60 mM, 10 min) very significantly increases the number of eIF4E mRNA clusters in dendrites by 50.1 and 74.5% at 2 and 6 h after treatment, respectively. In addition, the proportion of eIF4E mRNA clusters that localize with PSD-95 increases to 74.4+/-7.7% and 77.8+/-7.6% of the eIF4E clusters at 2 and 6 h after KCl treatment, respectively. Our results demonstrate the presence of eIF4E mRNA in dendrites and an activity-dependent increase of these clusters at synaptic sites. This provides a potential mechanism by which protein translation at synapses may be enhanced in response to synaptic stimulation.
Collapse
Affiliation(s)
- Il Soo Moon
- Department of Anatomy, College of Medicine, Dongguk University, Gyeongju 780-714, Korea
| | | | | | | |
Collapse
|
50
|
Katsumata O, Ohara N, Tamaki H, Niimura T, Naganuma H, Watanabe M, Sakagami H. IQ-ArfGEF/BRAG1 is associated with synaptic ribbons in the mouse retina. Eur J Neurosci 2009; 30:1509-16. [PMID: 19811534 DOI: 10.1111/j.1460-9568.2009.06943.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
IQ-ArfGEF/BRAG1 is a guanine nucleotide exchange factor for ADP ribosylation factors (Arfs), which are implicated in membrane trafficking and actin cytoskeleton dynamics. In this study, we examined the immunohistochemical localization of IQ-ArfGEF/BRAG1 in the adult mouse retina using light and electron microscopy. IQ-ArfGEF/BRAG1 was distributed in a punctate manner and colocalized well with RIBEYE in both the outer and inner plexiform layers. Immunoelectron microscopic analysis showed that IQ-ArfGEF/BRAG1 was localized at the synaptic ribbons of photoreceptors. When heterologously expressed in HeLa cells, IQ-ArfGEF/BRAG1 was recruited to RIBEYE-containing clusters and formed an immunoprecipitable complex with RIBEYE. Furthermore, immunoprecipitation analysis showed that anti-IQ-ArfGEF/BRAG1 antibody efficiently pulled down RIBEYE from retinal lysates. These findings indicate that IQ-ArfGEF/BRAG1 is a novel component of retinal synaptic ribbons and forms a protein complex with RIBEYE.
Collapse
Affiliation(s)
- Osamu Katsumata
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa 228-8555, Japan
| | | | | | | | | | | | | |
Collapse
|