1
|
Bhatia P, Mehmood S, Doyon-Reale N, Rosati R, Stemmer PM, Jamesdaniel S. Unraveling the molecular landscape of lead-induced cochlear synaptopathy: a quantitative proteomics analysis. Front Cell Neurosci 2024; 18:1408208. [PMID: 39104440 PMCID: PMC11298392 DOI: 10.3389/fncel.2024.1408208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/03/2024] [Indexed: 08/07/2024] Open
Abstract
Introduction Exposure to heavy metal lead can cause serious health effects such as developmental neurotoxicity in infants, cognitive impairment in children, and cardiovascular and nephrotoxic effects in adults. Hearing loss is one of the toxic effects induced by exposure to lead. Previous studies demonstrated that exposure to lead causes oxidative stress in the cochlea and disrupts ribbon synapses in the inner hair cells. Methods This study investigated the underlying mechanism by evaluating the changes in the abundance of cochlear synaptosomal proteins that accompany lead-induced cochlear synaptopathy and hearing loss in mice. Young-adult CBA/J mice were given lead acetate in drinking water for 28 days. Results Lead exposure significantly increased the hearing thresholds, particularly at the higher frequencies in both male and female mice, but it did not affect the activity of outer hair cells or induce hair cell loss. However, lead exposure decreased wave-I amplitude, suggesting lead-induced cochlear synaptopathy. In agreement, colocalization of pre- and post-synaptic markers indicated that lead exposure decreased the number of paired synapses in the basal turn of the cochlea. Proteomics analysis indicated that lead exposure increased the abundance of 352 synaptic proteins and decreased the abundance of 394 synaptic proteins in the cochlea. Bioinformatics analysis indicated that proteins that change in abundance are highly enriched in the synaptic vesicle cycle pathway. Discussion Together, these results suggest that outer hair cells are not the primary target in lead-induced ototoxicity, that lead-induced cochlear synaptopathy is more pronounced in the basal turn of the cochlea, and that synaptic vesicle cycle signaling potentially plays a critical role in lead-induced cochlear synaptopathy.
Collapse
Affiliation(s)
- Pankaj Bhatia
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, United States
| | - Shomaila Mehmood
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, United States
| | - Nicole Doyon-Reale
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, United States
| | - Rita Rosati
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, United States
| | - Paul M. Stemmer
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, United States
| | - Samson Jamesdaniel
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, United States
- Department of Family Medicine and Public Health Sciences, Wayne State University, Detroit, MI, United States
| |
Collapse
|
2
|
Bartlett EL, Han EX, Parthasarathy A. Neurometric amplitude modulation detection in the inferior colliculus of Young and Aged rats. Hear Res 2024; 447:109028. [PMID: 38733711 PMCID: PMC11129790 DOI: 10.1016/j.heares.2024.109028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/29/2024] [Accepted: 05/02/2024] [Indexed: 05/13/2024]
Abstract
Amplitude modulation is an important acoustic cue for sound discrimination, and humans and animals are able to detect small modulation depths behaviorally. In the inferior colliculus (IC), both firing rate and phase-locking may be used to detect amplitude modulation. How neural representations that detect modulation change with age are poorly understood, including the extent to which age-related changes may be attributed to the inherited properties of ascending inputs to IC neurons. Here, simultaneous measures of local field potentials (LFPs) and single-unit responses were made from the inferior colliculus of Young and Aged rats using both noise and tone carriers in response to sinusoidally amplitude-modulated sounds of varying depths. We found that Young units had higher firing rates than Aged for noise carriers, whereas Aged units had higher phase-locking (vector strength), especially for tone carriers. Sustained LFPs were larger in Young animals for modulation frequencies 8-16 Hz and comparable at higher modulation frequencies. Onset LFP amplitudes were much larger in Young animals and were correlated with the evoked firing rates, while LFP onset latencies were shorter in Aged animals. Unit neurometric thresholds by synchrony or firing rate measures did not differ significantly across age and were comparable to behavioral thresholds in previous studies whereas LFP thresholds were lower than behavior.
Collapse
Affiliation(s)
- Edward L Bartlett
- Department of Biological Sciences and the Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47907, United States; Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, United States.
| | - Emily X Han
- Department of Biological Sciences and the Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47907, United States
| | - Aravindakshan Parthasarathy
- Department of Biological Sciences and the Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47907, United States
| |
Collapse
|
3
|
Pineros J, Zhu X, Ding B, Frisina RD. Connexins 30 and 43 expression changes in relation to age-related hearing loss. Hear Res 2024; 444:108971. [PMID: 38359484 PMCID: PMC10939722 DOI: 10.1016/j.heares.2024.108971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/27/2024] [Accepted: 02/10/2024] [Indexed: 02/17/2024]
Abstract
Age-related hearing loss (ARHL), also known as presbycusis, is the number one communication disorder for aging adults. Connexin proteins are essential for intercellular communication throughout the human body, including the cochlea. Mutations in connexin genes have been linked to human syndromic and nonsyndromic deafness; thus, we hypothesize that changes in connexin gene and protein expression with age are involved in the etiology of ARHL. Here, connexin gene and protein expression changes for CBA/CaJ mice at different ages were examined, and correlations were analyzed between the changes in expression levels and functional hearing measures, such as ABRs and DPOAEs. Moreover, we investigated potential treatment options for ARHL. Results showed significant downregulation of Cx30 and Cx43 gene expression and significant correlations between the degree of hearing loss and the changes in gene expression for both genes. Moreover, dose-dependent treatments utilizing cochlear cell lines showed that aldosterone hormone therapy significantly increased Cx expression. In vivo mouse treatments with aldosterone also showed protective effects on connexin expression in aging mice. Based on these functionally relevant findings, next steps can include more investigations of the mechanisms related to connexin family gap junction protein expression changes during ARHL; and expand knowledge of clinically-relevant treatment options by knowing what specific members of the Cx family and related inter-cellular proteins should be targeted therapeutically.
Collapse
Affiliation(s)
- Jennifer Pineros
- Department of Medical Engineering, College of Engineering, University of South Florida, Tampa, FL 33620, USA; Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL 33612, USA
| | - Xiaoxia Zhu
- Department of Medical Engineering, College of Engineering, University of South Florida, Tampa, FL 33620, USA; Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL 33612, USA
| | - Bo Ding
- Department of Medical Engineering, College of Engineering, University of South Florida, Tampa, FL 33620, USA; Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL 33612, USA
| | - Robert D Frisina
- Department of Medical Engineering, College of Engineering, University of South Florida, Tampa, FL 33620, USA; Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL 33612, USA; Department of Communication Sciences and Disorders, College of Behavioral & Community Sciences, University of South Florida, Tampa, FL 33620, USA; Morsani College of Medicine, University of South Florida, Tampa, FL 33620, USA.
| |
Collapse
|
4
|
Cheng Y, Chen W, Xu J, Liu H, Chen T, Hu J. Genetic analysis of potential biomarkers and therapeutic targets in age-related hearing loss. Hear Res 2023; 439:108894. [PMID: 37844444 DOI: 10.1016/j.heares.2023.108894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/06/2023] [Accepted: 09/27/2023] [Indexed: 10/18/2023]
Abstract
Age-related hearing loss (ARHL) or presbycusis is the phenomenon of hearing loss due to the aging of auditory organs with age. It seriously affects the cognitive function and quality of life of the elderly. This study is based on comprehensive bioinformatic and machine learning methods to identify the critical genes of ARHL and explore its therapy targets and pathological mechanisms. The ARHL and normal samples were from GSE49543 datasets of the Gene Expression Omnibus (GEO) database. Weighted gene co-expression network analysis (WGCNA) was applied to obtain significant modules. The Limma R-package was used to identify differentially expressed genes (DEGs). The 15 common genes of the practical module and DEGs were screened. Functional enrichment analysis suggested that these genes were mainly associated with inflammation, immune response, and infection. Cytoscape software created the protein-protein interaction (PPI) layouts and cytoHubba, support vector machine-recursive feature elimination (SVM-RFE), and random forests (RF) algorithms screened hub genes. After validating the hub gene expressions in GSE6045 and GSE154833 datasets, Clec4n, Mpeg1, and Fcgr3 are highly expressed in ARHL and have higher diagnostic efficacy for ARHL, so they were identified as hub genes. In conclusion, Clec4n, Mpeg1, and Fcgr3 play essential roles in developing ARHL, and they might become vital targets in ARHL diagnosis and anti-inflammatory therapy.
Collapse
Affiliation(s)
- Yajing Cheng
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Wenjin Chen
- Department of Neurosurgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Jia Xu
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Hang Liu
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Ting Chen
- Department of Neurology, Shenzhen Second People's Hospital, Shenzhen, China
| | - Jun Hu
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen, China.
| |
Collapse
|
5
|
Shi X, Li J, Liu T, Zhao H, Leng H, Sun K, Feng J. Divergence of cochlear transcriptomics between reference‑based and reference‑free transcriptome analyses among Rhinolophus ferrumequinum populations. PLoS One 2023; 18:e0288404. [PMID: 37432940 DOI: 10.1371/journal.pone.0288404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 06/26/2023] [Indexed: 07/13/2023] Open
Abstract
Differences in gene expression within tissues can lead to differences in tissue function. Understanding the transcriptome of a species helps elucidate the molecular mechanisms underlying phenotypic divergence. According to the presence or absence of a reference genome of for a studied species, transcriptome analyses can be divided into reference‑based and reference‑free methods, respectively. Presently, comparisons of complete transcriptome analysis results between those two methods are still rare. In this study, we compared the cochlear transcriptome analysis results of greater horseshoe bats (Rhinolophus ferrumequinum) from three lineages in China with different acoustic phenotypes using reference‑based and reference‑free methods to explore their differences in subsequent analysis. The results gained by reference-based results had lower false-positive rates and were more accurate because differentially expressed genes among the three populations obtained by this method had greater reliability and a higher annotation rate. Some phenotype-related enrichment terms, including those related to inorganic molecules and proton transmembrane channels, were also obtained only by the reference-based method. However, the reference‑based method might have the limitation of incomplete information acquisition. Thus, we believe that a combination of reference‑free and reference‑based methods is ideal for transcriptome analyses. The results of our study provided a reference for the selection of transcriptome analysis methods in the future.
Collapse
Affiliation(s)
- Xiaoxiao Shi
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, Jilin, China
| | - Jun Li
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, Jilin, China
| | - Tong Liu
- Department of Life Science, Jilin Agricultural University, Changchun, Jilin, China
| | - Hanbo Zhao
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural, Shenzhen, China
| | - Haixia Leng
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, Jilin, China
| | - Keping Sun
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, Jilin, China
- Key Laboratory of Vegetation Ecology, Ministry of Education, Changchun, Jilin, China
| | - Jiang Feng
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, Jilin, China
- Department of Life Science, Jilin Agricultural University, Changchun, Jilin, China
| |
Collapse
|
6
|
Deng X, Hu Z. Hearing Recovery Induced by DNA Demethylation in a Chemically Deafened Adult Mouse Model. Front Cell Neurosci 2022; 16:792089. [PMID: 35250483 PMCID: PMC8891629 DOI: 10.3389/fncel.2022.792089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 01/04/2022] [Indexed: 11/13/2022] Open
Abstract
Functional hair cell regeneration in the adult mammalian inner ear remains challenging. This study aimed to study the function of new hair cells induced by a DNA demethylating agent 5-azacytidine. Adult mice were deafened chemically, followed by injection of 5-azacytidine or vehicle into the inner ear. Functionality of regenerated hair cells was evaluated by expression of hair cell proteins, auditory brainstem response (ABR), and distortion-product otoacoustic emission (DPOAE) tests for 6 weeks. In the vehicle-treated group, no cells expressed the hair cell-specific protein myosin VIIa in the cochlea, whereas numerous myosin VIIa-expressing cells were found in the 5-azacytidine-treated cochlea, suggesting the regeneration of auditory hair cells. Moreover, regenerated hair cells were co-labeled with functional proteins espin and prestin. Expression of ribbon synapse proteins suggested synapse formation between new hair cells and neurons. In hearing tests, progressive improvements in ABR [5–30 dB sound pressure level (SPL)] and DPOAE (5–20 dB) thresholds were observed in 5-azacytidine-treated mice. In vehicle-treated mice, there were <5 dB threshold changes in hearing tests. This study demonstrated the ability of 5-azacytidine to promote the functional regeneration of auditory hair cells in a mature mouse model via DNA demethylation, which may provide insights into hearing regeneration using an epigenetic approach.
Collapse
Affiliation(s)
- Xin Deng
- Department of Otolaryngology-Head and Neck Surgery (HNS), Wayne State University School of Medicine, Detroit, MI, United States
| | - Zhengqing Hu
- Department of Otolaryngology-Head and Neck Surgery (HNS), Wayne State University School of Medicine, Detroit, MI, United States
- John D. Dingell VA Medical Center, Detroit, MI, United States
- *Correspondence: Zhengqing Hu,
| |
Collapse
|
7
|
Dutta P, Bharti P, Kumar J, Maiti S. Role of actin cytoskeleton in the organization and function of ionotropic glutamate receptors. Curr Res Struct Biol 2021; 3:277-289. [PMID: 34766008 PMCID: PMC8569634 DOI: 10.1016/j.crstbi.2021.10.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 09/04/2021] [Accepted: 10/09/2021] [Indexed: 12/22/2022] Open
Abstract
Neural networks with precise connection are compulsory for learning and memory. Various cellular events occur during the genesis of dendritic spines to their maturation, synapse formation, stabilization of the synapse, and proper signal transmission. The cortical actin cytoskeleton and its multiple regulatory proteins are crucial for the above cellular events. The different types of ionotropic glutamate receptors (iGluRs) present on the postsynaptic density (PSD) are also essential for learning and memory. Interaction of the iGluRs in association of their auxiliary proteins with actin cytoskeleton regulated by actin-binding proteins (ABPs) are required for precise long-term potentiation (LTP) and long-term depression (LTD). There has been a quest to understand the mechanistic detail of synapse function involving these receptors with dynamic actin cytoskeleton. A major, emerging area of investigation is the relationship between ABPs and iGluRs in synapse development. In this review we have summarized the current understanding of iGluRs functioning with respect to the actin cytoskeleton, scaffolding proteins, and their regulators. The AMPA, NMDA, Delta and Kainate receptors need the stable underlying actin cytoskeleton to anchor through synaptic proteins for precise synapse formation. The different types of ABPs present in neurons play a critical role in dynamizing/stabilizing the actin cytoskeleton needed for iGluRs function.
Collapse
Affiliation(s)
- Priyanka Dutta
- National Centre for Cell Science, Pune, Maharashtra, 411007, India
| | - Pratibha Bharti
- National Centre for Cell Science, Pune, Maharashtra, 411007, India
| | - Janesh Kumar
- National Centre for Cell Science, Pune, Maharashtra, 411007, India
| | - Sankar Maiti
- Indian Institute of Science Education and Research, Kolkata, 741246, India
| |
Collapse
|
8
|
Sex Differences in the Triad of Acquired Sensorineural Hearing Loss. Int J Mol Sci 2021; 22:ijms22158111. [PMID: 34360877 PMCID: PMC8348369 DOI: 10.3390/ijms22158111] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/17/2021] [Accepted: 07/26/2021] [Indexed: 12/20/2022] Open
Abstract
The triad of noise-generated, drug-induced, and age-related hearing loss is the major cause of acquired sensorineural hearing loss (ASNHL) in modern society. Although these three forms of hearing loss display similar underlying mechanisms, detailed studies have revealed the presence of sex differences in the auditory system both in human and animal models of ASNHL. However, the sexual dimorphism of hearing varies among noise-induced hearing loss (NIHL), ototoxicity, and age-related hearing loss (ARHL). Importantly, estrogen may play an essential role in modulating the pathophysiological mechanisms in the cochlea and several reports have shown that the effects of hormone replacement therapy on hearing loss are complex. This review will summarize the clinical features of sex differences in ASNHL, compare the animal investigations of cochlear sexual dimorphism in response to the three insults, and address how estrogen affects the auditory organ at molecular levels.
Collapse
|
9
|
Frisina RD, Bazard P, Bauer M, Pineros J, Zhu X, Ding B. Translational implications of the interactions between hormones and age-related hearing loss. Hear Res 2020; 402:108093. [PMID: 33097316 DOI: 10.1016/j.heares.2020.108093] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/05/2020] [Accepted: 10/12/2020] [Indexed: 11/30/2022]
Abstract
Provocative research has revealed both positive and negative effects of hormones on hearing as we age; with in some cases, mis-regulation of hormonal levels in instances of medical comorbidities linked to aging, lying at the heart of the problem. Animal model studies have discovered that hormonal fluctuations can sharpen hearing for improved communication and processing of mating calls during reproductive seasons. Sex hormones sometimes have positive effects on auditory processing, as is often the case with estrogen, whereas combinations of estrogen and progesterone, and testosterone, can have negative effects on hearing abilities, particularly in aging subjects. Too much or too little of some hormones can be detrimental, as is the case for aldosterone and thyroid hormones, which generally decline in older individuals. Too little insulin, as in Type 1 diabetics, or poor regulation of insulin, as in Type 2 diabetics, is also harmful to hearing in our aged population. In terms of clinical translational possibilities, hormone therapies can be problematic due to systemic side effects, as has happened for estrogen/progestin combination hormone replacement therapy (HRT) in older women, where the HRT induces a hearing loss. As hormone therapy approaches are further developed, it may be possible to lower needed doses of hormones by combining them with supplements, such as antioxidants. Another option will be to take advantage of emerging technologies for local drug delivery to the inner ear, including biodegradeable, sustained-release hydrogels and micro-pumps which can be implanted in the middle ear near the round window. In closing, exciting research completed to date, summarized in the present report bodes well for emerging biomedical therapies to prevent or treat age-related hearing loss utilizing hormonal strategies.
Collapse
Affiliation(s)
- R D Frisina
- Dept. Medical Engineering, Global Center for Hearing & Speech Research, University of South Florida, Tampa FL, USA; Dept. Communication Sciences & Disorders, Global Center for Hearing & Speech Research, University of South Florida, Tampa FL, USA.
| | - P Bazard
- Dept. Medical Engineering, Global Center for Hearing & Speech Research, University of South Florida, Tampa FL, USA
| | - M Bauer
- Dept. Medical Engineering, Global Center for Hearing & Speech Research, University of South Florida, Tampa FL, USA
| | - J Pineros
- Dept. Medical Engineering, Global Center for Hearing & Speech Research, University of South Florida, Tampa FL, USA
| | - X Zhu
- Dept. Medical Engineering, Global Center for Hearing & Speech Research, University of South Florida, Tampa FL, USA
| | - B Ding
- Dept. Medical Engineering, Global Center for Hearing & Speech Research, University of South Florida, Tampa FL, USA
| |
Collapse
|
10
|
Sun H, Chen W, Wang J, Zhang L, Rossiter SJ, Mao X. Echolocation call frequency variation in horseshoe bats: molecular basis revealed by comparative transcriptomics. Proc Biol Sci 2020; 287:20200875. [PMID: 32900318 DOI: 10.1098/rspb.2020.0875] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Recently diverged taxa with contrasting phenotypes offer opportunities for unravelling the genetic basis of phenotypic variation in nature. Horseshoe bats are a speciose group that exhibit a derived form of high-duty cycle echolocation in which the inner ear is finely tuned to echoes of the narrowband call frequency. Here, by focusing on three recently diverged subspecies of the intermediate horseshoe bat (Rhinolophus affinis) that display divergent echolocation call frequencies, we aim to identify candidate loci putatively involved in hearing frequency variation. We used de novo transcriptome sequencing of two mainland taxa (himalayanus and macrurus) and one island taxon (hainanus) to compare expression profiles of thousands of genes. By comparing taxa with divergent call frequencies (around 15 kHz difference), we identified 252 differentially expressed genes, of which six have been shown to be involved in hearing or deafness in human/mouse. To obtain further validation of these results, we applied quantitative reverse transcription-PCR to the candidate gene FBXL15 and found a broad association between the level of expression and call frequency across taxa. The genes identified here represent strong candidate loci associated with hearing frequency variation in bats.
Collapse
Affiliation(s)
- Haijian Sun
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200062, People's Republic of China
| | - Wenli Chen
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200062, People's Republic of China
| | - Jiaying Wang
- Institute of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, People's Republic of China
| | - Libiao Zhang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou 510260, People's Republic of China
| | - Stephen J Rossiter
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK
| | - Xiuguang Mao
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200062, People's Republic of China.,Institute of Eco-Chongming (IEC), East China Normal University, Shanghai 200062, People's Republic of China
| |
Collapse
|
11
|
Chakraborty A, Banerjee S, Mukherjee B, Poddar MK. Calorie restriction improves aging-induced impairment of cognitive function in relation to deregulation of corticosterone status and brain regional GABA system. Mech Ageing Dev 2020; 189:111248. [PMID: 32339520 DOI: 10.1016/j.mad.2020.111248] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 03/16/2020] [Accepted: 04/05/2020] [Indexed: 12/21/2022]
Abstract
Aging is known to affect adversely the corticosterone status and the brain function including cognition. Calorie restricted (CR) diet has been found to improve brain aging. The objective of the present investigation is to study the effect of short-term CR diet without any food deprivation on aging-induced impairment of cognitive function in relation to the corticosterone status and the brain regional GABA system. The result showed that aging-induced deregulation of the brain regional GABA system, increase in plasma and adrenal corticosterone levels and cognitive impairment were attenuated with short-term CR diet supplementation for consecutive 1 and 2 months to the aged (18 and 24 months) rats. But in young rats (4 months) consumption of the same CR diet under similar conditions reversibly affected those above-mentioned parameters. These results, thus suggest that (a) aging down-regulates brain regional GABA system with an up-regulation of corticosterone status and impairment of cognitive function, (b) CR diet consumption improves this aging-induced deregulation of brain regional GABA system, corticosterone status, and cognitive function, (c) these attenuating effects of CR diet are greater with a longer period of consumption but (d) CR diet consumption is harmful to young rats as observed in those parameters.
Collapse
Affiliation(s)
- Apala Chakraborty
- Department of Pharmaceutical Technology, Jadavpur University, 188, Raja S.C. Mallick Road, Kolkata, 700032, India
| | - Soumyabrata Banerjee
- Department of Pharmaceutical Technology, Jadavpur University, 188, Raja S.C. Mallick Road, Kolkata, 700032, India
| | - Biswajit Mukherjee
- Department of Pharmaceutical Technology, Jadavpur University, 188, Raja S.C. Mallick Road, Kolkata, 700032, India
| | - Mrinal Kanti Poddar
- Department of Pharmaceutical Technology, Jadavpur University, 188, Raja S.C. Mallick Road, Kolkata, 700032, India.
| |
Collapse
|
12
|
Spagnoli C, Pavlidis E, Salerno GG, Koskinen L, Kääriäinen H, Frattini D, Koskenvuo JW, Fusco C. Prolonged survival in a patient with a novel pyrroline‐5‐carboxylase reductase 2 genetic variant. Eur J Neurol 2019; 26:e45-e46. [DOI: 10.1111/ene.13817] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 10/03/2018] [Indexed: 11/30/2022]
Affiliation(s)
- C. Spagnoli
- Child Neurology Unit Azienda USL‐IRCCS di Reggio Emilia Reggio Emilia Italy
| | - E. Pavlidis
- Child Neurology Unit Azienda USL‐IRCCS di Reggio Emilia Reggio Emilia Italy
| | - G. G. Salerno
- Child Neurology Unit Azienda USL‐IRCCS di Reggio Emilia Reggio Emilia Italy
| | | | - H. Kääriäinen
- National Institute for Health and Welfare Helsinki Finland
| | - D. Frattini
- Child Neurology Unit Azienda USL‐IRCCS di Reggio Emilia Reggio Emilia Italy
| | | | - C. Fusco
- Child Neurology Unit Azienda USL‐IRCCS di Reggio Emilia Reggio Emilia Italy
| |
Collapse
|
13
|
White-Schwoch T, Nicol T, Warrier CM, Abrams DA, Kraus N. Individual Differences in Human Auditory Processing: Insights From Single-Trial Auditory Midbrain Activity in an Animal Model. Cereb Cortex 2018; 27:5095-5115. [PMID: 28334187 DOI: 10.1093/cercor/bhw293] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 08/29/2016] [Indexed: 11/13/2022] Open
Abstract
Auditory-evoked potentials are classically defined as the summations of synchronous firing along the auditory neuraxis. Converging evidence supports a model whereby timing jitter in neural coding compromises listening and causes variable scalp-recorded potentials. Yet the intrinsic noise of human scalp recordings precludes a full understanding of the biological origins of individual differences in listening skills. To delineate the mechanisms contributing to these phenomena, in vivo extracellular activity was recorded from inferior colliculus in guinea pigs to speech in quiet and noise. Here we show that trial-by-trial timing jitter is a mechanism contributing to auditory response variability. Identical variability patterns were observed in scalp recordings in human children, implicating jittered timing as a factor underlying reduced coding of dynamic speech features and speech in noise. Moreover, intertrial variability in human listeners is tied to language development. Together, these findings suggest that variable timing in inferior colliculus blurs the neural coding of speech in noise, and propose a consequence of this timing jitter for human behavior. These results hint both at the mechanisms underlying speech processing in general, and at what may go awry in individuals with listening difficulties.
Collapse
Affiliation(s)
- Travis White-Schwoch
- Auditory Neuroscience Laboratory (www.brainvolts.northwestern.edu) & Department of Communication Sciences, Northwestern University, Evanston, IL, 60208, USA
| | - Trent Nicol
- Auditory Neuroscience Laboratory (www.brainvolts.northwestern.edu) & Department of Communication Sciences, Northwestern University, Evanston, IL, 60208, USA
| | - Catherine M Warrier
- Auditory Neuroscience Laboratory (www.brainvolts.northwestern.edu) & Department of Communication Sciences, Northwestern University, Evanston, IL, 60208, USA
| | - Daniel A Abrams
- Auditory Neuroscience Laboratory (www.brainvolts.northwestern.edu) & Department of Communication Sciences, Northwestern University, Evanston, IL, 60208, USA.,Stanford Cognitive & Systems Neuroscience Laboratory, Stanford University, Palo Alto, CA, 94304, USA
| | - Nina Kraus
- Auditory Neuroscience Laboratory (www.brainvolts.northwestern.edu) & Department of Communication Sciences, Northwestern University, Evanston, IL, 60208, USA.,Department of Neurobiology & Physiology, Northwestern University, Evanston, IL, 60208, USA.,Department of Otolaryngology, Northwestern University, Chicago, IL, 60611, USA
| |
Collapse
|
14
|
Godfrey DA, Chen K, O'Toole TR, Mustapha AI. Amino acid and acetylcholine chemistry in the central auditory system of young, middle-aged and old rats. Hear Res 2017; 350:173-188. [DOI: 10.1016/j.heares.2017.05.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 04/24/2017] [Accepted: 05/03/2017] [Indexed: 02/04/2023]
|
15
|
Zaki MS, Bhat G, Sultan T, Issa M, Jung HJ, Dikoglu E, Selim L, G Mahmoud I, Abdel-Hamid MS, Abdel-Salam G, Marin-Valencia I, Gleeson JG. PYCR2 Mutations cause a lethal syndrome of microcephaly and failure to thrive. Ann Neurol 2016; 80:59-70. [PMID: 27130255 DOI: 10.1002/ana.24678] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 03/18/2016] [Accepted: 04/17/2016] [Indexed: 01/09/2023]
Abstract
OBJECTIVE A study was undertaken to characterize the clinical features of the newly described hypomyelinating leukodystrophy type 10 with microcephaly. This is an autosomal recessive disorder mapped to chromosome 1q42.12 due to mutations in the PYCR2 gene, encoding an enzyme involved in proline synthesis in mitochondria. METHODS From several international clinics, 11 consanguineous families were identified with PYCR2 mutations by whole exome or targeted sequencing, with detailed clinical and radiological phenotyping. Selective mutations from patients were tested for effect on protein function. RESULTS The characteristic clinical presentation of patients with PYCR2 mutations included failure to thrive, microcephaly, craniofacial dysmorphism, progressive psychomotor disability, hyperkinetic movements, and axial hypotonia with variable appendicular spasticity. Patients did not survive beyond the first decade of life. Brain magnetic resonance imaging showed global brain atrophy and white matter T2 hyperintensities. Routine serum metabolic profiles were unremarkable. Both nonsense and missense mutations were identified, which impaired protein multimerization. INTERPRETATION PYCR2-related syndrome represents a clinically recognizable condition in which PYCR2 mutations lead to protein dysfunction, not detectable on routine biochemical assessments. Mutations predict a poor outcome, probably as a result of impaired mitochondrial function. Ann Neurol 2016;80:59-70.
Collapse
Affiliation(s)
- Maha S Zaki
- Human Genetics and Genome Research Division, Clinical Genetics Department, National Research Center, Cairo, Egypt
| | - Gifty Bhat
- Laboratory for Pediatric Brain Disease, Howard Hughes Medical Institute, Rockefeller University, New York, NY
- Division of Pediatric Genetics, Children's Hospital at Montefiore, Bronx, NY
| | - Tipu Sultan
- Pediatric Neurology, Institute of Child Health, Children Hospital, Lahore, Pakistan
| | - Mahmoud Issa
- Human Genetics and Genome Research Division, Clinical Genetics Department, National Research Center, Cairo, Egypt
| | - Hea-Jin Jung
- Laboratory for Pediatric Brain Disease, Howard Hughes Medical Institute, Rockefeller University, New York, NY
| | - Esra Dikoglu
- Laboratory for Pediatric Brain Disease, Howard Hughes Medical Institute, Rockefeller University, New York, NY
| | - Laila Selim
- Cairo University Children's Hospital, Division of Neurology and Metabolic Disease, Cairo, Egypt
| | - Imam G Mahmoud
- Cairo University Children's Hospital, Division of Neurology and Metabolic Disease, Cairo, Egypt
| | - Mohamed S Abdel-Hamid
- Department of Medical Molecular Genetics, Human Genetics and Genome Research Division, National Research Center, Cairo, Egypt
| | - Ghada Abdel-Salam
- Human Genetics and Genome Research Division, Clinical Genetics Department, National Research Center, Cairo, Egypt
| | - Isaac Marin-Valencia
- Laboratory for Pediatric Brain Disease, Howard Hughes Medical Institute, Rockefeller University, New York, NY
| | - Joseph G Gleeson
- Laboratory for Pediatric Brain Disease, Howard Hughes Medical Institute, Rockefeller University, New York, NY
| |
Collapse
|
16
|
Abstract
The identification of transcriptional differences has served as an important starting point in understanding the molecular mechanisms behind biological processes and systems. The developmental biology of the inner ear, the biology of hearing and of course the pathology of deafness are all processes that warrant a molecular description if we are to improve human health. To this end, technological innovation has meant that larger scale analysis of gene transcription has been possible for a number of years now, extending our molecular analysis of genes to beyond those that are currently in vogue for a given system. In this review, some of the contributions gene profiling has made to understanding developmental, pathological and physiological processes in the inner ear are highlighted.
Collapse
Affiliation(s)
- Thomas Schimmang
- Instituto de Biología y Genética MolecularUniversidad de Valladolid y Consejo Superior de Investigaciones CientíficasValladolidSpain
| | - Mark Maconochie
- School of Biological and Chemical SciencesQueen Mary University of LondonLondonUK
| |
Collapse
|
17
|
Wong ACY, Ryan AF. Mechanisms of sensorineural cell damage, death and survival in the cochlea. Front Aging Neurosci 2015; 7:58. [PMID: 25954196 PMCID: PMC4404918 DOI: 10.3389/fnagi.2015.00058] [Citation(s) in RCA: 184] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 04/05/2015] [Indexed: 12/20/2022] Open
Abstract
The majority of acquired hearing loss, including presbycusis, is caused by irreversible damage to the sensorineural tissues of the cochlea. This article reviews the intracellular mechanisms that contribute to sensorineural damage in the cochlea, as well as the survival signaling pathways that can provide endogenous protection and tissue rescue. These data have primarily been generated in hearing loss not directly related to age. However, there is evidence that similar mechanisms operate in presbycusis. Moreover, accumulation of damage from other causes can contribute to age-related hearing loss (ARHL). Potential therapeutic interventions to balance opposing but interconnected cell damage and survival pathways, such as antioxidants, anti-apoptotics, and pro-inflammatory cytokine inhibitors, are also discussed.
Collapse
Affiliation(s)
- Ann C Y Wong
- Department of Surgery/Division of Otolaryngology, University of California, San Diego School of Medicine La Jolla, CA, USA ; Department of Physiology and Translational Neuroscience Facility, School of Medical Sciences, University of New South Wales Sydney, NSW, Australia
| | - Allen F Ryan
- Department of Surgery/Division of Otolaryngology, University of California, San Diego School of Medicine La Jolla, CA, USA ; Veterans Administration Medical Center La Jolla, CA, USA ; Department of Neurosciences, University of California, San Diego School of Medicine La Jolla, CA, USA
| |
Collapse
|
18
|
Wan PJ, Fu KY, Lü FG, Guo WC, Li GQ. A putative Δ1-pyrroline-5-carboxylate synthetase involved in the biosynthesis of proline and arginine in Leptinotarsa decemlineata. JOURNAL OF INSECT PHYSIOLOGY 2014; 71:105-113. [PMID: 25450565 DOI: 10.1016/j.jinsphys.2014.10.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 10/15/2014] [Accepted: 10/15/2014] [Indexed: 06/04/2023]
Abstract
Delta 1-pyrroline-5-carboxylate synthetase (P5CS) catalyzes the conversion of glutamate (Glu) to Glu semialdehyde (GSA). GSA spontaneously cyclizes to form P5C. P5C is then reduced to proline (Pro) or is converted to ornithine, the intermediate for arginine (Arg) biosynthesis. In the present study, a full-length Ldp5cs complementary DNA was cloned from the Colorado potato beetle Leptinotarsa decemlineata, a notorious insect defoliator of potato in most potato-growing regions of the world. Ldp5cs encodes a 792-amino-acid protein which shares high identity to homologues from other insect species. Quantitative reverse transcription polymerase chain reaction revealed that Ldp5cs was ubiquitously expressed in the eggs, first to fourth-instar larvae, wandering larvae, pupae and sexually mature adults. In the adults, Ldp5cs mRNA levels were higher in the fat body, foregut, midgut and hindgut, moderate in the ventral ganglion, lower in the thorax muscles, epidermis and Malpighian tubules. Two double-stranded RNAs (dsRNAs) (dsLdp5cs1 and dsLdp5cs2) targeting Ldp5cs were constructed and bacterially expressed. Ingestion during 3 consecutive days of dsLdp5cs1 or dsLdp5cs2 successfully silenced Ldp5cs, significantly reduced the contents of Pro and Arg in the hemolymph, decreased flight speed and shortened flight distance of the resulting adults. Furthermore, knocking down Ldp5cs significantly increased adult mortality. Thus, our results suggest that identified Ldp5cs encodes a functional P5CS enzyme that is involved in the biosynthesis of Pro and Arg in L. decemlineata.
Collapse
Affiliation(s)
- Pin-Jun Wan
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| | - Kai-Yun Fu
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| | - Feng-Gong Lü
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| | - Wen-Chao Guo
- Department of Plant Protection, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China.
| | - Guo-Qing Li
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
19
|
Dong Y, Li M, Liu P, Song H, Zhao Y, Shi J. Genes involved in immunity and apoptosis are associated with human presbycusis based on microarray analysis. Acta Otolaryngol 2014; 134:601-8. [PMID: 24552194 DOI: 10.3109/00016489.2014.880795] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
CONCLUSIONS Genes involved in immunity and apoptosis were associated with human presbycusis. CCR3 and GILZ played an important role in the pathogenesis of presbycusis, probably through regulating chemokine receptor, T-cell apoptosis, or T-cell activation pathways. OBJECTIVES To identify genes associated with human presbycusis and explore the molecular mechanism of presbycusis. METHODS Hearing function was tested by pure-tone audiometry. Microarray analysis was performed to identify presbycusis-correlated genes by Illumina Human-6 BeadChip using the peripheral blood samples of subjects. To identify biological process categories and pathways associated with presbycusis-correlated genes, bioinformatics analysis was carried out by Gene Ontology Tree Machine (GOTM) and database for annotation, visualization, and integrated discovery (DAVID). Quantitative RT-PCR (qRT-PCR) was used to validate the microarray data. RESULTS Microarray analysis identified 469 up-regulated genes and 323 down-regulated genes. Both the dominant biological processes by Gene Ontology (GO) analysis and the enriched pathways by Kyoto encyclopedia of genes and genomes (KEGG) and BIOCARTA showed that genes involved in immunity and apoptosis were associated with presbycusis. In addition, CCR3, GILZ, CXCL10, and CX3CR1 genes showed consistent difference between groups for both the gene chip and qRT-PCR data. The differences of CCR3 and GILZ between presbycusis patients and controls were statistically significant (p < 0.05).
Collapse
Affiliation(s)
- Yang Dong
- Experimental Teaching Center, Shanghai University of Traditional Chinese Medicine
| | | | | | | | | | | |
Collapse
|
20
|
Tadros SF, D'Souza M, Zhu X, Frisina RD. Gene expression changes for antioxidants pathways in the mouse cochlea: relations to age-related hearing deficits. PLoS One 2014; 9:e90279. [PMID: 24587312 PMCID: PMC3938674 DOI: 10.1371/journal.pone.0090279] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 01/28/2014] [Indexed: 12/17/2022] Open
Abstract
Age-related hearing loss - presbycusis - is the number one neurodegenerative disorder and top communication deficit of our aged population. Like many aging disorders of the nervous system, damage from free radicals linked to production of reactive oxygen and/or nitrogen species (ROS and RNS, respectively) may play key roles in disease progression. The efficacy of the antioxidant systems, e.g., glutathione and thioredoxin, is an important factor in pathophysiology of the aging nervous system. In this investigation, relations between the expression of antioxidant-related genes in the auditory portion of the inner ear - cochlea, and age-related hearing loss was explored for CBA/CaJ mice. Forty mice were classified into four groups according to age and degree of hearing loss. Cochlear mRNA samples were collected and cDNA generated. Using Affymetrix® GeneChip, the expressions of 56 antioxidant-related gene probes were analyzed to estimate the differences in gene expression between the four subject groups. The expression of Glutathione peroxidase 6, Gpx6; Thioredoxin reductase 1, Txnrd1; Isocitrate dehydrogenase 1, Idh1; and Heat shock protein 1, Hspb1; were significantly different, or showed large fold-change differences between subject groups. The Gpx6, Txnrd1 and Hspb1 gene expression changes were validated using qPCR. The Gpx6 gene was upregulated while the Txnrd1 gene was downregulated with age/hearing loss. The Hspb1 gene was found to be downregulated in middle-aged animals as well as those with mild presbycusis, whereas it was upregulated in those with severe presbycusis. These results facilitate development of future interventions to predict, prevent or slow down the progression of presbycusis.
Collapse
Affiliation(s)
- Sherif F. Tadros
- International Center for Hearing & Speech Research, National Technical Institute for the Deaf, Rochester Institute of Technology, Rochester, New York, United States of America
- Otolaryngology Dept., University of Rochester Medical School, Rochester, New York, United States of America
| | - Mary D'Souza
- International Center for Hearing & Speech Research, National Technical Institute for the Deaf, Rochester Institute of Technology, Rochester, New York, United States of America
- Otolaryngology Dept., University of Rochester Medical School, Rochester, New York, United States of America
| | - Xiaoxia Zhu
- International Center for Hearing & Speech Research, National Technical Institute for the Deaf, Rochester Institute of Technology, Rochester, New York, United States of America
- Otolaryngology Dept., University of Rochester Medical School, Rochester, New York, United States of America
- Depts. Chemical & Biomedical Engineering, Communication Sciences & Disorders, and Global Center for Hearing & Speech Research, University of South Florida, Tampa, Florida, United States of America
| | - Robert D. Frisina
- International Center for Hearing & Speech Research, National Technical Institute for the Deaf, Rochester Institute of Technology, Rochester, New York, United States of America
- Otolaryngology Dept., University of Rochester Medical School, Rochester, New York, United States of America
- Depts. Chemical & Biomedical Engineering, Communication Sciences & Disorders, and Global Center for Hearing & Speech Research, University of South Florida, Tampa, Florida, United States of America
| |
Collapse
|
21
|
Tang X, Zhu X, Ding B, Walton JP, Frisina RD, Su J. Age-related hearing loss: GABA, nicotinic acetylcholine and NMDA receptor expression changes in spiral ganglion neurons of the mouse. Neuroscience 2013; 259:184-93. [PMID: 24316061 DOI: 10.1016/j.neuroscience.2013.11.058] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 11/13/2013] [Accepted: 11/26/2013] [Indexed: 11/26/2022]
Abstract
Age-related hearing loss - presbycusis - is the number one communication disorder and most prevalent neurodegenerative condition of our aged population. Although speech understanding in background noise is quite difficult for those with presbycusis, there are currently no biomedical treatments to prevent, delay or reverse this condition. A better understanding of the cochlear mechanisms underlying presbycusis will help lead to future treatments. Objectives of the present study were to investigate GABAA receptor subunit α1, nicotinic acetylcholine (nACh) receptor subunit β2, and N-methyl-d-aspartate (NMDA) receptor subunit NR1 mRNA and protein expression changes in spiral ganglion neurons (SGN) of the CBA/CaJ mouse cochlea, that occur in age-related hearing loss, utilizing quantitative immunohistochemistry and semi-quantitative reverse transcription polymerase chain reaction (RT-PCR) techniques. We found that auditory brainstem response (ABR) thresholds shifted over 40dB from 3 to 48kHz in old mice compared to young adults. DPOAE thresholds also shifted over 40dB from 6 to 49kHz in old mice, and their amplitudes were significantly decreased or absent in the same frequency range. SGN density decreased with age in basal, middle and apical turns, and SGN density of the basal turn declined the most. A positive correlation was observed between SGN density and ABR wave 1amplitude. mRNA and protein expression of GABAAR α1 and AChR β2 decreased with age in SGNs in the old mouse cochlea. mRNA and protein expression of NMDAR NR1 increased with age in SGNs of the old mice. These findings demonstrate that there are functionally-relevant age-related changes of GABAAR, nAChR, NMDAR expression in CBA mouse SGNs reflecting their degeneration, which may be related to functional changes in cochlear synaptic transmission with age, suggesting biological mechanisms for peripheral age-related hearing loss.
Collapse
Affiliation(s)
- X Tang
- Department of Otolaryngology Head and Neck Surgery, First Affiliated Hospital, Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi, 530021, China; Department Chemical and Biomedical Engineering, University of South Florida, Tampa, FL 33620, United States; Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL 33620, United States.
| | - X Zhu
- Department Chemical and Biomedical Engineering, University of South Florida, Tampa, FL 33620, United States; Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL 33620, United States.
| | - B Ding
- Department Communication Sciences & Disorders, University of South Florida, Tampa, FL 33620, United States; Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL 33620, United States.
| | - J P Walton
- Department Chemical and Biomedical Engineering, University of South Florida, Tampa, FL 33620, United States; Department Communication Sciences & Disorders, University of South Florida, Tampa, FL 33620, United States; Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL 33620, United States.
| | - R D Frisina
- Department Chemical and Biomedical Engineering, University of South Florida, Tampa, FL 33620, United States; Department Communication Sciences & Disorders, University of South Florida, Tampa, FL 33620, United States; Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL 33620, United States.
| | - J Su
- Department of Otolaryngology Head and Neck Surgery, First Affiliated Hospital, Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi, 530021, China.
| |
Collapse
|
22
|
Topographic and quantitative evaluation of gentamicin-induced damage to peripheral innervation of mouse cochleae. Neurotoxicology 2013; 40:86-96. [PMID: 24308912 DOI: 10.1016/j.neuro.2013.11.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 11/11/2013] [Accepted: 11/11/2013] [Indexed: 11/24/2022]
Abstract
Ototoxicity induced by aminoglycoside antibiotics appears to occur both in hair cells (HCs) and the cochlear nerves that innervate them. Although HC loss can be easily quantified, neuronal lesions are difficult to quantify because two types of afferent dendrites and two types of efferent axons are tangled beneath the hair cells. In the present study, ototoxicity was induced by gentamicin in combination with the diuretic agent furosemide. Neuronal lesions were quantified in cochlear whole-mount preparations combined with microsections across the habenular perforate (HP) openings to achieve a clear picture of the topographic relationship between neuronal damage and HC loss. Multiple immunostaining methods were employed to differentiate the two types of afferent dendrites and two types of efferent axons. The results show that co-administration of gentamicin and furosemide resulted in a typical dynamic pattern of HC loss that spread from the basal turn to the outer hair cells to the apex and inner hair cells, depending on the dose and survival time after drug administration. Lesions of the innervation appeared to occur at two stages. At the early stage (2-4 days), the loss of labeling of the two types of afferent dendrites was more obvious than the loss of labeled efferent axons. At the late stage (2-4 weeks), the loss of labeled efferent axons was more rapid. In the high-dose gentamicin group, the loss of outer HCs was congruent with afferent dendrite loss at the early stage and efferent axon loss at the late stage. In the low-dose gentamicin group, the loss of labeling for cochlear innervation was more severe and widespread. Thus, we hypothesize that the gentamicin-induced damage to cochlear innervation occurs independently of hair cell loss.
Collapse
|
23
|
Ruan Q, Ma C, Zhang R, Yu Z. Current status of auditory aging and anti-aging research. Geriatr Gerontol Int 2013; 14:40-53. [PMID: 23992133 DOI: 10.1111/ggi.12124] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2013] [Indexed: 01/08/2023]
Affiliation(s)
- Qingwei Ruan
- Central Lab; Shanghai Institute of Geriatrics and Gerontology; Huadong Hospital, Shanghai Medical College, Fudan University; Shanghai China
| | - Cheng Ma
- Central Lab; Shanghai Institute of Geriatrics and Gerontology; Huadong Hospital, Shanghai Medical College, Fudan University; Shanghai China
| | - Ruxin Zhang
- Central Lab; Shanghai Institute of Geriatrics and Gerontology; Huadong Hospital, Shanghai Medical College, Fudan University; Shanghai China
| | - Zhuowei Yu
- Central Lab; Shanghai Institute of Geriatrics and Gerontology; Huadong Hospital, Shanghai Medical College, Fudan University; Shanghai China
| |
Collapse
|
24
|
Parthasarathy A, Bartlett E. Two-channel recording of auditory-evoked potentials to detect age-related deficits in temporal processing. Hear Res 2012; 289:52-62. [PMID: 22560961 PMCID: PMC3371184 DOI: 10.1016/j.heares.2012.04.014] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Revised: 04/10/2012] [Accepted: 04/17/2012] [Indexed: 10/28/2022]
Abstract
Auditory brainstem responses (ABRs), and envelope and frequency following responses (EFRs and FFRs) are widely used to study aberrant auditory processing in conditions such as aging. We have previously reported age-related deficits in auditory processing for rapid amplitude modulation (AM) frequencies using EFRs recorded from a single channel. However, sensitive testing of EFRs along a wide range of modulation frequencies is required to gain a more complete understanding of the auditory processing deficits. In this study, ABRs and EFRs were recorded simultaneously from two electrode configurations in young and old Fischer-344 rats, a common auditory aging model. Analysis shows that the two channels respond most sensitively to complementary AM frequencies. Channel 1, recorded from Fz to mastoid, responds better to faster AM frequencies in the 100-700 Hz range of frequencies, while Channel 2, recorded from the inter-aural line to the mastoid, responds better to slower AM frequencies in the 16-100 Hz range. Simultaneous recording of Channels 1 and 2 using AM stimuli with varying sound levels and modulation depths show that age-related deficits in temporal processing are not present at slower AM frequencies but only at more rapid ones, which would not have been apparent recording from either channel alone. Comparison of EFRs between un-anesthetized and isoflurane-anesthetized recordings in young animals, as well as comparison with previously published ABR waveforms, suggests that the generators of Channel 1 may emphasize more caudal brainstem structures while those of Channel 2 may emphasize more rostral auditory nuclei including the inferior colliculus and the forebrain, with the boundary of separation potentially along the cochlear nucleus/superior olivary complex. Simultaneous two-channel recording of EFRs help to give a more complete understanding of the properties of auditory temporal processing over a wide range of modulation frequencies which is useful in understanding neural representations of sound stimuli in normal, developmental or pathological conditions.
Collapse
Affiliation(s)
| | - Edward Bartlett
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
25
|
Osumi Y, Shibata SB, Kanda S, Yagi M, Ooka H, Shimano T, Asako M, Kawamoto K, Kuriyama H, Inoue T, Nishiyama T, Yamashita T, Tomoda K. Downregulation of N-methyl-D-aspartate receptor ζ1 subunit (GluN1) gene in inferior colliculus with aging. Brain Res 2012; 1454:23-32. [PMID: 22483791 DOI: 10.1016/j.brainres.2012.03.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Revised: 02/17/2012] [Accepted: 03/06/2012] [Indexed: 11/15/2022]
Abstract
Presbycusis is the impairment of auditory function associated with aging, which stems from peripheral cochlear lesions and degeneration of the central auditory process. The effect of age-induced peripheral hearing loss on the central auditory process is not fully understood. C57Bl/6 (C57) mice present accelerated peripheral hearing loss, which is well developed by middle-age and mimics the human presbycusis pattern. The aim of this study was to elucidate the molecular effects of peripheral hearing loss in the inferior colliculus (IC) with age between young and middle-aged C57 mice using cDNA microarray. Glutamate receptor ionotropic NMDA ζ1 (GluN1) exhibited the greatest decrease in the middle-aged group as determined using cDNA microarray and by further assessment using real-time PCR (qPCR). Histological assessment with in situ hybridization of GluN1 showed significantly decreased expression in all IC subdivisions of the middle-aged group. GluN1 is a receptor for excitatory neurotransmission, and significant downregulation of this gene may be subsequent to the decline of afferent input from the cochlea in aging C57 mice. Consequently, using the combination of microarray, qPCR, and in situ hybridization, we showed that the decline of GluN1 in the IC of aging animals might have a key role in the pathogenesis of presbycusis.
Collapse
Affiliation(s)
- Yasunori Osumi
- Department of Otolaryngology, Kansai Medical University, Takii Hospital, 10-15 Fumizono-cho, Moriguchi, Osaka 570-8506, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Gardner SM, Adedokun OA, Weaver GC, Bartlett EL. Human Brains Engaged in Rat Brains: Student-driven Neuroanatomy Research in an Introductory Biology Lab Course. JOURNAL OF UNDERGRADUATE NEUROSCIENCE EDUCATION : JUNE : A PUBLICATION OF FUN, FACULTY FOR UNDERGRADUATE NEUROSCIENCE 2011; 10:A24-36. [PMID: 23626490 PMCID: PMC3598182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 06/20/2011] [Accepted: 07/06/2011] [Indexed: 11/23/2022]
Abstract
Inquiry-based laboratory instruction has been shown to actively engage students in the content and skills being taught. These courses are further intended to teach students not only what is known, but also the process by which investigators come to know it. We sought to take this approach one step further and incorporate novel research questions into an inquiry-based laboratory model early in the undergraduate course of study. In this research-based introductory laboratory course, first-year students acquired basic lab skills not just for their own sake, but rather within the context of a research question of a member of the faculty. Student projects investigated potential neuroanatomical changes in animal models of dyslexia and aging and included measurements of neuron numbers and levels and distribution of neuronal proteins. Students played an active role in designing and implementing an experimental plan, explored data analysis techniques, and reflected on the results that they obtained in scholarly forms such as research papers and a departmental poster session. Student feedback on this approach has been extremely positive, and the data collected were research quality preliminary data that are being actively pursued for further study. Based on our encouraging experiences, we conclude that designing an introductory course around novel research, including some assessments modeled after scholarly practices, provides motivation and excitement for the students, instills good scientific habits, and can potentially benefit departmental research.
Collapse
Affiliation(s)
- Stephanie M. Gardner
- Department of Biological Sciences,Address correspondence to: Dr. Stephanie M. Gardner, Department of Biological Sciences, 915 W. State Street, Purdue University, West Lafayette, IN 47907.
| | | | | | - Edward L. Bartlett
- Department of Biological Sciences,Department of Biomedical Engineering, Purdue University, West Lafayette, IN 47907
| |
Collapse
|
27
|
Frisina RD, Zhu X. Auditory sensitivity and the outer hair cell system in the CBA mouse model of age-related hearing loss. ACTA ACUST UNITED AC 2010; 2:9-16. [PMID: 21866215 DOI: 10.2147/oaap.s7202] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Age-related hearing loss is a highly prevalent sensory disorder, from both the clinical and animal model perspectives. Understanding of the neurophysiologic, structural, and molecular biologic bases of age-related hearing loss will facilitate development of biomedical therapeutic interventions to prevent, slow, or reverse its progression. Thus, increased understanding of relationships between aging of the cochlear (auditory portion of the inner ear) hair cell system and decline in overall hearing ability is necessary. The goal of the present investigation was to test the hypothesis that there would be correlations between physiologic measures of outer hair cell function (otoacoustic emission levels) and hearing sensitivity (auditory brainstem response thresholds), starting in middle age. For the CBA mouse, a useful animal model of age-related hearing loss, it was found that correlations between these two hearing measures occurred only for high sound frequencies in middle age. However, in old age, a correlation was observed across the entire mouse range of hearing. These findings have implications for improved early detection of progression of age-related hearing loss in middle-aged mammals, including mice and humans, and distinguishing peripheral etiologies from central auditory system decline.
Collapse
Affiliation(s)
- Robert D Frisina
- Otolaryngology, Biomedical Engineering, Neurobiology, and Anatomy Departments, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | | |
Collapse
|
28
|
Pérez-Arellano I, Carmona-Alvarez F, Martínez AI, Rodríguez-Díaz J, Cervera J. Pyrroline-5-carboxylate synthase and proline biosynthesis: from osmotolerance to rare metabolic disease. Protein Sci 2010; 19:372-82. [PMID: 20091669 DOI: 10.1002/pro.340] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Pyrroline-5-carboxylate synthase (P5CS) is a bifunctional enzyme that exhibits glutamate kinase (GK) and gamma-glutamyl phosphate reductase (GPR) activities. The enzyme is highly relevant in humans because it belongs to a combined route for the interconversion of glutamate, ornithine and proline. The deficiency of P5CS activity in humans is associated with a rare, inherited metabolic disease. It is well established that some bacteria and plants accumulate proline in response to osmotic stress. The alignment of P5CSs from different species and analysis of the solved structures of GK and GPR reveal high sequence and structural conservation. The information acquired from different mutant enzymes with increased osmotolerant properties, together with the position of the insertion found in the longer human isoform, permit the delimitation of the regulatory site of GK and P5CS and the proposal of a model of P5CS architecture. Additionally, the GK moiety of the human enzyme has been modeled and the known clinical mutations and polymorphisms have been mapped.
Collapse
Affiliation(s)
- Isabel Pérez-Arellano
- Molecular Recognition Laboratory, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | | | | | | | | |
Collapse
|
29
|
Cell Biology and Physiology of the Aging Central Auditory Pathway. THE AGING AUDITORY SYSTEM 2010. [DOI: 10.1007/978-1-4419-0993-0_3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
30
|
Apoptosis-related genes change their expression with age and hearing loss in the mouse cochlea. Apoptosis 2008; 13:1303-21. [PMID: 18839313 DOI: 10.1007/s10495-008-0266-x] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
To understand possible causative roles of apoptosis gene regulation in age-related hearing loss (presbycusis), apoptotic gene expression patterns in the CBA mouse cochlea of four different age and hearing loss groups were compared, using GeneChip and real-time (qPCR) microarrays. GeneChip transcriptional expression patterns of 318 apoptosis-related genes were analyzed. Thirty eight probes (35 genes) showed significant differences in expression. The significant gene families include Caspases, B-cell leukemia/lymphoma2 family, P53, Calpains, Mitogen activated protein kinase family, Jun oncogene, Nuclear factor of kappa light chain gene enhancer in B-cells inhibitor-related and tumor necrosis factor-related genes. The GeneChip results of 31 genes were validated using the new TaqMan Low Density Array (TLDA). Eight genes showed highly correlated results with the GeneChip data. These genes are: activating transcription factor3, B-cell leukemia/lymphoma2, Bcl2-like1, caspase4 apoptosis-related cysteine protease 4, Calpain2, dual specificity phosphatase9, tumor necrosis factor receptor superfamily member12a, and Tumor necrosis factor superfamily member13b, suggesting they may play critical roles in inner ear aging.
Collapse
|
31
|
Christensen N, D'Souza M, Zhu X, Frisina RD. Age-related hearing loss: aquaporin 4 gene expression changes in the mouse cochlea and auditory midbrain. Brain Res 2008; 1253:27-34. [PMID: 19070604 DOI: 10.1016/j.brainres.2008.11.070] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2008] [Revised: 10/31/2008] [Accepted: 11/10/2008] [Indexed: 11/28/2022]
Abstract
Presbycusis -- age-related hearing loss, is the number one communication disorder, and one of the top three chronic medical conditions of our aged population. Aquaporins, particularly aquaporin 4 (Aqp4), are membrane proteins with important roles in water and ion flux across cell membranes, including cells of the inner ear and pathways of the brain used for hearing. To more fully understand the biological bases of presbycusis, 39 CBA mice, a well-studied animal model of presbycusis, underwent non-invasive hearing testing as a function of sound frequency (auditory brainstem response -- ABR thresholds, and distortion-product otoacoustic emission -- DPOAE magnitudes), and were clustered into four groups based on age and hearing ability. Aqp4 gene expression, as determined by genechip microarray analysis and quantitative real-time PCR, was compared to the young adult control group in the three older groups: middle aged with good hearing, old age with mild presbycusis, and old age with severe presbycusis. Linear regression and ANOVA showed statistically significant changes in Aqp4 gene expression and ABR and DPOAE hearing status in the cochlea and auditory midbrain -- inferior colliculus. Down-regulation in the cochlea was seen, and an initial down-, then up-regulation was discovered for the inferior colliculus Aqp4 expression. It is theorized that these changes in Aqp4 gene expression represent an age-related disruption of ion flux in the fluids of the cochlea that are responsible for ionic gradients underlying sound transduction in cochlear hair cells necessary for hearing. In regard to central auditory processing at the level of the auditory midbrain, aquaporin gene expression changes may affect neurotransmitter cycling involving supporting cells, thus impairing complex sound neural processing with age.
Collapse
Affiliation(s)
- Nathan Christensen
- Otolaryngology Department, University of Rochester Medical School, Rochester, NY 14642-8629, USA
| | | | | | | |
Collapse
|
32
|
Marchitti SA, Brocker C, Stagos D, Vasiliou V. Non-P450 aldehyde oxidizing enzymes: the aldehyde dehydrogenase superfamily. Expert Opin Drug Metab Toxicol 2008; 4:697-720. [PMID: 18611112 DOI: 10.1517/17425255.4.6.697] [Citation(s) in RCA: 557] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Aldehydes are highly reactive molecules. While several non-P450 enzyme systems participate in their metabolism, one of the most important is the aldehyde dehydrogenase (ALDH) superfamily, composed of NAD(P)+-dependent enzymes that catalyze aldehyde oxidation. OBJECTIVE This article presents a review of what is currently known about each member of the human ALDH superfamily including the pathophysiological significance of these enzymes. METHODS Relevant literature involving all members of the human ALDH family was extensively reviewed, with the primary focus on recent and novel findings. CONCLUSION To date, 19 ALDH genes have been identified in the human genome and mutations in these genes and subsequent inborn errors in aldehyde metabolism are the molecular basis of several diseases, including Sjögren-Larsson syndrome, type II hyperprolinemia, gamma-hydroxybutyric aciduria and pyridoxine-dependent seizures. ALDH enzymes also play important roles in embryogenesis and development, neurotransmission, oxidative stress and cancer. Finally, ALDH enzymes display multiple catalytic and non-catalytic functions including ester hydrolysis, antioxidant properties, xenobiotic bioactivation and UV light absorption.
Collapse
Affiliation(s)
- Satori A Marchitti
- University of Colorado Health Sciences Center, Molecular Toxicology & Environmental Health Sciences Program, Department of Pharmaceutical Sciences, 4200 East Ninth Avenue, C238, Denver, Colorado 80262, USA
| | | | | | | |
Collapse
|
33
|
Caspary DM, Ling L, Turner JG, Hughes LF. Inhibitory neurotransmission, plasticity and aging in the mammalian central auditory system. ACTA ACUST UNITED AC 2008; 211:1781-91. [PMID: 18490394 DOI: 10.1242/jeb.013581] [Citation(s) in RCA: 353] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Aging and acoustic trauma may result in partial peripheral deafferentation in the central auditory pathway of the mammalian brain. In accord with homeostatic plasticity, loss of sensory input results in a change in pre- and postsynaptic GABAergic and glycinergic inhibitory neurotransmission. As seen in development, age-related changes may be activity dependent. Age-related presynaptic changes in the cochlear nucleus include reduced glycine levels, while in the auditory midbrain and cortex, GABA synthesis and release are altered. Presumably, in response to age-related decreases in presynaptic release of inhibitory neurotransmitters, there are age-related postsynaptic subunit changes in the composition of the glycine (GlyR) and GABA(A) (GABA(A)R) receptors. Age-related changes in the subunit makeup of inhibitory pentameric receptor constructs result in altered pharmacological and physiological responses consistent with a net down-regulation of functional inhibition. Age-related functional changes associated with glycine neurotransmission in dorsal cochlear nucleus (DCN) include altered intensity and temporal coding by DCN projection neurons. Loss of synaptic inhibition in the superior olivary complex (SOC) and the inferior colliculus (IC) likely affect the ability of aged animals to localize sounds in their natural environment. Age-related postsynaptic GABA(A)R changes in IC and primary auditory cortex (A1) involve changes in the subunit makeup of GABA(A)Rs. In turn, these changes cause age-related changes in the pharmacology and response properties of neurons in IC and A1 circuits, which collectively may affect temporal processing and response reliability. Findings of age-related inhibitory changes within mammalian auditory circuits are similar to age and deafferentation plasticity changes observed in other sensory systems. Although few studies have examined sensory aging in the wild, these age-related changes would likely compromise an animal's ability to avoid predation or to be a successful predator in their natural environment.
Collapse
Affiliation(s)
- Donald M Caspary
- Southern Illinois University School of Medicine, Springfield, IL 62794, USA.
| | | | | | | |
Collapse
|
34
|
Ehmann H, Salzig C, Lang P, Friauf E, Nothwang HG. Minimal sex differences in gene expression in the rat superior olivary complex. Hear Res 2008; 245:65-72. [PMID: 18793710 DOI: 10.1016/j.heares.2008.08.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2008] [Revised: 08/22/2008] [Accepted: 08/25/2008] [Indexed: 01/12/2023]
Abstract
A critical issue in large-scale gene expression analysis is the impact of sexually dimorphic genes, which may confound the results when sampling across sexes. Here, we assessed, for the first time, sex differences at the transcriptome level in the auditory brainstem. To this end, microarray experiments covering the whole rat genome were performed in the superior olivary complex (SOC) of 16-day-old Sprague-Dawley rats. Sexually dimorphic genes were identified using two criteria: a 2-fold change and a P-value < 0.05. Only 12 out of 41,374 probes (0.03%) showed sexually dimorphic expression. For comparison, pituitaries from 60-day-old female and male rats were analyzed, as this gland is known to display many sex-specific features. Indeed, almost 40 times more probes, i.e. 460 (1.1%), displayed sexual dimorphism. Quantitative RT-PCR confirmed 47 out of 48 microarray results from both tissues. Taking microarray and qRT-PCR data together, the expression of six genes (Prl, Eif2s3y, Gnrhr, Pomc, Ddx3y, Akr1c6) was higher in the male SOC, whereas two genes were upregulated in the female SOC (LOC302172, Xist). Four of these genes are sex-chromosome linked (Eif2s3y, Ddx3y, LOC302172, Xist). In summary, our data indicate only minor and negligible sex-specific differences in gene expression within the SOC at P16.
Collapse
Affiliation(s)
- Heike Ehmann
- Department of Biology, University of Kaiserslautern, Kaiserslautern, Germany.
| | | | | | | | | |
Collapse
|
35
|
Marchitti SA, Brocker C, Stagos D, Vasiliou V. Non-P450 aldehyde oxidizing enzymes: the aldehyde dehydrogenase superfamily. Expert Opin Drug Metab Toxicol 2008. [PMID: 18611112 PMCID: PMC2658643 DOI: 10.1517/17425250802102627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Aldehydes are highly reactive molecules. While several non-P450 enzyme systems participate in their metabolism, one of the most important is the aldehyde dehydrogenase (ALDH) superfamily, composed of NAD(P)+-dependent enzymes that catalyze aldehyde oxidation. OBJECTIVE This article presents a review of what is currently known about each member of the human ALDH superfamily including the pathophysiological significance of these enzymes. METHODS Relevant literature involving all members of the human ALDH family was extensively reviewed, with the primary focus on recent and novel findings. CONCLUSION To date, 19 ALDH genes have been identified in the human genome and mutations in these genes and subsequent inborn errors in aldehyde metabolism are the molecular basis of several diseases, including Sjögren-Larsson syndrome, type II hyperprolinemia, gamma-hydroxybutyric aciduria and pyridoxine-dependent seizures. ALDH enzymes also play important roles in embryogenesis and development, neurotransmission, oxidative stress and cancer. Finally, ALDH enzymes display multiple catalytic and non-catalytic functions including ester hydrolysis, antioxidant properties, xenobiotic bioactivation and UV light absorption.
Collapse
Affiliation(s)
| | | | | | - Vasilis Vasiliou
- Author for correspondence: University of Colorado Health Sciences Center, Molecular Toxicology & Environmental Health Sciences Program, Department of Pharmaceutical Sciences, 4200 East Ninth Avenue, C238, Denver, Colorado 80262, USA, Tel: +1 303 315 6153; Fax: +1 303 315 0274; E-mail:
| |
Collapse
|
36
|
Hu CAA, Bart Williams D, Zhaorigetu S, Khalil S, Wan G, Valle D. Functional genomics and SNP analysis of human genes encoding proline metabolic enzymes. Amino Acids 2008; 35:655-64. [PMID: 18506409 DOI: 10.1007/s00726-008-0107-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2008] [Accepted: 05/01/2008] [Indexed: 11/26/2022]
Abstract
Proline metabolism in mammals involves two other amino acids, glutamate and ornithine, and five enzymatic activities, Delta(1)-pyrroline-5-carboxylate (P5C) reductase (P5CR), proline oxidase, P5C dehydrogenase, P5C synthase and ornithine-delta-aminotransferase (OAT). With the exception of OAT, which catalyzes a reversible reaction, the other four enzymes are unidirectional, suggesting that proline metabolism is purpose-driven, tightly regulated, and compartmentalized. In addition, this tri-amino-acid system also links with three other pivotal metabolic systems, namely the TCA cycle, urea cycle, and pentose phosphate pathway. Abnormalities in proline metabolism are relevant in several diseases: six monogenic inborn errors involving metabolism and/or transport of proline and its immediate metabolites have been described. Recent advances in the Human Genome Project, in silico database mining techniques, and research in dissecting the molecular basis of proline metabolism prompted us to utilize functional genomic approaches to analyze human genes which encode proline metabolic enzymes in the context of gene structure, regulation of gene expression, mRNA variants, protein isoforms, and single nucleotide polymorphisms.
Collapse
Affiliation(s)
- Chien-An A Hu
- Department of Biochemistry and Molecular Biology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA.
| | | | | | | | | | | |
Collapse
|
37
|
Hu CAA, Khalil S, Zhaorigetu S, Liu Z, Tyler M, Wan G, Valle D. Human Delta1-pyrroline-5-carboxylate synthase: function and regulation. Amino Acids 2008; 35:665-72. [PMID: 18401542 DOI: 10.1007/s00726-008-0075-0] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2007] [Accepted: 03/24/2008] [Indexed: 11/25/2022]
Abstract
Mammalian Delta(1)-pyrroline-5-carboxylate synthase (P5CS) is a bifunctional ATP- and NAD(P)H-dependent mitochondrial enzyme that catalyzes the coupled phosphorylation and reduction-conversion of L: -glutamate to P5C, a pivotal step in the biosynthesis of L: -proline, L: -ornithine and L: -arginine. Previously, we reported cloning and characterization of two P5CS transcript variants generated by exon sliding that encode two protein isoforms differing only by a two amino acid-insert at the N-terminus of the gamma-glutamyl kinase active site. The short form (P5CS.short) is highly expressed in the gut and is inhibited by ornithine. In contrast, the long form (P5CS.long) is expressed ubiquitously and is insensitive to ornithine. Interestingly, we found that all the established human cell lines we have studied expressed P5CS.long but not P5CS.short. In addition, expression of P5CS.long can be modulated by hormones: downregulation by hydrocortisone and dexamethasone and upregulation by estradiol, for example. Using a quantitative proteomic approach, we showed that P5CS.long is upregulated by p53 in p53-induced apoptosis in DLD-1 colorectal cancer cells. Functional genomic analysis confirmed that there are two p53-binding consensus sequences in the promoter region and in the intron 1 of the human P5CS gene. Interestingly, overexpression of P5CS by adenoviruses harboring P5CS.long or P5CS.short in various cell types has no effect on cell growth or survival. It would be of importance to further investigate the role of P5CS as a p53 downstream effector and how P5CS.short expression is regulated by hormones and factors of alternative splicing in cells isolated from model animals.
Collapse
Affiliation(s)
- C-A A Hu
- Department of Biochemistry and Molecular Biology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA.
| | | | | | | | | | | | | |
Collapse
|
38
|
Novel approach to select genes from RMA normalized microarray data using functional hearing tests in aging mice. J Neurosci Methods 2008; 171:279-87. [PMID: 18455804 DOI: 10.1016/j.jneumeth.2008.02.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2007] [Revised: 02/28/2008] [Accepted: 02/29/2008] [Indexed: 11/23/2022]
Abstract
UNLABELLED Presbycusis - age-related hearing loss - is the number one communicative disorder and one of the top three chronic medical condition of our aged population. High-throughput technologies potentially can be used to identify differentially expressed genes that may be better diagnostic and therapeutic targets for sensory and neural disorders. Here we analyzed gene expression for a set of GABA receptors in the cochlea of aging CBA mice using the Affymetrix GeneChip MOE430A. Functional phenotypic hearing measures were made, including auditory brainstem response (ABR) thresholds and distortion-product otoacoustic emission (DPOAE) amplitudes (four age groups). Four specific criteria were used to assess gene expression changes from RMA normalized microarray data (40 replicates). Linear regression models were used to fit the neurophysiological hearing measurements to probe-set expression profiles. These data were first subjected to one-way ANOVA, and then linear regression was performed. In addition, the log signal ratio was converted to fold change, and selected gene expression changes were confirmed by relative real-time PCR. MAJOR FINDINGS expression of GABA-A receptor subunit alpha6 was upregulated with age and hearing loss, whereas subunit alpha1 was repressed. In addition, GABA-A receptor associated protein like-1 and GABA-A receptor associated protein like-2 were strongly downregulated with age and hearing impairment. Lastly, gene expression measures were correlated with pathway/network relationships relevant to the inner ear using Pathway Architect, to identify key pathways consistent with the gene expression changes observed.
Collapse
|
39
|
|
40
|
Van Eyken E, Van Camp G, Van Laer L. The complexity of age-related hearing impairment: contributing environmental and genetic factors. Audiol Neurootol 2007; 12:345-58. [PMID: 17664866 DOI: 10.1159/000106478] [Citation(s) in RCA: 205] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2006] [Accepted: 05/18/2007] [Indexed: 12/24/2022] Open
Abstract
Age-related hearing impairment (ARHI) is the most common sensory impairment seen in the elderly. It is a complex disorder, with both environmental as well as genetic factors contributing to the impairment. The involvement of several environmental factors has been partially elucidated. A first step towards the identification of the genetic factors has been made, which will result in the identification of susceptibility genes, and will provide possible targets for the future treatment and/or prevention of ARHI. This paper aims to give a broad overview of the scientific findings related to ARHI, focusing mainly on environmental and genetic data in humans and in animal models. In addition, methods for the identification of contributing genetic factors as well as possible future therapeutic strategies are discussed.
Collapse
Affiliation(s)
- E Van Eyken
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium
| | | | | |
Collapse
|