1
|
Ding L, Hu DX, Yang L, Zhang WJ. Application of olfactory ensheathing cells in peripheral nerve injury and its complication with pathological pain. Neuroscience 2024; 560:120-129. [PMID: 39307415 DOI: 10.1016/j.neuroscience.2024.09.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/28/2024] [Accepted: 09/18/2024] [Indexed: 09/29/2024]
Abstract
Direct or indirect injury of peripheral nerve can lead to sensory and motor dysfunction, which can lead to pathological pain and seriously affect the quality of life and psychosomatic health of patients. While the internal repair function of the body after peripheral nerve injury is limited. Nerve regeneration is the key factor hindering the recovery of nerve function. At present, there is no effective treatment. Therefore, more and more attention have been paid to the development of foreground treatment to achieve functional recovery after peripheral nerve injury, including relief of pathological pain. Cell transplantation strategy is a therapeutic method with development potential in recent years, which can exert endogenous alternative repair by transplanting exogenous functional bioactive cells to the site of nerve injury. Olfactory ensheathing cells (OECs) are a special kind of glial cells, which have the characteristics of continuous renewal and survival. The mechanisms of promoting nerve regeneration and functional repair and relieving pathological pain by transplantation of OECs to peripheral nerve injury include secretion of a variety of neurotrophic factors, axonal regeneration and myelination, immune regulation, anti-inflammation, neuroprotection, promotion of vascular growth and improvement of inflammatory microenvironment around nerve injury. Different studies have shown that OECs combined with biomaterials have made some progress in the treatment of peripheral nerve injury and pathological pain. These biomaterials enhance the therapeutic effect of OECs. Therefore, the functional role of OECs in peripheral nerve injury and pathological pain was discussed in this paper.Although OECs are in the primary stage of exploration in the repair of peripheral nerve injury and the application of pain, but OECs transplantation may become a prospective therapeutic strategy for the treatment of peripheral nerve injury and pathological pain.
Collapse
Affiliation(s)
- Lin Ding
- The Second Affiliated Hospital, Nanchang University, Jiangxi Medical College, Nanchang City, Jiangxi Province 343000, China
| | - Dong-Xia Hu
- Rehabilitation Medicine Department, The second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang City, Jiangxi Province, China
| | - Liu Yang
- Rehabilitation Medicine Department, The second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang City, Jiangxi Province, China
| | - Wen-Jun Zhang
- Rehabilitation Medicine Department, The second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang City, Jiangxi Province, China.
| |
Collapse
|
2
|
Liao JX, Huang QM, Pan ZC, Wu J, Zhang WJ. The anti-inflammatory and immunomodulatory effects of olfactory ensheathing cells transplantation in spinal cord injury and concomitant pathological pain. Eur J Pharmacol 2024; 982:176950. [PMID: 39214270 DOI: 10.1016/j.ejphar.2024.176950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/26/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Spinal cord injury (SCI) is a serious and disabling injury that is often accompanied by neuropathic pain (NeP), which severely affects patients' motor and sensory functions and reduces their quality of life. Currently, there is no specific treatment for treating SCI and relieving the accompanying pain, and we can only rely on medication and physical rehabilitation, both of which are ineffective. Researchers have recently identified a novel class of glial cells, olfactory ensheathing cells (OECs), which originate from the olfactory system. Transplantation of OECs into damaged spinal cords has demonstrated their capacity to repair damaged nerves, improve the microenvironment at the point of injury, and They can also restore neural connectivity and alleviate the patient's NeP to a certain extent. Although the effectiveness of OECs transplantation has been confirmed in experiments, the specific mechanisms by which it repairs the spinal cord and relieves pain have not been articulated. Through a review of the literature, it has been established that the ability of OECs to repair and relieve pain is inextricably linked to its anti-inflammatory and immunomodulatory effects. In this regard, it is imperative to gain a deeper understanding of how OECs exert their anti-inflammatory and immunomodulatory effects. The objective of this paper is to provide a comprehensive overview of the mechanisms by which OECs exert anti-inflammatory and immunomodulatory effects. We aim to manipulate the immune microenvironment at the transplantation site through the intervention of cytokines and immune cells, with the goal of enhancing OECs' function or creating a conducive microenvironment for OECs' survival. This approach is expected to improve the therapeutic efficacy of OECs in clinical settings. However, numerous fundamental and clinical challenges remain to be addressed if OEC transplantation therapy is to become a standardized treatment in clinical practice.
Collapse
Affiliation(s)
- Jun-Xiang Liao
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang City, Jiangxi province, China
| | - Qi-Ming Huang
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang City, Jiangxi province, China
| | - Zhi-Cheng Pan
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang City, Jiangxi province, China
| | - Jie Wu
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang City, Jiangxi province, China
| | - Wen-Jun Zhang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang City, Jiangxi province, China.
| |
Collapse
|
3
|
Liao JX, Zhu FQ, Liu YY, Liu SC, Liu ZX, Zhang WJ. The role of olfactory ensheathing cells in the repair of nerve injury. Eur J Pharmacol 2024; 966:176346. [PMID: 38246329 DOI: 10.1016/j.ejphar.2024.176346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 01/23/2024]
Abstract
Cell transplantation has brought about a breakthrough in the treatment of nerve injuries, and the efficacy of cell transplantation compared to drug and surgical therapies is very exciting. In terms of transplantation targets, the classic cells include neural stem cells (NSCs) and Schwann cells, while a class of cells that can exist and renew throughout the life of the nervous system - olfactory ensheathing cells (OECs) - has recently been discovered in the olfactory system. OECs not only encircle the olfactory nerves but also act as macrophages and play an innate immune role. OECs can also undergo reprogramming to transform into neurons and survive and mature after transplantation. Currently, many studies have confirmed the repairing effect of OECs after transplantation into injured nerves, and safe and effective results have been obtained in clinical trials. However, the specific repair mechanism of OECs among them is not quite clear. For this purpose, we focus here on the repair mechanisms of OECs, which are summarized as follows: neuroprotection, secretion of bioactive factors, limitation of inflammation and immune regulation, promotion of myelin and axonal regeneration, and promotion of vascular proliferation. In addition, integrating the aspects of harvesting, purification, and prognosis, we found that OECs may be more suitable for transplantation than NSCs and Schwann cells, but this does not completely discard the value of these classical cells. Overall, OECs are considered to be one of the most promising transplantation targets for the treatment of nerve injury disorders.
Collapse
Affiliation(s)
- Jun-Xiang Liao
- The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province, 343000, China
| | - Fu-Qi Zhu
- The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province, 343000, China
| | - Yi-Yi Liu
- The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province, 343000, China
| | - Si-Cheng Liu
- The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province, 343000, China
| | - Zeng-Xu Liu
- School of Basic Medicine, Nanchang University, Nanchang City, Jiangxi province, 343000, China
| | - Wen-Jun Zhang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province, 343000, China.
| |
Collapse
|
4
|
Huang HY, Xiong MJ, Pu FQ, Liao JX, Zhu FQ, Zhang WJ. Application and challenges of olfactory ensheathing cells in clinical trials of spinal cord injury. Eur J Pharmacol 2024; 963:176238. [PMID: 38072039 DOI: 10.1016/j.ejphar.2023.176238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/28/2023] [Accepted: 11/28/2023] [Indexed: 12/23/2023]
Abstract
Spinal cord injury (SCI) can lead to severe motor, sensory and autonomic nervous dysfunction, cause serious psychosomatic injury to patients. There is no effective treatment for SCI at present. In recent years, exciting evidence has been obtained in the application of cell-based therapy in basic research. These studies have revealed the fact that cells transplanted into the host can exert the pharmacological properties of treating and repairing SCI. Olfactory ensheathing cells (OECs) are a kind of special glial cells. The application value of OECs in the study of SCI lies in their unique biological characteristics, that is, they can survive and renew for life, give full play to neuroprotection, immune regulation, promoting axonal regeneration and myelination formation. The function of producing secretory group and improving microenvironment. This provides an irreplaceable treatment strategy for the repair of SCI. At present, some researchers have explored the possibility of treatment of OECs in clinical trials of SCI. Although OECs transplantation shows excellent safety and effectiveness in animal models, there is still lack of sufficient evidence to prove the effectiveness of their clinical application in clinical trials. There has been an obvious stagnation in the transformation of OECs transplantation into routine clinical practice, and clinical trials of cell therapy in this field are still facing major challenges and many problems that need to be solved. Therefore, this paper summarized and analyzed the clinical trials of OECs transplantation in the treatment of SCI, and discussed the problems and challenges of OECs transplantation in clinical trials.
Collapse
Affiliation(s)
- Hao-Yu Huang
- The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province, 343000, China
| | - Mei-Juan Xiong
- Department of Pharmacy, The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province, 343000, China
| | - Fan-Qing Pu
- The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province, 343000, China
| | - Jun-Xiang Liao
- The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province, 343000, China
| | - Fu-Qi Zhu
- The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province, 343000, China
| | - Wen-Jun Zhang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang City, Jiangxi province, 343000, China.
| |
Collapse
|
5
|
Liu JP, Wang JL, Hu BE, Zou FL, Wu CL, Shen J, Zhang WJ. Olfactory ensheathing cells and neuropathic pain. Front Cell Dev Biol 2023; 11:1147242. [PMID: 37223000 PMCID: PMC10201020 DOI: 10.3389/fcell.2023.1147242] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/27/2023] [Indexed: 08/29/2023] Open
Abstract
Damage to the nervous system can lead to functional impairment, including sensory and motor functions. Importantly, neuropathic pain (NPP) can be induced after nerve injury, which seriously affects the quality of life of patients. Therefore, the repair of nerve damage and the treatment of pain are particularly important. However, the current treatment of NPP is very weak, which promotes researchers to find new methods and directions for treatment. Recently, cell transplantation technology has received great attention and has become a hot spot for the treatment of nerve injury and pain. Olfactory ensheathing cells (OECs) are a kind of glial cells with the characteristics of lifelong survival in the nervous system and continuous division and renewal. They also secrete a variety of neurotrophic factors, bridge the fibers at both ends of the injured nerve, change the local injury microenvironment, and promote axon regeneration and other biological functions. Different studies have revealed that the transplantation of OECs can repair damaged nerves and exert analgesic effect. Some progress has been made in the effect of OECs transplantation in inhibiting NPP. Therefore, in this paper, we provided a comprehensive overview of the biology of OECs, described the possible pathogenesis of NPP. Moreover, we discussed on the therapeutic effect of OECs transplantation on central nervous system injury and NPP, and prospected some possible problems of OECs transplantation as pain treatment. To provide some valuable information for the treatment of pain by OECs transplantation in the future.
Collapse
Affiliation(s)
- Ji-peng Liu
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| | - Jia-ling Wang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| | - Bai-er Hu
- Department of Physical Examination, The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| | - Fei-long Zou
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| | - Chang-lei Wu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| | - Jie Shen
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| | - Wen-jun Zhang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
6
|
Basu S, Choudhury IN, Lee JYP, Chacko A, Ekberg JAK, St John JA. Macrophages Treated with VEGF and PDGF Exert Paracrine Effects on Olfactory Ensheathing Cell Function. Cells 2022; 11:cells11152408. [PMID: 35954252 PMCID: PMC9368560 DOI: 10.3390/cells11152408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/29/2022] [Accepted: 08/01/2022] [Indexed: 02/05/2023] Open
Abstract
Glial cell transplantation using olfactory ensheathing cells (OECs) holds a promising approach for treating spinal cord injury (SCI). However, integration of OECs into the hostile acute secondary injury site requires interaction and response to macrophages. Immunomodulation of macrophages to reduce their impact on OECs may improve the functionality of OECs. Vascular endothelial growth factor (VEGF) and platelet-derived growth factor (PDGF), known for their immunomodulatory and neuroprotective functions, have provided improved outcomes in SCI animal models. Thus, VEGF and PDGF modulation of the SCI microenvironment may be beneficial for OEC transplantation. In this in vitro study, the effect of VEGF and PDGF on macrophages in an inflammatory condition was tested. Combined VEGF + PDGF reduced translocation nuclear factor kappa B p65 in macrophages without altering pro-inflammatory cytokines. Further, the ability of OECs to phagocytose myelin debris was assessed using macrophage-conditioned medium. Conditioned medium from macrophages incubated with PDGF and combined VEGF + PDGF in inflammatory conditions promoted phagocytosis by OECs. The growth factor treated conditioned media also modulated the expression of genes associated with nerve repair and myelin expression in OECs. Overall, these results suggest that the use of growth factors together with OEC transplantation may be beneficial in SCI therapy.
Collapse
Affiliation(s)
- Souptik Basu
- Clem Jones Centre for Neurobiology and Stem Cell Research, Nathan Campus, Griffith University, Nathan, QLD 4222, Australia
- Menzies Health Institute Queensland, Southport Campus, Griffith University, Southport, QLD 4222, Australia
| | - Indra N. Choudhury
- Clem Jones Centre for Neurobiology and Stem Cell Research, Nathan Campus, Griffith University, Nathan, QLD 4222, Australia
- Menzies Health Institute Queensland, Southport Campus, Griffith University, Southport, QLD 4222, Australia
| | - Jia Yu Peppermint Lee
- Clem Jones Centre for Neurobiology and Stem Cell Research, Nathan Campus, Griffith University, Nathan, QLD 4222, Australia
| | - Anu Chacko
- Clem Jones Centre for Neurobiology and Stem Cell Research, Nathan Campus, Griffith University, Nathan, QLD 4222, Australia
- Menzies Health Institute Queensland, Southport Campus, Griffith University, Southport, QLD 4222, Australia
| | - Jenny A. K. Ekberg
- Clem Jones Centre for Neurobiology and Stem Cell Research, Nathan Campus, Griffith University, Nathan, QLD 4222, Australia
- Menzies Health Institute Queensland, Southport Campus, Griffith University, Southport, QLD 4222, Australia
- Griffith Institute for Drug Discovery, Nathan Campus, Griffith University, Nathan, QLD 4111, Australia
| | - James A. St John
- Clem Jones Centre for Neurobiology and Stem Cell Research, Nathan Campus, Griffith University, Nathan, QLD 4222, Australia
- Menzies Health Institute Queensland, Southport Campus, Griffith University, Southport, QLD 4222, Australia
- Griffith Institute for Drug Discovery, Nathan Campus, Griffith University, Nathan, QLD 4111, Australia
- Correspondence:
| |
Collapse
|
7
|
Wang Q, Chen FY, Ling ZM, Su WF, Zhao YY, Chen G, Wei ZY. The Effect of Schwann Cells/Schwann Cell-Like Cells on Cell Therapy for Peripheral Neuropathy. Front Cell Neurosci 2022; 16:836931. [PMID: 35350167 PMCID: PMC8957843 DOI: 10.3389/fncel.2022.836931] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/02/2022] [Indexed: 12/11/2022] Open
Abstract
Peripheral neuropathy is a common neurological issue that leads to sensory and motor disorders. Over time, the treatment for peripheral neuropathy has primarily focused on medications for specific symptoms and surgical techniques. Despite the different advantages of these treatments, functional recovery remains less than ideal. Schwann cells, as the primary glial cells in the peripheral nervous system, play crucial roles in physiological and pathological conditions by maintaining nerve structure and functions and secreting various signaling molecules and neurotrophic factors to support both axonal growth and myelination. In addition, stem cells, including mesenchymal stromal cells, skin precursor cells and neural stem cells, have the potential to differentiate into Schwann-like cells to perform similar functions as Schwann cells. Therefore, accumulating evidence indicates that Schwann cell transplantation plays a crucial role in the resolution of peripheral neuropathy. In this review, we summarize the literature regarding the use of Schwann cell/Schwann cell-like cell transplantation for different peripheral neuropathies and the potential role of promoting nerve repair and functional recovery. Finally, we discuss the limitations and challenges of Schwann cell/Schwann cell-like cell transplantation in future clinical applications. Together, these studies provide insights into the effect of Schwann cells/Schwann cell-like cells on cell therapy and uncover prospective therapeutic strategies for peripheral neuropathy.
Collapse
Affiliation(s)
- Qian Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Fang-Yu Chen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Zhuo-Min Ling
- Medical School of Nantong University, Nantong, China
| | - Wen-Feng Su
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Ya-Yu Zhao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Gang Chen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
- Medical School of Nantong University, Nantong, China
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, China
- *Correspondence: Gang Chen,
| | - Zhong-Ya Wei
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
- Zhong-Ya Wei,
| |
Collapse
|
8
|
Peripheral Nerve Regeneration Using a Nerve Conduit with Olfactory Ensheathing Cells in a Rat Model. Tissue Eng Regen Med 2021; 18:453-465. [PMID: 33515167 DOI: 10.1007/s13770-020-00326-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 11/12/2020] [Accepted: 11/23/2020] [Indexed: 10/22/2022] Open
Abstract
BACKGROUND Autologous nerve grafts are the gold standard treatment for peripheral nerve injury treatment. However, this procedure cannot avoid sacrificing other nerves as a major limitation. The aim of the present study was to evaluate the potential of olfactory ensheathing cells (OECs) embedded in a nerve conduit. METHODS A 10-mm segment of the sciatic nerve was resected in 21 rats, and the nerve injury was repaired with one of the following (n = 7 per group): autologous nerve graft, poly (ε-caprolactone) (PCL) conduit and OECs, and PCL conduit only. The consequent effect on nerve regeneration was measured based on the nerve conduction velocity (NCV), amplitude of the compound muscle action potential (ACMAP), wet muscle weight, histomorphometric analysis, and nerve density quantification. RESULTS Histomorphometric analysis revealed nerve regeneration and angiogenesis in all groups. However, there were significant differences (p < 0.05) in the ACMAP nerve regeneration rate of the gastrocnemius and tibialis anterior muscles between the autologous graft (37.9 ± 14.3% and 39.1% ± 20.4%) and PCL only (17.8 ± 8.6% and 13.6 ± 5.8%) groups, and between the PCL only and PCL + OECs (46.3 ± 20.0% and 34.5 ± 14.6%) groups, with no differences between the autologous nerve and PCL + OEC groups (p > 0.05). No significant results in NCV, wet muscle weight, and nerve density quantification were observed among the 3 groups. CONCLUSION A PCL conduit with OECs enhances the regeneration of injured peripheral nerves, offering a good alternative to autologous nerve grafts.
Collapse
|
9
|
3D bioprinting applications in neural tissue engineering for spinal cord injury repair. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 110:110741. [PMID: 32204049 DOI: 10.1016/j.msec.2020.110741] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 02/05/2020] [Accepted: 02/10/2020] [Indexed: 01/01/2023]
Abstract
Spinal cord injury (SCI) is a disease of the central nervous system (CNS) that has not yet been treated successfully. In the United States, almost 450,000 people suffer from SCI. Despite the development of many clinical treatments, therapeutics are still at an early stage for a successful bridging of damaged nerve spaces and complete recovery of nerve functions. Biomimetic 3D scaffolds have been an effective option in repairing the damaged nervous system. 3D scaffolds allow improved host tissue engraftment and new tissue development by supplying physical support to ease cell function. Recently, 3D bioprinting techniques that may easily regulate the dimension and shape of the 3D tissue scaffold and are capable of producing scaffolds with cells have attracted attention. Production of biologically more complex microstructures can be achieved by using 3D bioprinting technology. Particularly in vitro modeling of CNS tissues for in vivo transplantation is critical in the treatment of SCI. Considering the potential impact of 3D bioprinting technology on neural studies, this review focus on 3D bioprinting methods, bio-inks, and cells widely used in neural tissue engineering and the latest technological applications of bioprinting of nerve tissues for the repair of SCI are discussed.
Collapse
|
10
|
Xia B, Gao J, Li S, Huang L, Ma T, Zhao L, Yang Y, Huang J, Luo Z. Extracellular Vesicles Derived From Olfactory Ensheathing Cells Promote Peripheral Nerve Regeneration in Rats. Front Cell Neurosci 2019; 13:548. [PMID: 31866834 PMCID: PMC6908849 DOI: 10.3389/fncel.2019.00548] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 11/26/2019] [Indexed: 12/13/2022] Open
Abstract
Accumulating evidence showed that extracellular vesicles (EVs) and their cargoes are important information mediators in the nervous system and have been proposed to play an important role in regulating regeneration. Moreover, many studies reported that olfactory ensheathing cells (OECs) conditioned medium is capable of promoting nerve regeneration and functional recovery. However, the role of EVs derived from OECs in axonal regeneration has not been clear. Thereby, the present study was designed to firstly isolate EVs from OECs culture supernatants, and then investigated their role in enhancing axonal regeneration after sciatic nerve injury. In vitro studies showed that OECs-EVs promoted axonal growth of dorsal root ganglion (DRG), which is dose-dependent and relies on their integrity. In vivo studies further demonstrated that nerve conduit containing OECs-EVs significantly enhanced axonal regeneration, myelination of regenerated axons and neurologically functional recovery in rats with sciatic nerve injury. In conclusion, our results, for the first time, demonstrated that OECs-EVs are capable of promoting nerve regeneration and functional recovery after peripheral nerve injuries in rats.
Collapse
Affiliation(s)
- Bing Xia
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jianbo Gao
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Shengyou Li
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Liangliang Huang
- Department of Orthopaedics, The General Hospital of Central Theater Command of People's Liberation Army, Wuhan, China
| | - Teng Ma
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Laihe Zhao
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yujie Yang
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jinghui Huang
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Zhuojing Luo
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
11
|
Kubiak CA, Grochmal J, Kung TA, Cederna PS, Midha R, Kemp SWP. Stem-cell-based therapies to enhance peripheral nerve regeneration. Muscle Nerve 2019; 61:449-459. [PMID: 31725911 DOI: 10.1002/mus.26760] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 10/31/2019] [Accepted: 11/12/2019] [Indexed: 12/13/2022]
Abstract
Peripheral nerve injury remains a major cause of morbidity in trauma patients. Despite advances in microsurgical techniques and improved understanding of nerve regeneration, obtaining satisfactory outcomes after peripheral nerve injury remains a difficult clinical problem. There is a growing body of evidence in preclinical animal studies demonstrating the supportive role of stem cells in peripheral nerve regeneration after injury. The characteristics of both mesoderm-derived and ectoderm-derived stem cell types and their role in peripheral nerve regeneration are discussed, specifically focusing on the presentation of both foundational laboratory studies and translational applications. The current state of clinical translation is presented, with an emphasis on both ethical considerations of using stems cells in humans and current governmental regulatory policies. Current advancements in cell-based therapies represent a promising future with regard to supporting nerve regeneration and achieving significant functional recovery after debilitating nerve injuries.
Collapse
Affiliation(s)
- Carrie A Kubiak
- Department of Surgery, Section of Plastic and Reconstructive Surgery, University of Michigan, Ann Arbor, Michigan
| | - Joey Grochmal
- Department of Clinical Neurosciences and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Theodore A Kung
- Department of Surgery, Section of Plastic and Reconstructive Surgery, University of Michigan, Ann Arbor, Michigan
| | - Paul S Cederna
- Department of Surgery, Section of Plastic and Reconstructive Surgery, University of Michigan, Ann Arbor, Michigan.,Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
| | - Rajiv Midha
- Department of Clinical Neurosciences and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Stephen W P Kemp
- Department of Surgery, Section of Plastic and Reconstructive Surgery, University of Michigan, Ann Arbor, Michigan.,Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
12
|
Zhou P, Guan J, Xu P, Zhao J, Zhang C, Zhang B, Mao Y, Cui W. Cell Therapeutic Strategies for Spinal Cord Injury. Adv Wound Care (New Rochelle) 2019; 8:585-605. [PMID: 31637103 PMCID: PMC6798812 DOI: 10.1089/wound.2019.1046] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Accepted: 08/27/2019] [Indexed: 12/13/2022] Open
Abstract
Significance: Spinal cord injury (SCI) is a neurological disorder that resulted from destroyed long axis of spinal cord, affecting thousands of people every year. With the occurrence of SCI, the lesions can form cystic cavities and produce glial scar, myelin inhibitor, and inflammation that negatively impact repair of spinal cord. Therefore, SCI remains a difficult problem to overcome with present therapeutics. This review of cell therapeutics in SCI provides a systematic review of combinatory therapeutics of SCI and helps the realization of regeneration of spinal cord in the future. Recent Advances: With major breakthroughs in neurobiology in recent years, present therapeutic strategies for SCI mainly aim at nerve regeneration or neuroprotection. For nerve regeneration, the application approaches are tissue engineering and cell transplantation, while drug therapeutics is applied for neuroprotection. Cell therapeutics is a new approach that treats SCI by cell transplantation. Cell therapeutics possesses advantages of neuroprotection, immune regulation, axonal regeneration, neuron relay formation, and remyelination. Critical Issues: Neurons cannot regenerate at the site of injury. Therefore, it is essential to find a repair strategy for remyelination, axon regeneration, and functional recovery. Cell therapeutics is emerging as the most promising approach for treating SCI. Future Directions: The future application of SCI therapy in clinical practice may require a combination of multiple strategies. A comprehensive treatment of injury of spinal cord is the focus of the present research. With the combination of different cell therapy strategies, future experiments will achieve more dramatic success in spinal cord repair.
Collapse
Affiliation(s)
- Pinghui Zhou
- Department of Orthopedics, First Affiliated Hospital of Bengbu Medical College, Bengbu, P.R. China
- Anhui Province Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, P.R. China
| | - Jingjing Guan
- Department of Orthopedics, First Affiliated Hospital of Bengbu Medical College, Bengbu, P.R. China
| | - Panpan Xu
- Department of Orthopedics, First Affiliated Hospital of Bengbu Medical College, Bengbu, P.R. China
| | - Jingwen Zhao
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Changchun Zhang
- Department of Orthopedics, First Affiliated Hospital of Bengbu Medical College, Bengbu, P.R. China
| | - Bin Zhang
- Department of Orthopedics, First Affiliated Hospital of Bengbu Medical College, Bengbu, P.R. China
| | - Yingji Mao
- Department of Orthopedics, First Affiliated Hospital of Bengbu Medical College, Bengbu, P.R. China
- School of Life Science, Bengbu Medical College, Bengbu, P.R. China
| | - Wenguo Cui
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| |
Collapse
|
13
|
Gu J, Xu H, Xu YP, Liu HH, Lang JT, Chen XP, Xu WH, Deng Y, Fan JP. Olfactory ensheathing cells promote nerve regeneration and functional recovery after facial nerve defects. Neural Regen Res 2019; 14:124-131. [PMID: 30531086 PMCID: PMC6263002 DOI: 10.4103/1673-5374.243717] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Olfactory ensheathing cells from the olfactory bulb and olfactory mucosa have been found to increase axonal sprouting and pathfinding and promote the recovery of vibrissae motor performance in facial nerve transection injured rats. However, it is not yet clear whether olfactory ensheathing cells promote the reparation of facial nerve defects in rats. In this study, a collagen sponge and silicone tube neural conduit was implanted into the 6-mm defect of the buccal branch of the facial nerve in adult rats. Olfactory ensheathing cells isolated from the olfactory bulb of newborn Sprague-Dawley rats were injected into the neural conduits connecting the ends of the broken nerves, the morphology and function of the regenerated nerves were compared between the rats implanted with olfactory ensheathing cells with the rats injected with saline. Facial paralysis was assessed. Nerve electrography was used to measure facial nerve-induced action potentials. Visual inspection, anatomical microscopy and hematoxylin-eosin staining were used to assess the histomorphology around the transplanted neural conduit and the morphology of the regenerated nerve. Using fluorogold retrograde tracing, toluidine blue staining and lead uranyl acetate staining, we also measured the number of neurons in the anterior exterior lateral facial nerve motor nucleus, the number of myelinated nerve fibers, and nerve fiber diameter and myelin sheath thickness, respectively. After surgery, olfactory ensheathing cells decreased facial paralysis and the latency of the facial nerve-induced action potentials. There were no differences in the general morphology of the regenerating nerves between the rats implanted with olfactory ensheathing cells and the rats injected with saline. Between-group results showed that olfactory ensheathing cell treatment increased the number of regenerated neurons, improved nerve fiber morphology, and increased the number of myelinated nerve fibers, nerve fiber diameter, and myelin sheath thickness. In conclusion, implantation of olfactory ensheathing cells can promote regeneration and functional recovery after facial nerve damage in rats.
Collapse
Affiliation(s)
- Jian Gu
- Department of Otolaryngology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - He Xu
- Department of Otolaryngology Head and Neck Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Ya-Ping Xu
- Department of Otolaryngology Head and Neck Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Huan-Hai Liu
- Department of Otolaryngology Head and Neck Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Jun-Tian Lang
- Department of Otolaryngology Head and Neck Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Xiao-Ping Chen
- Department of Otolaryngology Head and Neck Surgery, Gongli Hospital, Second Military Medical University, Shanghai, China
| | - Wei-Hua Xu
- Department of Otolaryngology Head and Neck Surgery, Gongli Hospital, Second Military Medical University, Shanghai, China
| | - Yue Deng
- Department of Otolaryngology Head and Neck Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Jing-Ping Fan
- Department of Otolaryngology Head and Neck Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
14
|
Gómez-Pinedo U, Sanchez-Rojas L, Vidueira S, Sancho FJ, Martínez-Ramos C, Lebourg M, Monleón Pradas M, Barcia JA. Bridges of biomaterials promote nigrostriatal pathway regeneration. J Biomed Mater Res B Appl Biomater 2018; 107:190-196. [PMID: 29573127 DOI: 10.1002/jbm.b.34110] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 02/14/2018] [Accepted: 02/18/2018] [Indexed: 12/21/2022]
Abstract
Repair of central nervous system (CNS) lesions is difficulted by the lack of ability of central axons to regrow, and the blocking by the brain astrocytes to axonal entry. We hypothesized that by using bridges made of porous biomaterial and permissive olfactory ensheathing glia (OEG), we could provide a scaffold to permit restoration of white matter tracts. We implanted porous polycaprolactone (PCL) bridges between the substantia nigra and the striatum in rats, both with and without OEG. We compared the number of tyrosine-hydroxylase positive (TH+) fibers crossing the striatal-graft interface, and the astrocytic and microglial reaction around the grafts, between animals grafted with and without OEG. Although TH+ fibers were found inside the grafts made of PCL alone, there was a greater fiber density inside the graft and at the striatal-graft interface when OEG was cografted. Also, there was less astrocytic and microglial reaction in those animals. These results show that these PCL grafts are able to promote axonal growth along the nigrostriatal pathway, and that cografting of OEG markedly enhances axonal entry inside the grafts, growth within them, and re-entry of axons into the CNS. These results may have implications in the treatment of diseases such as Parkinson's and others associated with lesions of central white matter tracts. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 107B: 190-196, 2019.
Collapse
Affiliation(s)
- Ulises Gómez-Pinedo
- Centro de Investigación Príncipe Felipe, Valencia, Spain.,Servicio de Neurocirugía. Instituto de Neurociencias. IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, Spain
| | - Leyre Sanchez-Rojas
- Servicio de Neurocirugía. Instituto de Neurociencias. IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, Spain
| | | | | | - Cristina Martínez-Ramos
- Centro de Investigación Príncipe Felipe, Valencia, Spain.,Centro de Biomateriales e Ingeniería Tisular, Universidad Politécnica de Valencia, Valencia, Spain.,Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Zaragoza, Spain
| | - Myriam Lebourg
- Centro de Biomateriales e Ingeniería Tisular, Universidad Politécnica de Valencia, Valencia, Spain.,Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Zaragoza, Spain
| | - Manuel Monleón Pradas
- Centro de Investigación Príncipe Felipe, Valencia, Spain.,Centro de Biomateriales e Ingeniería Tisular, Universidad Politécnica de Valencia, Valencia, Spain.,Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Zaragoza, Spain
| | - Juan A Barcia
- Centro de Investigación Príncipe Felipe, Valencia, Spain.,Servicio de Neurocirugía. Instituto de Neurociencias. IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
15
|
Lee S, Esworthy T, Stake S, Miao S, Zuo YY, Harris BT, Zhang LG. Advances in 3D Bioprinting for Neural Tissue Engineering. ACTA ACUST UNITED AC 2018. [DOI: 10.1002/adbi.201700213] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Se‐Jun Lee
- Department of Mechanical and Aerospace Engineering George Washington University Washington DC 20052 USA
| | - Timothy Esworthy
- Department of Mechanical and Aerospace Engineering George Washington University Washington DC 20052 USA
| | - Seth Stake
- Department of Medicine George Washington University Washington DC 20052 USA
| | - Shida Miao
- Department of Mechanical and Aerospace Engineering George Washington University Washington DC 20052 USA
| | - Yi Y. Zuo
- Department of Mechanical Engineering University of Hawaii at Manoa Honolulu HI 96822 USA
| | - Brent T. Harris
- Department of Neurology and Pathology Georgetown University Washington DC 20007 USA
| | - Lijie Grace Zhang
- Department of Mechanical and Aerospace Engineering George Washington University Washington DC 20052 USA
- Department of Medicine George Washington University Washington DC 20052 USA
- Department of Biomedical Engineering George Washington University Washington DC 20052 USA
| |
Collapse
|
16
|
Barton MJ, John JS, Clarke M, Wright A, Ekberg J. The Glia Response after Peripheral Nerve Injury: A Comparison between Schwann Cells and Olfactory Ensheathing Cells and Their Uses for Neural Regenerative Therapies. Int J Mol Sci 2017; 18:E287. [PMID: 28146061 PMCID: PMC5343823 DOI: 10.3390/ijms18020287] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Revised: 01/14/2017] [Accepted: 01/17/2017] [Indexed: 01/04/2023] Open
Abstract
The peripheral nervous system (PNS) exhibits a much larger capacity for regeneration than the central nervous system (CNS). One reason for this difference is the difference in glial cell types between the two systems. PNS glia respond rapidly to nerve injury by clearing debris from the injury site, supplying essential growth factors and providing structural support; all of which enhances neuronal regeneration. Thus, transplantation of glial cells from the PNS is a very promising therapy for injuries to both the PNS and the CNS. There are two key types of PNS glia: olfactory ensheathing cells (OECs), which populate the olfactory nerve, and Schwann cells (SCs), which are present in the rest of the PNS. These two glial types share many similar morphological and functional characteristics but also exhibit key differences. The olfactory nerve is constantly turning over throughout life, which means OECs are continuously stimulating neural regeneration, whilst SCs only promote regeneration after direct injury to the PNS. This review presents a comparison between these two PNS systems in respect to normal physiology, developmental anatomy, glial functions and their responses to injury. A thorough understanding of the mechanisms and differences between the two systems is crucial for the development of future therapies using transplantation of peripheral glia to treat neural injuries and/or disease.
Collapse
Affiliation(s)
- Matthew J Barton
- Menzies Health Institute Queensland, Griffith University, Nathan QLD 4111, Australia.
- Clem Jones Centre for Neurobiology & Stem Cell Research, Griffith University, Nathan QLD 4111, Australia.
| | - James St John
- Menzies Health Institute Queensland, Griffith University, Nathan QLD 4111, Australia.
- Clem Jones Centre for Neurobiology & Stem Cell Research, Griffith University, Nathan QLD 4111, Australia.
- Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD 4111, Australia.
| | - Mary Clarke
- Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD 4111, Australia.
| | - Alison Wright
- Faculty of Health and Medical Science, Bond University, Robina, QLD 4226, Australia.
| | - Jenny Ekberg
- Clem Jones Centre for Neurobiology & Stem Cell Research, Griffith University, Nathan QLD 4111, Australia.
- Faculty of Health and Medical Science, Bond University, Robina, QLD 4226, Australia.
| |
Collapse
|
17
|
Kriebel A, Hodde D, Kuenzel T, Engels J, Brook G, Mey J. Cell-free artificial implants of electrospun fibres in a three-dimensional gelatin matrix support sciatic nerve regeneration in vivo. J Tissue Eng Regen Med 2017; 11:3289-3304. [PMID: 28127889 DOI: 10.1002/term.2237] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 05/13/2016] [Accepted: 06/03/2016] [Indexed: 11/06/2022]
Abstract
Surgical repair of larger peripheral nerve lesions requires the use of autologous nerve grafts. At present, clinical alternatives to avoid nerve transplantation consist of empty tubes, which are only suitable for the repair over short distances and have limited success. We developed a cell-free, three-dimensional scaffold for axonal guidance in long-distance nerve repair. Sub-micron scale fibres of biodegradable poly-ε-caprolactone (PCL) and collagen/PCL (c/PCL) blends were incorporated in a gelatin matrix and inserted in collagen tubes. The conduits were tested by replacing 15-mm-long segments of rat sciatic nerves in vivo. Biocompatibility of the implants and nerve regeneration were assessed histologically, with electromyography and with behavioural tests for motor functions. Functional repair was achieved in all animals with autologous transplants, in 12 of 13 rats that received artificial implants with an internal structure and in half of the animals with empty nerve conduits. In rats with implants containing c/PCL fibres, the extent of recovery (compound muscle action potentials, motor functions of the hind limbs) was superior to animals that had received empty implants, but not as good as with autologous nerve transplantation. Schwann cell migration and axonal regeneration were observed in all artificial implants, and muscular atrophy was reduced in comparison with animals that had received no implants. The present design represents a significant step towards cell-free, artificial nerve bridges that can replace autologous nerve transplants in the clinic. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Andreas Kriebel
- Institut für Biologie II, RWTH Aachen University, Germany.,EURON Graduate School of Neuroscience, Maastricht University, the Netherlands
| | - Dorothee Hodde
- Institut für Neuropathologie, Universitätsklinikum RWTH Aachen University, Germany
| | - Thomas Kuenzel
- Institut für Biologie II, RWTH Aachen University, Germany
| | - Jessica Engels
- Institut für Biologie II, RWTH Aachen University, Germany
| | - Gary Brook
- Institut für Neuropathologie, Universitätsklinikum RWTH Aachen University, Germany.,Jülich-Aachen Research Alliance, Translational Brain Medicine, Jülich, Germany
| | - Jörg Mey
- EURON Graduate School of Neuroscience, Maastricht University, the Netherlands.,Hospital Nacional de Parapléjicos, SESCAM, Toledo, Spain
| |
Collapse
|
18
|
Gu M, Gao Z, Li X, Guo L, Lu T, Li Y, He X. Conditioned medium of olfactory ensheathing cells promotes the functional recovery and axonal regeneration after contusive spinal cord injury. Brain Res 2017; 1654:43-54. [DOI: 10.1016/j.brainres.2016.10.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 10/05/2016] [Accepted: 10/22/2016] [Indexed: 01/15/2023]
|
19
|
Olfactory ensheathing glia cell therapy and tubular conduit enhance nerve regeneration after mouse sciatic nerve transection. Brain Res 2016; 1650:243-251. [PMID: 27641994 DOI: 10.1016/j.brainres.2016.09.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 09/02/2016] [Accepted: 09/15/2016] [Indexed: 02/06/2023]
Abstract
The regenerative potential of the peripheral nervous system (PNS) is widely known, but functional recovery, particularly in humans, is seldom complete. Therefore, it is necessary to resort to strategies that induce or potentiate the PNS regeneration. Our main objective was to test the effectiveness of Olfactory Ensheathing Cells (OEC) transplantation into a biodegradable conduit as a therapeutic strategy to improve the repair outcome after nerve injury. Sciatic nerve transection was performed in C57BL/6 mice; proximal and distal stumps of the nerve were sutured into the collagen conduit. Two groups were analyzed: DMEM (acellular grafts) and OEC (1×105/2μL). Locomotor function was assessed weekly by Sciatic Function Index (SFI) and Global Mobility Test (GMT). After eight weeks the sciatic nerve was dissected for morphological analysis. Our results showed that the OEC group exhibited many clusters of regenerated nerve fibers, a higher number of myelinated fibers and myelin area compared to DMEM group. The G-ratio analysis of the OEC group showed significantly more fibers on the most suitable sciatic nerve G-ratio index. Motor recovery was accelerated in the OEC group. These data provide evidence that the OEC therapy can improve sciatic nerve functional and morphological recovery and can be potentially translated to the clinical setting.
Collapse
|
20
|
Ge L, Liu K, Liu Z, Lu M. Co-transplantation of autologous OM-MSCs and OM-OECs: a novel approach for spinal cord injury. Rev Neurosci 2016; 27:259-70. [PMID: 26574889 DOI: 10.1515/revneuro-2015-0030] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 10/09/2015] [Indexed: 11/15/2022]
Abstract
AbstractSpinal cord injury (SCI) is a disastrous injury that leads to motor and sensory dysfunctions in patients. In recent years, co-transplantation has become an increasingly used therapeutic treatment for patients with SCI. Both mesenchymal stem cells (MSCs) and olfactory-ensheathing cells (OECs) have been adopted to ameliorate SCI, with promising outcomes. Remarkable effects on the rehabilitation of patients with SCI have been achieved using MSCs. Olfactory mucosa (OM) MSCs from human OM are one of the most ideal cell resources for auto-transplantation in clinical application owing to their a high proliferation rate and multipotent capability. In addition, OECs derived from OM have been used to improve functional recovery of SCI and resulted in promising functional recovery in years. Accordingly, co-transplantation of OM-MSCs coupled with OM-OECs has been adopted to improve the recovery of SCI. Here we reviewed the reported applications of OM-MSCs and OM-OECs for SCI treatment and proposed that a novel combined strategy using both autologous OM-MSCs and OM-OECs would achieve a better approach for the treatment of SCI.
Collapse
Affiliation(s)
| | | | - Zhonghua Liu
- 2College of Life Sciences, Hunan Normal University, Changsha 410008, P.R. China
| | - Ming Lu
- 1Department of Neurosurgery, Second Affiliated Hospital of Hunan Normal University (163 Hospital of PLA), Changsha 410003, P.R. China
| |
Collapse
|
21
|
Alizadeh A, Dyck SM, Karimi-Abdolrezaee S. Myelin damage and repair in pathologic CNS: challenges and prospects. Front Mol Neurosci 2015; 8:35. [PMID: 26283909 PMCID: PMC4515562 DOI: 10.3389/fnmol.2015.00035] [Citation(s) in RCA: 132] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Accepted: 07/06/2015] [Indexed: 12/28/2022] Open
Abstract
Injury to the central nervous system (CNS) results in oligodendrocyte cell death and progressive demyelination. Demyelinated axons undergo considerable physiological changes and molecular reorganizations that collectively result in axonal dysfunction, degeneration and loss of sensory and motor functions. Endogenous adult oligodendrocyte precursor cells and neural stem/progenitor cells contribute to the replacement of oligodendrocytes, however, the extent and quality of endogenous remyelination is suboptimal. Emerging evidence indicates that optimal remyelination is restricted by multiple factors including (i) low levels of factors that promote oligodendrogenesis; (ii) cell death among newly generated oligodendrocytes, (iii) inhibitory factors in the post-injury milieu that impede remyelination, and (iv) deficient expression of key growth factors essential for proper re-construction of a highly organized myelin sheath. Considering these challenges, over the past several years, a number of cell-based strategies have been developed to optimize remyelination therapeutically. Outcomes of these basic and preclinical discoveries are promising and signify the importance of remyelination as a mechanism for improving functions in CNS injuries. In this review, we provide an overview on: (1) the precise organization of myelinated axons and the reciprocal axo-myelin interactions that warrant properly balanced physiological activities within the CNS; (2) underlying cause of demyelination and the structural and functional consequences of demyelination in axons following injury and disease; (3) the endogenous mechanisms of oligodendrocyte replacement; (4) the modulatory role of reactive astrocytes and inflammatory cells in remyelination; and (5) the current status of cell-based therapies for promoting remyelination. Careful elucidation of the cellular and molecular mechanisms of demyelination in the pathologic CNS is a key to better understanding the impact of remyelination for CNS repair.
Collapse
Affiliation(s)
- Arsalan Alizadeh
- Regenerative Medicine Program, Department of Physiology and Pathophysiology, Spinal Cord Research Centre, Faculty of Health Sciences, College of Medicine, University of Manitoba, Winnipeg MB, Canada
| | - Scott M Dyck
- Regenerative Medicine Program, Department of Physiology and Pathophysiology, Spinal Cord Research Centre, Faculty of Health Sciences, College of Medicine, University of Manitoba, Winnipeg MB, Canada
| | - Soheila Karimi-Abdolrezaee
- Regenerative Medicine Program, Department of Physiology and Pathophysiology, Spinal Cord Research Centre, Faculty of Health Sciences, College of Medicine, University of Manitoba, Winnipeg MB, Canada
| |
Collapse
|
22
|
Radtke C, Kocsis JD. Olfactory-ensheathing cell transplantation for peripheral nerve repair: update on recent developments. Cells Tissues Organs 2015; 200:48-58. [PMID: 25765445 DOI: 10.1159/000369006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2014] [Indexed: 11/19/2022] Open
Abstract
A number of important advances have been made using transplantation of olfactory-ensheathing cells (OECs) to provide therapeutic effects with regard to peripheral nerve repair. In vivo studies have focused on transplanting OECs to stimulate axonal regeneration and sprouting, increase remyelination, confer neuroprotection, enhance neovascularization and replace lost cells. OECs support axonal regeneration and remyelination with appropriate formation of axonal nodes of Ranvier with improvement of nerve conduction velocity. Current work using gene profiling and proteomics is identifying potential therapeutic differences between OECs harvested from nasal mucosa and the olfactory bulb and genes that OECs express that may be conducive to neural repair. OECs derived from nasal mucosa are of clinical interest since the cells could potentially be harvested from a patient and used for autotransplantation. Various nerve scaffolds and materials have been used for nerve repair and recent studies have examined OECs in combination with various supportive materials, including nanoparticles and scaffolds for peripheral nerve substance defects. This review will discuss the use of OECs in nerve repair and nerve defect injuries with specific emphasis on differences between OECs derived from the olfactory bulb and the olfactory mucosa.
Collapse
|
23
|
Faroni A, Mobasseri SA, Kingham PJ, Reid AJ. Peripheral nerve regeneration: experimental strategies and future perspectives. Adv Drug Deliv Rev 2015; 82-83:160-7. [PMID: 25446133 DOI: 10.1016/j.addr.2014.11.010] [Citation(s) in RCA: 366] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2014] [Revised: 09/01/2014] [Accepted: 11/08/2014] [Indexed: 12/15/2022]
Abstract
Peripheral nerve injuries represent a substantial clinical problem with insufficient or unsatisfactory treatment options. This review summarises all the events occurring after nerve damage at the level of the cell body, the site of injury and the target organ. Various experimental strategies to improve neuronal survival, axonal regeneration and target reinnervation are described including pharmacological approaches and cell-based therapies. Given the complexity of nerve regeneration, further studies are needed to address the biology of nerve injury, to improve the interaction with implantable scaffolds, and to implement cell-based therapies in nerve tissue engineering.
Collapse
|
24
|
Chou RH, Lu CY, Fan JR, Yu YL, Shyu WC. The potential therapeutic applications of olfactory ensheathing cells in regenerative medicine. Cell Transplant 2015; 23:567-71. [PMID: 24816451 DOI: 10.3727/096368914x678508] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Olfactory ensheathing cells (OECs) are unique glia cells restricted to the primary olfactory system including the olfactory mucosa, olfactory nerve, and the outer nerve layer of the olfactory bulb. OECs guide growing olfactory axons from the neurons of the nasal cavity olfactory mucosa to the olfactory bulb to connect both the peripheral nervous system (PNS) and central nervous system (CNS). Based on these specialized abilities of OECs, transplantation of OECs to injury sites has been widely investigated for their potential therapeutic applications in neural repair in different injuries. In this article, we reviewed the properties of OECs and their roles in olfactory regeneration and in treatment of different injuries including spinal cord injury, PNS injury, and stroke and neurodegenerative diseases.
Collapse
Affiliation(s)
- Ruey-Hwang Chou
- Graduate Institute of Cancer Biology, Center for Molecular Medicine, China Medical University, Taichung, Taiwan
| | | | | | | | | | | |
Collapse
|
25
|
Gu X, Ding F, Williams DF. Neural tissue engineering options for peripheral nerve regeneration. Biomaterials 2014; 35:6143-56. [PMID: 24818883 DOI: 10.1016/j.biomaterials.2014.04.064] [Citation(s) in RCA: 411] [Impact Index Per Article: 41.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2014] [Accepted: 04/16/2014] [Indexed: 12/19/2022]
Abstract
Tissue engineered nerve grafts (TENGs) have emerged as a potential alternative to autologous nerve grafts, the gold standard for peripheral nerve repair. Typically, TENGs are composed of a biomaterial-based template that incorporates biochemical cues. A number of TENGs have been used experimentally to bridge long peripheral nerve gaps in various animal models, where the desired outcome is nerve tissue regeneration and functional recovery. So far, the translation of TENGs to the clinic for use in humans has met with a certain degree of success. In order to optimize the TENG design and further approach the matching of TENGs with autologous nerve grafts, many new cues, beyond the traditional ones, will have to be integrated into TENGs. Furthermore, there is a strong requirement for monitoring the real-time dynamic information related to the construction of TENGs. The aim of this opinion paper is to specifically and critically describe the latest advances in the field of neural tissue engineering for peripheral nerve regeneration. Here we delineate new attempts in the design of template (or scaffold) materials, especially in the context of biocompatibility, the choice and handling of support cells, and growth factor release systems. We further discuss the significance of RNAi for peripheral nerve regeneration, anticipate the potential application of RNAi reagents for TENGs, and speculate on the possible contributions of additional elements, including angiogenesis, electrical stimulation, molecular inflammatory mediators, bioactive peptides, antioxidant reagents, and cultured biological constructs, to TENGs. Finally, we consider that a diverse array of physicochemical and biological cues must be orchestrated within a TENG to create a self-consistent coordinated system with a close proximity to the regenerative microenvironment of the peripheral nervous system.
Collapse
Affiliation(s)
- Xiaosong Gu
- Jiangsu Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, JS 226001, China.
| | - Fei Ding
- Jiangsu Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, JS 226001, China
| | - David F Williams
- Wake Forest Institute of Regenerative Medicine, Winston-Salem, NC, USA.
| |
Collapse
|
26
|
Biological Roles of Olfactory Ensheathing Cells in Facilitating Neural Regeneration: A Systematic Review. Mol Neurobiol 2014; 51:168-79. [DOI: 10.1007/s12035-014-8664-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 02/18/2014] [Indexed: 10/25/2022]
|
27
|
Guerout N, Paviot A, Bon-Mardion N, Honoré A, Obongo R, Duclos C, Marie JP. Transplantation of olfactory ensheathing cells to evaluate functional recovery after peripheral nerve injury. J Vis Exp 2014:e50590. [PMID: 24637657 DOI: 10.3791/50590] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Olfactory ensheathing cells (OECs) are neural crest cells which allow growth and regrowth of the primary olfactory neurons. Indeed, the primary olfactory system is characterized by its ability to give rise to new neurons even in adult animals. This particular ability is partly due to the presence of OECs which create a favorable microenvironment for neurogenesis. This property of OECs has been used for cellular transplantation such as in spinal cord injury models. Although the peripheral nervous system has a greater capacity to regenerate after nerve injury than the central nervous system, complete sections induce misrouting during axonal regrowth in particular after facial of laryngeal nerve transection. Specifically, full sectioning of the recurrent laryngeal nerve (RLN) induces aberrant axonal regrowth resulting in synkinesis of the vocal cords. In this specific model, we showed that OECs transplantation efficiently increases axonal regrowth. OECs are constituted of several subpopulations present in both the olfactory mucosa (OM-OECs) and the olfactory bulbs (OB-OECs). We present here a model of cellular transplantation based on the use of these different subpopulations of OECs in a RLN injury model. Using this paradigm, primary cultures of OB-OECs and OM-OECs were transplanted in Matrigel after section and anastomosis of the RLN. Two months after surgery, we evaluated transplanted animals by complementary analyses based on videolaryngoscopy, electromyography (EMG), and histological studies. First, videolaryngoscopy allowed us to evaluate laryngeal functions, in particular muscular cocontractions phenomena. Then, EMG analyses demonstrated richness and synchronization of muscular activities. Finally, histological studies based on toluidine blue staining allowed the quantification of the number and profile of myelinated fibers. All together, we describe here how to isolate, culture, identify and transplant OECs from OM and OB after RLN section-anastomosis and how to evaluate and analyze the efficiency of these transplanted cells on axonal regrowth and laryngeal functions.
Collapse
Affiliation(s)
- Nicolas Guerout
- UPRES EA3830, Institute for Research and Innovation in Biomedicine, University of Rouen; Neuroscience, Karolinska Institutet;
| | - Alexandre Paviot
- UPRES EA3830, Institute for Research and Innovation in Biomedicine, University of Rouen; Otorhinolaryngology, Head and Neck Surgery Department, Rouen University Hospital
| | - Nicolas Bon-Mardion
- UPRES EA3830, Institute for Research and Innovation in Biomedicine, University of Rouen; Otorhinolaryngology, Head and Neck Surgery Department, Rouen University Hospital
| | - Axel Honoré
- UPRES EA3830, Institute for Research and Innovation in Biomedicine, University of Rouen
| | - Rais Obongo
- UPRES EA3830, Institute for Research and Innovation in Biomedicine, University of Rouen; Otorhinolaryngology, Head and Neck Surgery Department, Amiens University Hospital
| | - Célia Duclos
- UPRES EA3830, Institute for Research and Innovation in Biomedicine, University of Rouen
| | - Jean-Paul Marie
- UPRES EA3830, Institute for Research and Innovation in Biomedicine, University of Rouen; Otorhinolaryngology, Head and Neck Surgery Department, Rouen University Hospital
| |
Collapse
|
28
|
Intravenous transplantation of mesenchymal stromal cells to enhance peripheral nerve regeneration. BIOMED RESEARCH INTERNATIONAL 2013; 2013:573169. [PMID: 24459671 PMCID: PMC3888686 DOI: 10.1155/2013/573169] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 10/07/2013] [Accepted: 10/07/2013] [Indexed: 12/16/2022]
Abstract
Peripheral nerve injury is a common and devastating complication after trauma and can cause irreversible impairment or even complete functional loss of the affected limb. While peripheral nerve repair results in some axonal regeneration and functional recovery, the clinical outcome is not optimal and research continues to optimize functional recovery after nerve repair. Cell transplantation approaches are being used experimentally to enhance regeneration. Intravenous infusion of mesenchymal stromal cells (MSCs) into spinal cord injury and stroke was shown to improve functional outcome. However, the repair potential of intravenously transplanted MSCs in peripheral nerve injury has not been addressed yet. Here we describe the impact of intravenously infused MSCs on functional outcome in a peripheral nerve injury model. Rat sciatic nerves were transected followed, by intravenous MSCs transplantation. Footprint analysis was carried out and 21 days after transplantation, the nerves were removed for histology. Labelled MSCs were found in the sciatic nerve lesion site after intravenous injection and regeneration was improved. Intravenously infused MSCs after acute peripheral nerve target the lesion site and survive within the nerve and the MSC treated group showed greater functional improvement. The results of study suggest that nerve repair with cell transplantation could lead to greater functional outcome.
Collapse
|
29
|
Li Y, Chen L, Zhao Y, Bao J, Xiao J, Liu J, Jiang X, Zhou C, Wang H, Huang H. Intracranial transplant of olfactory ensheathing cells can protect both upper and lower motor neurons in amyotrophic lateral sclerosis. Cell Transplant 2013; 22 Suppl 1:S51-65. [PMID: 23993044 DOI: 10.3727/096368913x672208] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal disease that involves the degeneration of cortical and spinal motor neurons. Mutant SOD1(G93A) rats constitute a good animal model for this pathological condition. We have previously demonstrated that transplantation of neonatal olfactory ensheathing cells (OECs) into the dorsal funiculus of the spinal cord of mutant SOD1(G93A) transgenic rats increases the survival of spinal motor neurons and remyelinates the impaired axons through the pyramidal tract. In the present study, we examine whether intracranial cell implantation could also exert a similar effect on cortical motor neurons and on the lower motor neurons in the spinal cord. We injected OECs from the bulb of 7-day-old GFP green rats into the corona radiata of adult SOD1 mutant rats stereotaxically to observe any changes of the upper motor neurons as well as the lower motor neurons. We found that more motor neurons at both the motor cortices and ventral horns of the spinal cord survived in grafted ALS rats than in control rats. Prolonged survival and behavioral tests including a screen test, hind limb extension, rotarod, and gait control showed that the treated animals were better than the control group. This manuscript is published as part of the International Association of Neurorestoratology (IANR) supplement issue of Cell Transplantation.
Collapse
|
30
|
Luo Y, Zou Y, Yang L, Liu J, Liu S, Liu J, Zhou X, Zhang W, Wang T. Transplantation of NSCs with OECs alleviates neuropathic pain associated with NGF downregulation in rats following spinal cord injury. Neurosci Lett 2013; 549:103-8. [DOI: 10.1016/j.neulet.2013.06.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 05/27/2013] [Accepted: 06/02/2013] [Indexed: 01/02/2023]
|
31
|
Geuna S, Gnavi S, Perroteau I, Tos P, Battiston B. Tissue Engineering and Peripheral Nerve Reconstruction. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2013; 108:35-57. [DOI: 10.1016/b978-0-12-410499-0.00002-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
32
|
Jiang H, Qu W, Li Y, Zhong W, Zhang W. Platelet-derived growth factors-BB and fibroblast growth factors-base induced proliferation of Schwann cells in a 3D environment. Neurochem Res 2012. [PMID: 23179587 DOI: 10.1007/s11064-012-0925-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The proliferation of neonatal Schwann cells (SCs) in response to mitogenic agents has been well analyzed in vitro (mono-layer-culture method, 2D environment), but not in vivo (3D environment). To assess the mitogenic effect of platelet-derived growth factors-BB (PDGF-BB), Fibroblast Growth Factors-base (bFGF), and their combinations for SCs in collagen gel (three-dimensional, 3D environment), we have developed an integrated microfluidic device on which can reproducibly measure the proliferation from small number of cells (1-100). The rat SCs were cultured for 4 week at the different concentrations of growth factors generated by concentration gradient generator. In the collagen gel culture, almost all of the cells in colonies presented a round cell morphology and maintained their round morphology by the 4th week. The results showed that PDGF-BB and bFGF are all capable of moderately stimulating SCs growth and every group reached the peak in the growth curve at 3 weeks. Moreover, the proliferation test using the conventional method was performed simultaneously and revealed similar results. The biggest difference between 2D and 3D was that cells decrease more remarkable in 3D than that in 2D at 4 weeks. And at 2 and 3 weeks, the growth rate in the collagen gel with 7.14/2.86 and 8.57/1.43 ng/mL groups was higher than that in the mono-layer culture. Our results showed that PDGF-BB and bFGF are capable of moderately stimulating neonatal SCs growth, respectively and synergistically, and the microfluidic technique is highly controllable, contamination free, fully automatic, and inexpensive.
Collapse
Affiliation(s)
- Huajun Jiang
- Department of Orthopaedics, First Affiliated Hospital of Dalian Medical University, Zhongshan Road No. 222, Dalian 116011, China
| | | | | | | | | |
Collapse
|
33
|
Radtke C, Kocsis JD. Peripheral nerve injuries and transplantation of olfactory ensheathing cells for axonal regeneration and remyelination: fact or fiction? Int J Mol Sci 2012. [PMID: 23202929 PMCID: PMC3497303 DOI: 10.3390/ijms131012911] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Successful nerve regeneration after nerve trauma is not only important for the restoration of motor and sensory functions, but also to reduce the potential for abnormal sensory impulse generation that can occur following neuroma formation. Satisfying functional results after severe lesions are difficult to achieve and the development of interventional methods to achieve optimal functional recovery after peripheral nerve injury is of increasing clinical interest. Olfactory ensheathing cells (OECs) have been used to improve axonal regeneration and functional outcome in a number of studies in spinal cord injury models. The rationale is that the OECs may provide trophic support and a permissive environment for axonal regeneration. The experimental transplantation of OECs to support and enhance peripheral nerve regeneration is much more limited. This chapter reviews studies using OECs as an experimental cell therapy to improve peripheral nerve regeneration.
Collapse
Affiliation(s)
- Christine Radtke
- Department of Plastic, Hand- and Reconstructive Surgery, Hannover Medical School, 30625 Hannover, Germany
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT 06510, USA; E-Mail:
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT 06516, USA
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +49-511-532-8864; Fax: +49-511-532-8890
| | - Jeffery D. Kocsis
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT 06510, USA; E-Mail:
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT 06516, USA
| |
Collapse
|
34
|
Liu N, Tang Z, Yu Z, Xie M, Zhang Y, Yang E, Xu S. Morphological properties and proliferation analysis of olfactory ensheathing cells seeded onto three-dimensional collagen-heparan sulfate biological scaffolds. Neural Regen Res 2012; 7:1213-9. [PMID: 25709618 PMCID: PMC4336954 DOI: 10.3969/j.issn.1673-5374.2012.16.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2012] [Accepted: 04/23/2012] [Indexed: 11/30/2022] Open
Abstract
This study aimed to examine the differences in the morphological properties and proliferation of olfactory ensheathing cells in three-dimensional culture on collagen-heparan sulfate biological scaffolds and in two-dimensional culture on common flat culture plates. The proliferation rate of olfactory ensheathing cells in three-dimensional culture was higher than that in two-dimensional culture, as detected by an MTT assay. In addition, more than half of the olfactory ensheathing cells subcultured using the trypsinization method in three-dimensional culture displayed a spindly Schwann cell-like morphology with extremely long processes, while they showed a flat astrocyte-like morphology in two-dimensional culture. Moreover, spindle-shaped olfactory ensheathing cells tended to adopt an elongated bipolar morphology under both culture conditions. Experimental findings indicate that the morphological properties and proliferation of olfactory ensheathing cells in three-dimensional culture on collagen-heparan sulfate biological scaffolds are better than those in two-dimensional culture.
Collapse
Affiliation(s)
- Na Liu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Zhouping Tang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Zhiyuan Yu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Minjie Xie
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Yu Zhang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Erfang Yang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Shabei Xu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| |
Collapse
|
35
|
Janssen I, Reimers K, Allmeling C, Matthes S, Vogt PM, Radtke C. Schwann cell metabolic activity in various short-term holding conditions: implications for improved nerve graft viability. Int J Otolaryngol 2012; 2012:742183. [PMID: 22272205 PMCID: PMC3261467 DOI: 10.1155/2012/742183] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2011] [Revised: 09/26/2011] [Accepted: 09/30/2011] [Indexed: 12/01/2022] Open
Abstract
Strategies for improvement of nerve regeneration and optimal conditions to prevent Schwann cell (SC) loss within a nerve transplant procedure are critical. The purpose of this study was to examine SC viability, which plays an important role in peripheral nerve regeneration, under various incubation conditions up to three hours. To address this issue, Schwann cell metabolic activity was determined using different independent test methods. The following experimental conditions were compared: SCs prepared from nerves were incubated in (1) isotonic saline solution (2) Dulbecco's modified Eagles medium as used for cell culturing, (3) Hannover bioreactor medium, and (4) Leibovitz's medium. SC metabolic activity of excised rat sciatic nerve was determined at 4°C, 18°C, and 37°C over 3 hrs. The results indicate that SC activity was optimized by the usage of Leibovitz's medium or HBRM at 37°C. Greater SC viability at the time of surgical nerve grafting could contribute to improved axonal regeneration and remyelination after nerve transplantation, and thus more successful functional recovery.
Collapse
Affiliation(s)
- Insa Janssen
- Department of Plastic, Hand and Reconstructive Surgery, Hannover Medical School, 30625 Hannover, Germany
| | - Kerstin Reimers
- Department of Plastic, Hand and Reconstructive Surgery, Hannover Medical School, 30625 Hannover, Germany
| | - Christina Allmeling
- Department of Plastic, Hand and Reconstructive Surgery, Hannover Medical School, 30625 Hannover, Germany
| | - Stella Matthes
- Department of Plastic, Hand and Reconstructive Surgery, Hannover Medical School, 30625 Hannover, Germany
| | - Peter M. Vogt
- Department of Plastic, Hand and Reconstructive Surgery, Hannover Medical School, 30625 Hannover, Germany
| | - Christine Radtke
- Department of Plastic, Hand and Reconstructive Surgery, Hannover Medical School, 30625 Hannover, Germany
| |
Collapse
|
36
|
Raisman G, Barnett SC, Ramón-Cueto A. Repair of central nervous system lesions by transplantation of olfactory ensheathing cells. HANDBOOK OF CLINICAL NEUROLOGY 2012; 109:541-549. [PMID: 23098735 DOI: 10.1016/b978-0-444-52137-8.00033-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Clinical conditions affecting the central nervous system (CNS) fall into two main categories - degenerative conditions in which nerve cells are lost (Alzheimer's, Parkinson's, Huntington's disease, etc.), and traumatic insults which sever nerve fibers but leave their cell bodies and initial parts of the severed axons intact (spinal cord injury, cerebrovascular accidents, or tumors affecting fiber tracts). After injuries of this second type, the survival of the nerve cell bodies and the local sprouting at the severed ends of the proximal stumps of the axons raise the tantalizing possibility of one day learning how to induce these severed fibers to regenerate to their original targets and restore lost functions. This chapter gives an overview of current research into the strategy of transplantation of olfactory ensheathing cells into axotomizing injuries.
Collapse
|
37
|
CNPase expression in olfactory ensheathing cells. J Biomed Biotechnol 2011; 2011:608496. [PMID: 22174557 PMCID: PMC3228405 DOI: 10.1155/2011/608496] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2011] [Accepted: 08/17/2011] [Indexed: 11/18/2022] Open
Abstract
A large body of work supports the proposal that transplantation of olfactory ensheathing cells (OECs) into nerve or spinal cord injuries can promote axonal regeneration and remyelination. Yet, some investigators have questioned whether the transplanted OECs associate with axons and form peripheral myelin, or if they recruit endogenous Schwann cells that form myelin. Olfactory bulbs from transgenic mice expressing the enhanced green fluorescent protein (eGFP) under the control of the 2-3-cyclic nucleotide 3-phosphodiesterase (CNPase) promoter were studied. CNPase is expressed in myelin-forming cells throughout their lineage. We examined CNPase expression in both in situ in the olfactory bulb and in vitro to determine if OECs express CNPase commensurate with their myelination potential. eGFP was observed in the outer nerve layer of the olfactory bulb. Dissociated OECs maintained in culture had both intense eGFP expression and CNPase immunostaining. Transplantation of OECs into transected peripheral nerve longitudinally associated with the regenerated axons. These data indicate that OECs in the outer nerve layer of the olfactory bulb of CNPase transgenic mice express CNPase. Thus, while OECs do not normally form myelin on olfactory nerve axons, their expression of CNPase is commensurate with their potential to form myelin when transplanted into injured peripheral nerve.
Collapse
|
38
|
Perspectives in regeneration and tissue engineering of peripheral nerves. Ann Anat 2011; 193:334-40. [DOI: 10.1016/j.aanat.2011.03.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2011] [Revised: 03/04/2011] [Accepted: 03/07/2011] [Indexed: 12/13/2022]
|
39
|
de Corgnol AC, Guérout N, Duclos C, Vérin E, Marie JP. Olfactory ensheathing cells in a rat model of laryngeal reinnervation. Ann Otol Rhinol Laryngol 2011; 120:273-80. [PMID: 21585159 DOI: 10.1177/000348941112000410] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVES Olfactory ensheathing cells have been used successfully for recovery of nervous system lesions. The aim of our study was to determine whether olfactory ensheathing cells from the olfactory bulb or olfactory mucosa were able to improve functional recovery in a laryngeal reinnervation animal model. METHODS Fifty-nine rats were divided into 6 groups. A group without nerve section (group 1; n=10) and a group without anastomosis (group 2; n=11) served as controls. Right vagus nerve section and immediate anastomosis (nonselective reinnervation) was performed in 4 other groups, as follows. In group 3 (n=10), there was selective reinnervation without any addition of substance; groups 4 (n=10), 5 (n=10), and 6 (n=8) received, on the section and anastomosis site, and at the same time, cultivated olfactory bulb, cultivated olfactory mucosa, and noncultivated olfactory mucosa from inbred rats, respectively. Three months later, videolaryngoscopy with vocal fold movement measurements, electromyography, and histologic examination were performed. RESULTS The best right vocal fold angular movement (3.05 degrees +/- 1.14 degrees) was observed in group 5 with cultivated olfactory mucosa, versus group 3 (-0.28 degrees +/- 1.51 degrees; p = 0.06). The relative angular vocal fold movement was better in group 5 (p = 0.05). The mobility score was 0.6 +/- 0.27 for group 3 and 1.4 +/- 0.31 for group 5 (p = 0.07). Less synkinesis was observed in the reinnervated groups with cell addition, particularly with noncultivated olfactory mucosa (group 6; p = 0.05). CONCLUSIONS Olfactory ensheathing cells obtained from olfactory mucosa cultures seem to improve functional laryngeal reinnervation in a rat model of nonselective vagus nerve section and anastomosis.
Collapse
Affiliation(s)
- Anne-Christine de Corgnol
- Experimental Surgery Laboratory, EA 3830 GRHV (Groupe de Recherche sur le Handicap Ventilatoire [Research Group on Respiratory Handicap]), School of Medicine, University of Rouen, France
| | | | | | | | | |
Collapse
|
40
|
Ramón-Cueto A, Muñoz-Quiles C. Clinical application of adult olfactory bulb ensheathing glia for nervous system repair. Exp Neurol 2011; 229:181-94. [DOI: 10.1016/j.expneurol.2010.10.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Revised: 09/30/2010] [Accepted: 10/02/2010] [Indexed: 12/13/2022]
|
41
|
Sasaki M, Lankford KL, Radtke C, Honmou O, Kocsis JD. Remyelination after olfactory ensheathing cell transplantation into diverse demyelinating environments. Exp Neurol 2011; 229:88-98. [DOI: 10.1016/j.expneurol.2011.01.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Revised: 01/10/2011] [Accepted: 01/16/2011] [Indexed: 01/07/2023]
|
42
|
Roet KCD, Bossers K, Franssen EHP, Ruitenberg MJ, Verhaagen J. A meta-analysis of microarray-based gene expression studies of olfactory bulb-derived olfactory ensheathing cells. Exp Neurol 2011; 229:10-45. [PMID: 21396936 DOI: 10.1016/j.expneurol.2011.03.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Revised: 12/28/2010] [Accepted: 03/02/2011] [Indexed: 12/23/2022]
Abstract
Genome wide transcriptional profiling and large scale proteomics have emerged as two powerful methods to dissect the molecular properties of specific neural tissues or cell types on a global scale. Several genome-wide transcriptional profiling and proteomics studies have been published on cultured olfactory ensheathing cells (OEC). In this article we present a meta-analysis of all five published and publicly available micro-array gene expression datasets of cultured early-passage-OB-OEC with other cell types (Schwann cells, late-passage-OB-OEC, mucosa-OEC, an OEC cell line, and acutely dissected OEC). The aim of this meta-analysis is to identify genes and molecular pathways that are found in multiple instead of one isolated study. 454 Genes were detected in at least three out of five microarray datasets. In this "Top-list", genes involved in the biological processes "growth of neurites", "blood vessel development", "migration of cells" and "immune response" were strongly overrepresented. By applying network analysis tools, molecular networks were constructed and Hub-genes were identified that may function as key genes in the above mentioned interrelated processes. We also identified 7 genes (ENTPD2, MATN2, CTSC, PTHLH, GLRX1, COL27A1 and ID2) with uniformly higher or lower expression in early-passage-OB-OEC in all five microarray comparisons. These genes have diverse but intriguing roles in neuroprotection, neurite extension and/or tissue repair. Our meta-analysis provides novel insights into the molecular basis of OB-OEC-mediated neural repair and can serve as a repository for investigators interested in the molecular biology of OEC. This article is part of a Special Issue entitled: Understanding olfactory ensheathing glia and their prospect for nervous system repair.
Collapse
Affiliation(s)
- Kasper C D Roet
- Department of Neuroregeneration, Netherlands Institute for Neuroscience, Meibergdreef 47, Amsterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
43
|
Radtke C, Wewetzer K, Reimers K, Vogt PM. Transplantation of Olfactory Ensheathing Cells as Adjunct Cell Therapy for Peripheral Nerve Injury. Cell Transplant 2011; 20:145-52. [DOI: 10.3727/096368910x522081] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Traumatic events, such as work place trauma or motor vehicle accident violence, result in a significant number of severe peripheral nerve lesions, including nerve crush and nerve disruption defects. Transplantation of myelin-forming cells, such as Schwann cells (SCs) or olfactory ensheathing cells (OECs), may be beneficial to the regenerative process because the applied cells could mediate neurotrophic and neuroprotective effects by secretion of chemokines. Moreover, myelin-forming cells are capable of bridging the repair site by establishing an environment permissive to axonal regeneration. The cell types that are subject to intense investigation include SCs and OECs either derived from the olfactory bulb or the olfactory mucosa, stromal cells from bone marrow (mesenchymal stem cells, MSCs), and adipose tissue-derived cells. OECs reside in the peripheral and central nervous system and have been suggested to display unique regenerative properties. However, so far OECs were mainly used in experimental studies to foster central regeneration and it was not until recently that their regeneration-promoting activity for the peripheral nervous system was recognized. In the present review, we summarize recent experimental evidence regarding the regenerative effects of OECs applied to the peripheral nervous system that may be relevant to design novel autologous cell transplantation therapies.
Collapse
Affiliation(s)
- Christine Radtke
- Department of Plastic, Hand- and Reconstructive Surgery, Hannover Medical School, Hannover, Germany
| | - Konstantin Wewetzer
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
- Department of Functional and Applied Anatomy, Center of Anatomy, Hannover Medical School, Hannover, Germany
- Center of Systems Neuroscience, Hannover, Germany
| | - Kerstin Reimers
- Department of Plastic, Hand- and Reconstructive Surgery, Hannover Medical School, Hannover, Germany
| | - Peter M. Vogt
- Department of Plastic, Hand- and Reconstructive Surgery, Hannover Medical School, Hannover, Germany
| |
Collapse
|
44
|
Guérout N, Duclos C, Drouot L, Abramovici O, Bon-Mardion N, Lacoume Y, Jean L, Boyer O, Marie JP. Transplantation of olfactory ensheathing cells promotes axonal regeneration and functional recovery of peripheral nerve lesion in rats. Muscle Nerve 2011; 43:543-51. [PMID: 21305567 DOI: 10.1002/mus.21907] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2010] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Olfactory ensheathing cells (OECs) hold promise for cell therapy because they may promote regeneration of the central nervous system. However, OECs have been less studied after peripheral nerve injury (PNI). The purpose of this investigation was to determine the effect of OEC transplantation on a severe sciatic nerve (SN) lesion. METHODS OECs were injected in rats after section and 2-cm resection of the SN. RESULTS Three months after therapy, muscle strength and morphometric studies showed complete restoration of the contractile properties of the gastrocnemius and complete repair of the SN. Immunohistochemistry and RT-PCR studies indicated an increase in the presence of neurotrophic factors. Interestingly, tracking of green fluorescent protein (GFP)-positive OECs showed that no OECs were present in the SN. DISCUSSION Our results demonstrate that, after severe PNI, OECs have remarkable potential for nerve regeneration by creating a favorable microenvironment.
Collapse
Affiliation(s)
- Nicolas Guérout
- Experimental Surgery Laboratory, Groupe de Recherche sur le Handicap Ventilatoire, UPRES EA 3830, European Institute for Peptide Research (IFRMP 23), Institute for Medical Research, Faculty of Medicine and Pharmacy, University of Rouen, 22 Boulevard Gambetta, 76183 Rouen, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Wang X, Luo E, Li Y, Hu J. Schwann-like mesenchymal stem cells within vein graft facilitate facial nerve regeneration and remyelination. Brain Res 2011; 1383:71-80. [PMID: 21295556 DOI: 10.1016/j.brainres.2011.01.098] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Revised: 01/12/2011] [Accepted: 01/26/2011] [Indexed: 12/22/2022]
Abstract
To compare the ability of bone marrow mesenchymal stem cells (MSCs) and transdifferentiated Schwann-like MSCs (tMSCs) in promoting transected facial nerve branches repair in a rabbit model of injury, rabbit tMSCs were induced from bone marrow MSCs, and Schwann cells markers were assessed by Western blot analysis. The left facial nerve buccal branch was transected to form a 1-cm gap in 54 rabbits, and the gaps were immediately bridged using autologous vein grafts. Animals were then randomly assigned to three groups: vein graft (VG); VG+MSCs, and VG+tMSCs (n=18/group). Saline, autologous MSCs, and Schwann-like tMSCs were injected into vein conduits. Rabbits were sacrificed at week 4, 8, and 16 post-surgery. Facial nerves regeneration and myelination were analyzed by functional, immunohistochemical, and morphological tests. In addition, myelin protein genes expression, including peripheral myelin protein 22 (PMP22), myelin protein zero (P0), and myelin basic protein (MBP), in transplanted cells in vivo were assayed using real time quantitative-reverse transcription-polymerase chain reaction (RT-PCR). Rabbit tMSCs expressed Schwann cells markers, and results demonstrated better facial nerve functional recovery in the VG+tMSCs group, with earlier horseradish peroxidase (HRP) positive neurons appearance and a greater number of MBP positive myelinated axons since 4weeks after transplantation. Moreover, RT-PCR analysis showed transplanted tMSCs in vivo expressed higher myelin proteins at mRNA level than those of MSCs during the first 8weeks of neural regeneration. This study suggests that rabbit transdifferentiated Schwann-like MSCs within autogenous vein graft accelerate transected axons regeneration and achieve better remyelinization.
Collapse
Affiliation(s)
- Xuemei Wang
- The State Key Laboratory of Oral Diseases, Sichuan University, Chengdu 610041, China
| | | | | | | |
Collapse
|
46
|
Li BC, Jiao SS, Xu C, You H, Chen JM. PLGA conduit seeded with olfactory ensheathing cells for bridging sciatic nerve defect of rats. J Biomed Mater Res A 2010; 94:769-80. [PMID: 20336740 DOI: 10.1002/jbm.a.32727] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
PLGA is thought to be a promising material for nerve scaffold. OECs have been shown to promote axon outgrowth and myelination following peripheral nerve transection. This study assessed the compatibility between PLGA and OECs in vitro, and evaluated the effect of PLGA conduit filled with OECs and extracellular matrix gel (ECM) (POE group) on 10 mm-defect sciatic nerve of rats. Silicon-OECs-EMC (SOE group), PLGA-ECM (PE group), and silicon-ECM (SE group)-were used as the controls. The survival and distribution of OECs in vivo, neurohistology and neurofunction of the bridged nerve, were quantitatively evaluated from 1 week to 12 weeks after surgery. PLGA possessed complete compatibility with OECs. After implantation, OECs migrated along the axis of the nerve and survived longer in the POE group than in the SOE group. Gross recovery of the animal, like ulcerious and autophagical rate as well as relative diameter recovery rate of the fiber, was more successful in the POE group than in other groups. The number of the fiber in the middle and distal segments of bridged sites and neurons in anterior horn of the spinal cord was increased in both OECs-contained groups, but the diameter and the myeline thickness of the fiber were increased only in the POE group. The nerve conduction velocity and the amplitude of compound muscle active potential were improved much successfully in the PLGA-guided group than in the silicon-guided group, but the best improvement was encountered in the POE group. Sciatic function index was not improved in all groups at 12 weeks after surgery due to the injury model. These results suggested that PLGA filled with OECs is a significant alternative to conventional autograft in repairing peripheral nerve defects, and OECs are potential seed cells for peripheral nerve tissue engineering.
Collapse
Affiliation(s)
- Bing-Cang Li
- Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China.
| | | | | | | | | |
Collapse
|
47
|
You H, Wei L, Liu Y, Oudega M, Jiao SS, Feng SN, Chen Y, Chen JM, Li BC. Olfactory ensheathing cells enhance Schwann cell-mediated anatomical and functional repair after sciatic nerve injury in adult rats. Exp Neurol 2010; 229:158-67. [PMID: 20832404 DOI: 10.1016/j.expneurol.2010.08.034] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Revised: 08/05/2010] [Accepted: 08/30/2010] [Indexed: 10/19/2022]
Abstract
Sciatic nerve injury results in axon damage, muscle degeneration, and loss of function. We compared the potential of Schwann cell (SC), olfactory ensheathing cell (OEC), or mixed SC/OEC transplants for anatomical and functional restoration after adult rat sciatic nerve transection. The cells were seeded into a 20mm long macroporous poly(dl-lactide-co-glycolide) acid conduit and grafted between the sciatic nerve stumps. Some rats received a conduit without cells (controls) or an autologous nerve graft, the clinical standard of care. Compared with SC transplants, axon regeneration was 25% less with OEC transplants but 28% more with SC/OEC transplants. Gastrocnemius muscle restoration was similar with a SC or OEC transplant and 35% better with a SC/OEC transplant. With SC transplants, motor and sensory function recovery and electrophysiological outcomes were similar as with OEC transplants and 33% better with SC/OEC transplants. Compared with the mixed SC/OEC transplants, axon regeneration was 21% better and gastrocnemius muscle restoration was 18% better with autologous peripheral nerve transplants, but these improvements did not translate into increased function and electrophysiological outcomes. Our results revealed that OEC synergistically improve SC mediated sciatic nerve repair. The data emphasized the promise of SC/OEC transplants as artificial nerves for peripheral nerve repair. This article is part of a Special Issue entitled: Understanding olfactory ensheathing glia and their prospect for nervous system repair.
Collapse
Affiliation(s)
- Hua You
- Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Madduri S, Gander B. Schwann cell delivery of neurotrophic factors for peripheral nerve regeneration. J Peripher Nerv Syst 2010; 15:93-103. [DOI: 10.1111/j.1529-8027.2010.00257.x] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
49
|
Chi GF, Kim MR, Kim DW, Jiang MH, Son Y. Schwann cells differentiated from spheroid-forming cells of rat subcutaneous fat tissue myelinate axons in the spinal cord injury. Exp Neurol 2010; 222:304-17. [DOI: 10.1016/j.expneurol.2010.01.008] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Revised: 01/07/2010] [Accepted: 01/08/2010] [Indexed: 02/07/2023]
|
50
|
Radtke C, Lankford KL, Wewetzer K, Imaizumi T, Fodor WL, Kocsis JD. Impaired spinal cord remyelination by long-term cultured adult porcine olfactory ensheathing cells correlates with altered in vitro phenotypic properties. Xenotransplantation 2010; 17:71-80. [DOI: 10.1111/j.1399-3089.2009.00562.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|