1
|
Forró T, Manu DR, Barbu-Tudoran L, Bălașa R. Astrocyte Dysfunction Reflected in Ischemia-Induced Astrocyte-Derived Extracellular Vesicles: A Pilot Study on Acute Ischemic Stroke Patients. Int J Mol Sci 2024; 25:12471. [PMID: 39596535 PMCID: PMC11594292 DOI: 10.3390/ijms252212471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/15/2024] [Accepted: 11/18/2024] [Indexed: 11/28/2024] Open
Abstract
Extracellular vesicles (EVs) secreted by astrocytes (ADEVs) mediate numerous biological processes, providing insights into damage, repair, and protection following ischemic stroke (IS). This pilot study aimed to broaden the current knowledge on the astrocyte response to ischemia by dynamically assessing the aquaporin-4 (AQP4) and glial cell line-derived neurotrophic factor (GDNF) as cargo proteins of these vesicles in eighteen acute IS patients and nine controls. EV proteins were detected by Western blotting and followed 24 h (D1), 7 days (D7), and one month (M1) after symptoms onset. The post-ischemic ADEV AQP4 and GDNF levels were higher at D1 compared to the control group (p = 0.006 and p = 0.023). Significant differences were observed in ADEV AQP4 during the three evaluated time points (n = 12, p = 0.013) and between D1 and D7 (z = 2.858, p = 0.012), but not in EV GDNF. There was a positive relationship between the severity of stroke at D1 according to the National Institutes of Health Stroke Scale, and ADEV AQP4 at D1 (r = 0.50, p = 0.031), as well as ADEV GDNF at D1 and D7 (r = 0.49, p = 0.035 and r = 0.53, p = 0.021, respectively). The release of EVs with distinct protein profiles can be an attractive platform for the development of biomarkers in IS.
Collapse
Affiliation(s)
- Timea Forró
- Doctoral School of Medicine and Pharmacy, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania;
| | - Doina Ramona Manu
- Center for Advanced Medical and Pharmaceutical Research, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania
| | - Lucian Barbu-Tudoran
- Electron Microscopy Laboratory, Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babes-Bolyai University, 400006 Cluj-Napoca, Romania;
- Electron Microscopy Integrated Laboratory, National Institute for Research and Development of Isotopic and Molecular Technologies, 400293 Cluj-Napoca, Romania
| | - Rodica Bălașa
- Department of Neurology, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania;
- 1st Neurology Clinic, County Emergency Clinical Hospital of Targu Mures, 540136 Targu Mures, Romania
| |
Collapse
|
2
|
Lewis MA, Lachgar-Ruiz M, Di Domenico F, Duddy G, Chen J, Fernandez S, Morin M, Williams G, Moreno Pelayo MA, Steel KP. Pathological mechanisms and candidate therapeutic approaches in the hearing loss of mice carrying human MIR96 mutations. Genome Med 2024; 16:121. [PMID: 39434156 PMCID: PMC11492784 DOI: 10.1186/s13073-024-01394-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 10/09/2024] [Indexed: 10/23/2024] Open
Abstract
BACKGROUND Progressive hearing loss is a common problem in the human population with no effective therapeutics currently available. However, it has a strong genetic contribution, and investigating the genes and regulatory interactions underlying hearing loss offers the possibility of identifying therapeutic candidates. Mutations in regulatory genes are particularly useful for this, and an example is the microRNA miR-96, a post-transcriptional regulator which controls hair cell maturation. Mice and humans carrying mutations in miR-96 all exhibit hearing impairment, in homozygosis if not in heterozygosis, but different mutations result in different physiological, structural and transcriptional phenotypes. METHODS Here we present our characterisation of two lines of mice carrying different human mutations knocked-in to Mir96. We have carried out auditory brainstem response tests to examine their hearing with age and after noise exposure and have used confocal and scanning electron microscopy to examine the ultrastructure of the organ of Corti and hair cell synapses. Bulk RNA-seq was carried out on the organs of Corti of postnatal mice, followed by bioinformatic analyses to identify candidate targets. RESULTS While mice homozygous for either mutation are profoundly deaf from 2 weeks old, the heterozygous phenotypes differ markedly, with only one mutation resulting in hearing impairment in heterozygosis. Investigations of the structural phenotype showed that one mutation appears to lead to synaptic defects, while the other has a much more severe effect on the hair cell stereociliary bundles. Transcriptome analyses revealed a wide range of misregulated genes in both mutants which were notably dissimilar. We used the transcriptome analyses to investigate candidate therapeutics, and tested one, finding that it delayed the progression of hearing loss in heterozygous mice. CONCLUSIONS Our work adds further support for the importance of the gain of novel targets in microRNA mutants and offers a proof of concept for the identification of pharmacological interventions to maintain hearing.
Collapse
Affiliation(s)
- Morag A Lewis
- Wolfson Sensory, Pain and Regeneration Centre, King's College London, Guy's Campus, London, SE1 1UL, UK.
| | - Maria Lachgar-Ruiz
- Wolfson Sensory, Pain and Regeneration Centre, King's College London, Guy's Campus, London, SE1 1UL, UK
| | - Francesca Di Domenico
- Wolfson Sensory, Pain and Regeneration Centre, King's College London, Guy's Campus, London, SE1 1UL, UK
| | - Graham Duddy
- Wellcome Sanger Institute, Hinxton, CB10 1SA, UK
| | - Jing Chen
- Wolfson Sensory, Pain and Regeneration Centre, King's College London, Guy's Campus, London, SE1 1UL, UK
| | - Sergio Fernandez
- Servicio de Genética, Hospital Universitario Ramón y Cajal, IRYCIS and Biomedical Network Research Centre On Rare Diseases (CIBERER), Km 9.100, Madrid, 28034, Spain
| | - Matias Morin
- Servicio de Genética, Hospital Universitario Ramón y Cajal, IRYCIS and Biomedical Network Research Centre On Rare Diseases (CIBERER), Km 9.100, Madrid, 28034, Spain
| | - Gareth Williams
- Wolfson Sensory, Pain and Regeneration Centre, King's College London, Guy's Campus, London, SE1 1UL, UK
| | - Miguel Angel Moreno Pelayo
- Servicio de Genética, Hospital Universitario Ramón y Cajal, IRYCIS and Biomedical Network Research Centre On Rare Diseases (CIBERER), Km 9.100, Madrid, 28034, Spain
| | - Karen P Steel
- Wolfson Sensory, Pain and Regeneration Centre, King's College London, Guy's Campus, London, SE1 1UL, UK
| |
Collapse
|
3
|
Missner AA, Sheykhsoltan M, Hakimi A, Hoa M. The role of selective serotonin reuptake inhibitors and tricyclic antidepressants in addressing reduction of Meniere's disease burden: A scoping review. World J Otorhinolaryngol Head Neck Surg 2024; 10:206-212. [PMID: 39233854 PMCID: PMC11369805 DOI: 10.1002/wjo2.128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 09/06/2024] Open
Abstract
Objective To assess the effect of selective serotonin reuptake inhibitors (SSRIs) and tricyclic antidepressants (TCAs) in reducing vertigo, tinnitus, and hearing loss among patients with Meniere's disease (MD). Data Sources The following databases were utilized in this scoping review: Ovid Medline, PubMed-NCBI, CINAHL, Cochrane Library, Web of Science, and Clinicaltrials.gov. Method Studies were identified through the following search phrases: "serotonin specific reuptake inhibitors" OR "tricyclic antidepressants" AND "Meniere's disease." References from included manuscripts were examined for possible inclusion of additional studies. Results The literature search yielded 23 results, which were screened by three independent reviewers. Seventeen studies and three duplicates were excluded. An examination of references from the included studies yielded two additional publications. A total of four published studies assessing SSRIs and TCAs among 147 patients with MD were ultimately included. Four studies described significant reductions in vertigo attack frequency among patients treated with either SSRIs or TCAs compared to their pretreatment baseline. Three studies assessed the drugs' effects on hearing, of which none found a significant difference among patients treated with SSRIs or TCAs. One study found a significant decrease in patient-reported tinnitus following treatment with TCAs or SSRIs compared to their pretreatment baseline. Conclusions Data exploring SSRIs and TCAs among patients with MD suggests that these medications may reduce the frequency of tinnitus and vertigo, although there was significant heterogeneity in outcome reporting. There remains a need for larger-scale prospective studies that emphasize objective data to evaluate their effectiveness in reducing common MD symptoms.
Collapse
Affiliation(s)
| | - Mana Sheykhsoltan
- Georgetown University School of MedicineWashingtonDistrict of ColumbiaUSA
| | - Amir Hakimi
- Department of Otolaryngology‐Head and Neck SurgeryGeorgetown University Medical CenterWashingtonDistrict of ColumbiaUSA
| | - Michael Hoa
- Department of Otolaryngology‐Head and Neck SurgeryGeorgetown University Medical CenterWashingtonDistrict of ColumbiaUSA
- Auditory Development and Restoration ProgramNational Institute on Deafness and Other Communication Disorders, National Institutes of HealthBethesdaMarylandUSA
| |
Collapse
|
4
|
Szwajca M, Kazek G, Śmierciak N, Mizera J, Pomierny-Chamiolo L, Szwajca K, Biesaga B, Pilecki M. GDNF and miRNA-29a as biomarkers in the first episode of psychosis: uncovering associations with psychosocial factors. Front Psychiatry 2024; 15:1320650. [PMID: 38645418 PMCID: PMC11027163 DOI: 10.3389/fpsyt.2024.1320650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 03/14/2024] [Indexed: 04/23/2024] Open
Abstract
Aim Schizophrenia involves complex interactions between biological and environmental factors, including childhood trauma, cognitive impairments, and premorbid adjustment. Predicting its severity and progression remains challenging. Biomarkers like glial cell line-derived neurotrophic factor (GDNF) and miRNA-29a may bridge biological and environmental aspects. The goal was to explore the connections between miRNAs and neural proteins and cognitive functioning, childhood trauma, and premorbid adjustment in the first episode of psychosis (FEP). Method This study included 19 FEP patients who underwent clinical evaluation with: the Childhood Trauma Questionnaire (CTQ), the Premorbid Adjustment Scale (PAS), the Positive and Negative Syndrome Scale (PANSS), and the Montreal Cognitive Assessment Scale (MoCA). Multiplex assays for plasma proteins were conducted with Luminex xMAP technology. Additionally, miRNA levels were quantitatively determined through RNA extraction, cDNA synthesis, and RT-qPCR on a 7500 Fast Real-Time PCR System. Results Among miRNAs, only miR-29a-3p exhibited a significant correlation with PAS-C scores (r = -0.513, p = 0.025) and cognitive improvement (r = -0.505, p = 0.033). Among the analyzed proteins, only GDNF showed correlations with MoCA scores at the baseline and after 3 months (r = 0.533, p = 0.0189 and r = 0.598, p = 0.007), cognitive improvement (r = 0.511, p = 0.025), and CTQ subtests. MIF concentrations correlated with the PAS-C subscale (r = -0.5670, p = 0.011). Conclusion GDNF and miR-29a-3p are promising as biomarkers for understanding and addressing cognitive deficits in psychosis. This study links miRNA and MIF to premorbid adjustment and reveals GDNF's unique role in connection with childhood trauma.
Collapse
Affiliation(s)
- Marta Szwajca
- Department of Psychiatry, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Grzegorz Kazek
- Department of Pharmacological Screening, Jagiellonian University Medical College, Krakow, Poland
| | - Natalia Śmierciak
- Department of Psychiatry, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Józef Mizera
- Department of Toxicology, Jagiellonian University Medical College, Kraków, Poland
| | | | - Krzysztof Szwajca
- Department of Psychiatry, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Beata Biesaga
- Faculty of Medicine and Health Sciences, Andrzej Frycz Modrzewski Krakow University, Krakow, Poland
| | - Maciej Pilecki
- Department of Psychiatry, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| |
Collapse
|
5
|
Missner AA, Johns JD, Gu S, Hoa M. Repurposable Drugs That Interact with Steroid Responsive Gene Targets for Inner Ear Disease. Biomolecules 2022; 12:1641. [PMID: 36358991 PMCID: PMC9687275 DOI: 10.3390/biom12111641] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/25/2022] [Accepted: 11/02/2022] [Indexed: 10/28/2023] Open
Abstract
Corticosteroids, oral or transtympanic, remain the mainstay for inner ear diseases characterized by hearing fluctuation or sudden changes in hearing, including sudden sensorineural hearing loss (SSNHL), Meniere's disease (MD), and autoimmune inner ear disease (AIED). Despite their use across these diseases, the rate of complete recovery remains low, and results across the literature demonstrates significant heterogeneity with respect to the effect of corticosteroids, suggesting a need to identify more efficacious treatment options. Previously, our group has cross-referenced steroid-responsive genes in the cochlea with published single-cell and single-nucleus transcriptome datasets to demonstrate that steroid-responsive differentially regulated genes are expressed in spiral ganglion neurons (SGN) and stria vascularis (SV) cell types. These differentially regulated genes represent potential druggable gene targets. We utilized multiple gene target databases (DrugBank, Pharos, and LINCS) to identify orally administered, FDA approved medications that potentially target these genes. We identified 42 candidate drugs that have been shown to interact with these genes, with an emphasis on safety profile, and tolerability. This study utilizes multiple databases to identify drugs that can target a number of druggable genes in otologic disorders that are commonly treated with steroids, providing a basis for establishing novel repurposing treatment trials.
Collapse
Affiliation(s)
| | - James Dixon Johns
- Department of Otolaryngology-Head and Neck Surgery, Georgetown University Medical Center, Washington, DC 20007, USA
| | - Shoujun Gu
- Auditory Development and Restoration Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michael Hoa
- Department of Otolaryngology-Head and Neck Surgery, Georgetown University Medical Center, Washington, DC 20007, USA
- Auditory Development and Restoration Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
6
|
Fernandez KA, Watabe T, Tong M, Meng X, Tani K, Kujawa SG, Edge AS. Trk agonist drugs rescue noise-induced hidden hearing loss. JCI Insight 2021; 6:142572. [PMID: 33373328 PMCID: PMC7934864 DOI: 10.1172/jci.insight.142572] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 12/16/2020] [Indexed: 12/21/2022] Open
Abstract
TrkB agonist drugs are shown here to have a significant effect on the regeneration of afferent cochlear synapses after noise-induced synaptopathy. The effects were consistent with regeneration of cochlear synapses that we observed in vitro after synaptic loss due to kainic acid-induced glutamate toxicity and were elicited by administration of TrkB agonists, amitriptyline, and 7,8-dihydroxyflavone, directly into the cochlea via the posterior semicircular canal 48 hours after exposure to noise. Synaptic counts at the inner hair cell and wave 1 amplitudes in the auditory brainstem response (ABR) were partially restored 2 weeks after drug treatment. Effects of amitriptyline on wave 1 amplitude and afferent auditory synapse numbers in noise-exposed ears after systemic (as opposed to local) delivery were profound and long-lasting; synapses in the treated animals remained intact 1 year after the treatment. However, the effect of systemically delivered amitriptyline on synaptic rescue was dependent on dose and the time window of administration: it was only effective when given before noise exposure at the highest injected dose. The long-lasting effect and the efficacy of postexposure treatment indicate a potential broad application for the treatment of synaptopathy, which often goes undetected until well after the original damaging exposures.
Collapse
Affiliation(s)
- Katharine A Fernandez
- Department of Otolaryngology, Harvard Medical School, Boston, Massachusetts, USA.,Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, Massachusetts, USA
| | - Takahisa Watabe
- Department of Otolaryngology, Harvard Medical School, Boston, Massachusetts, USA.,Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, Massachusetts, USA
| | - Mingjie Tong
- Department of Otolaryngology, Harvard Medical School, Boston, Massachusetts, USA.,Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, Massachusetts, USA
| | - Xiankai Meng
- Department of Otolaryngology, Harvard Medical School, Boston, Massachusetts, USA.,Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, Massachusetts, USA
| | - Kohsuke Tani
- Department of Otolaryngology, Harvard Medical School, Boston, Massachusetts, USA.,Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, Massachusetts, USA
| | - Sharon G Kujawa
- Department of Otolaryngology, Harvard Medical School, Boston, Massachusetts, USA.,Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, Massachusetts, USA.,Program in Speech and Hearing Bioscience and Technology, Harvard Medical School, Boston, Massachusetts, USA
| | - Albert Sb Edge
- Department of Otolaryngology, Harvard Medical School, Boston, Massachusetts, USA.,Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, Massachusetts, USA.,Program in Speech and Hearing Bioscience and Technology, Harvard Medical School, Boston, Massachusetts, USA.,Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
| |
Collapse
|
7
|
Leake PA, Akil O, Lang H. Neurotrophin gene therapy to promote survival of spiral ganglion neurons after deafness. Hear Res 2020; 394:107955. [PMID: 32331858 DOI: 10.1016/j.heares.2020.107955] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 03/16/2020] [Accepted: 03/26/2020] [Indexed: 12/13/2022]
Abstract
Hearing impairment is a major health and economic concern worldwide. Currently, the cochlear implant (CI) is the standard of care for remediation of severe to profound hearing loss, and in general, contemporary CIs are highly successful. But there is great variability in outcomes among individuals, especially in children, with many CI users deriving much less or even marginal benefit. Much of this variability is related to differences in auditory nerve survival, and there has been substantial interest in recent years in exploring potential therapies to improve survival of the cochlear spiral ganglion neurons (SGN) after deafness. Preclinical studies using osmotic pumps and other approaches in deafened animal models to deliver neurotrophic factors (NTs) directly to the cochlea have shown promising results, especially with Brain-Derived Neurotrophic Factor (BDNF). More recent studies have focused on the use of NT gene therapy to force expression of NTs by target cells within the cochlea. This could provide the means for a one-time treatment to promote long-term NT expression and improve neural survival after deafness. This review summarizes the evidence for the efficacy of exogenous NTs in preventing SGN degeneration after hearing loss and reviews the animal research to date suggesting that NT gene therapy can elicit long-term NT expression in the cochlea, resulting in significantly improved SGN and radial nerve fiber survival after deafness. In addition, we discuss NT gene therapy in other non-auditory applications and consider some of the remaining issues with regard to selecting optimal vectors, timing of treatment, and place/method of delivery, etc. that must be resolved prior to considering clinical application.
Collapse
Affiliation(s)
- Patricia A Leake
- S & I Epstein Laboratory, Dept. of Otolaryngology Head and Neck Surgery, University of California San Francisco, 2340 Sutter Street, Room N331, San Francisco, CA, 94115-1330, USA.
| | - Omar Akil
- S & I Epstein Laboratory, Dept. of Otolaryngology Head and Neck Surgery, University of California San Francisco, 2340 Sutter Street, Room N331, San Francisco, CA, 94115-1330, USA
| | - Hainan Lang
- Dept. of Pathology and Laboratory Medicine, Medical University of South Carolina, 165 Ashley Avenue, Room RS613, Charleston, SC, 29414, USA
| |
Collapse
|
8
|
Naert G, Pasdelou MP, Le Prell CG. Use of the guinea pig in studies on the development and prevention of acquired sensorineural hearing loss, with an emphasis on noise. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2019; 146:3743. [PMID: 31795705 PMCID: PMC7195866 DOI: 10.1121/1.5132711] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 07/30/2019] [Accepted: 08/12/2019] [Indexed: 05/10/2023]
Abstract
Guinea pigs have been used in diverse studies to better understand acquired hearing loss induced by noise and ototoxic drugs. The guinea pig has its best hearing at slightly higher frequencies relative to humans, but its hearing is more similar to humans than the rat or mouse. Like other rodents, it is more vulnerable to noise injury than the human or nonhuman primate models. There is a wealth of information on auditory function and vulnerability of the inner ear to diverse insults in the guinea pig. With respect to the assessment of potential otoprotective agents, guinea pigs are also docile animals that are relatively easy to dose via systemic injections or gavage. Of interest, the cochlea and the round window are easily accessible, notably for direct cochlear therapy, as in the chinchilla, making the guinea pig a most relevant and suitable model for hearing. This article reviews the use of the guinea pig in basic auditory research, provides detailed discussion of its use in studies on noise injury and other injuries leading to acquired sensorineural hearing loss, and lists some therapeutics assessed in these laboratory animal models to prevent acquired sensorineural hearing loss.
Collapse
Affiliation(s)
| | | | - Colleen G Le Prell
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, Texas 75080, USA
| |
Collapse
|
9
|
Harasztosi C, Wolter S, Gutsche K, Durán-Alonso MB, López-Hernández I, Pascual A, López-Barneo J, Knipper M, Rüttiger L, Schimmang T. Differential deletion of GDNF in the auditory system leads to altered sound responsiveness. J Neurosci Res 2019; 98:1764-1779. [PMID: 31663646 DOI: 10.1002/jnr.24544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 09/20/2019] [Accepted: 10/08/2019] [Indexed: 11/09/2022]
Abstract
Glial-derived neurotrophic factor (GDNF) has been proposed as a potent neurotrophic factor with the potential to cure neurodegenerative diseases. In the cochlea, GDNF has been detected in auditory neurons and sensory receptor cells and its expression is upregulated upon trauma. Moreover, the application of GDNF in different animal models of deafness has shown its capacity to prevent hearing loss and promoted its future use in therapeutic trials in humans. In the present study we have examined the endogenous requirement of GDNF during auditory development in mice. Using a lacZ knockin allele we have confirmed the expression of GDNF in the cochlea including its sensory regions during development. Global inactivation of GDNF throughout the hearing system using a Foxg1-Cre line causes perinatal lethality but reveals no apparent defects during formation of the cochlea. Using TrkC-Cre and Atoh1-Cre lines, we were able to generate viable mutants lacking GDNF in auditory neurons or both auditory neurons and sensory hair cells. These mutants show normal frequency-dependent auditory thresholds. However, mechanoelectrical response properties of outer hair cells (OHCs) in TrkC-Cre GDNF mutants are altered at low thresholds. Furthermore, auditory brainstem wave analysis shows an abnormal increase of wave I. On the other hand, Atoh1-Cre GDNF mutants show normal OHC function but their auditory brainstem wave pattern is reduced at the levels of wave I, III and IV. These results show that GDNF expression during the development is required to maintain functional hearing at different levels of the auditory system.
Collapse
Affiliation(s)
- Csaba Harasztosi
- Department of Otolaryngology, Hearing Research Centre Tübingen (THRC), Molecular Physiology of Hearing, ENT Clinic, University of Tübingen, Tübingen, Germany
| | - Steffen Wolter
- Department of Otolaryngology, Hearing Research Centre Tübingen (THRC), Molecular Physiology of Hearing, ENT Clinic, University of Tübingen, Tübingen, Germany
| | - Katja Gutsche
- Instituto de Biología y Genética Molecular, Universidad de Valladolid y Consejo Superior de Investigaciones Científicas, Valladolid, Spain
| | - María Beatriz Durán-Alonso
- Instituto de Biología y Genética Molecular, Universidad de Valladolid y Consejo Superior de Investigaciones Científicas, Valladolid, Spain
| | - Iris López-Hernández
- Instituto de Biología y Genética Molecular, Universidad de Valladolid y Consejo Superior de Investigaciones Científicas, Valladolid, Spain
| | - Alberto Pascual
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/, Universidad de Sevilla, Seville, Spain
| | - José López-Barneo
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/, Universidad de Sevilla, Seville, Spain
| | - Marlies Knipper
- Department of Otolaryngology, Hearing Research Centre Tübingen (THRC), Molecular Physiology of Hearing, ENT Clinic, University of Tübingen, Tübingen, Germany
| | - Lukas Rüttiger
- Department of Otolaryngology, Hearing Research Centre Tübingen (THRC), Molecular Physiology of Hearing, ENT Clinic, University of Tübingen, Tübingen, Germany
| | - Thomas Schimmang
- Instituto de Biología y Genética Molecular, Universidad de Valladolid y Consejo Superior de Investigaciones Científicas, Valladolid, Spain
| |
Collapse
|
10
|
Sha SH, Schacht J. Emerging therapeutic interventions against noise-induced hearing loss. Expert Opin Investig Drugs 2016; 26:85-96. [PMID: 27918210 DOI: 10.1080/13543784.2017.1269171] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Noise-induced hearing loss (NIHL) due to industrial, military, and recreational noise exposure is a major, but also potentially preventable cause of acquired hearing loss. For the United States it is estimated that 26 million people (15% of the population) between the ages of 20 and 69 have a high-frequency NIHL at a detriment to the quality of life of the affected individuals and great economic cost to society. Areas covered: This review outlines the pathology and pathophysiology of hearing loss as seen in humans and animal models. Results from molecular studies are presented that have provided the basis for therapeutic strategies successfully applied to animals. Several compounds emerging from these studies (mostly antioxidants) are now being tested in field trials. Expert opinion: Although no clinically applicable intervention has been approved yet, recent trials are encouraging. In order to maximize protective therapies, future work needs to apply stringent criteria for noise exposure and outcome parameters. Attention needs to be paid not only to permanent NIHL due to death of sensory cells but also to temporary effects that may show delayed consequences. Existing results combined with the search for efficacious new therapies should establish a viable treatment within a decade.
Collapse
Affiliation(s)
- Su-Hua Sha
- a Department of Pathology and Laboratory Medicine , Medical University of South Carolina , Charleston , SC , USA
| | - Jochen Schacht
- b Kresge Hearing Research Institute , University of Michigan , Ann Arbor , MI , USA
| |
Collapse
|
11
|
Genetic Effects on Sensorineural Hearing Loss and Evidence-based Treatment for Sensorineural Hearing Loss. ACTA ACUST UNITED AC 2016; 30:179-88. [PMID: 26564418 DOI: 10.1016/s1001-9294(15)30044-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In this article, the mechanism of inheritance behind inherited hearing loss and genetic susceptibility in noise-induced hearing loss are reviewed. Conventional treatments for sensorineural hearing loss (SNHL), i.e. hearing aid and cochlear implant, are effective for some cases, but not without limitations. For example, they provide little benefit for patients of profound SNHL or neural hearing loss, especially when the hearing loss is in poor dynamic range and with low frequency resolution. We emphasize the most recent evidence-based treatment in this field, which includes gene therapy and allotransplantation of stem cells. Their promising results have shown that they might be options of treatment for profound SNHL and neural hearing loss. Although some treatments are still at the experimental stage, it is helpful to be aware of the novel therapies and endeavour to explore the feasibility of their clinical application.
Collapse
|
12
|
Shibata SB, Budenz CL, Bowling SA, Pfingst BE, Raphael Y. Nerve maintenance and regeneration in the damaged cochlea. Hear Res 2011; 281:56-64. [PMID: 21596129 PMCID: PMC3196294 DOI: 10.1016/j.heares.2011.04.019] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Revised: 04/22/2011] [Accepted: 04/23/2011] [Indexed: 12/22/2022]
Abstract
Following the onset of sensorineural hearing loss, degeneration of mechanosensitive hair cells and spiral ganglion cells (SGCs) in humans and animals occurs to variable degrees, with a trend for greater neural degeneration with greater duration of deafness. Emergence of the cochlear implant prosthesis has provided much needed aid to many hearing impaired patients and has become a well-recognized therapy worldwide. However, ongoing peripheral nerve fiber regression and subsequent degeneration of SGC bodies can reduce the neural targets of cochlear implant stimulation and diminish its function. There is increasing interest in bio-engineering approaches that aim to enhance cochlear implant efficacy by preventing SGC body degeneration and/or regenerating peripheral nerve fibers into the deaf sensory epithelium. We review the advancements in maintaining and regenerating nerves in damaged animal cochleae, with an emphasis on the therapeutic capacity of neurotrophic factors delivered to the inner ear after an insult. Additionally, we summarize the histological process of neuronal degeneration in the inner ear and describe different animal models that have been employed to study this mechanism. Research on enhancing the biological infrastructure of the deafened cochlea in order to improve cochlear implant efficacy is of immediate clinical importance.
Collapse
Affiliation(s)
- Seiji B. Shibata
- Kresge Hearing Research Institute, Department of Otolaryngology, The University of Michigan, Ann Arbor, MI, 48109-5648, USA
| | - Cameron L. Budenz
- Kresge Hearing Research Institute, Department of Otolaryngology, The University of Michigan, Ann Arbor, MI, 48109-5648, USA
| | - Sara A. Bowling
- Kresge Hearing Research Institute, Department of Otolaryngology, The University of Michigan, Ann Arbor, MI, 48109-5648, USA
| | - Bryan E. Pfingst
- Kresge Hearing Research Institute, Department of Otolaryngology, The University of Michigan, Ann Arbor, MI, 48109-5648, USA
| | - Yehoash Raphael
- Kresge Hearing Research Institute, Department of Otolaryngology, The University of Michigan, Ann Arbor, MI, 48109-5648, USA
| |
Collapse
|
13
|
Hisaoka K, Tsuchioka M, Yano R, Maeda N, Kajitani N, Morioka N, Nakata Y, Takebayashi M. Tricyclic antidepressant amitriptyline activates fibroblast growth factor receptor signaling in glial cells: involvement in glial cell line-derived neurotrophic factor production. J Biol Chem 2011; 286:21118-28. [PMID: 21515689 DOI: 10.1074/jbc.m111.224683] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Recently, both clinical and animal studies demonstrated neuronal and glial plasticity to be important for the therapeutic action of antidepressants. Antidepressants increase glial cell line-derived neurotrophic factor (GDNF) production through monoamine-independent protein-tyrosine kinase, extracellular signal-regulated kinase (ERK), and cAMP responsive element-binding protein (CREB) activation in glial cells (Hisaoka, K., Takebayashi, M., Tsuchioka, M., Maeda, N., Nakata, Y., and Yamawaki, S. (2007) J. Pharmacol. Exp. Ther. 321, 148-157; Hisaoka, K., Maeda, N., Tsuchioka, M., and Takebayashi, M. (2008) Brain Res. 1196, 53-58). This study clarifies the type of tyrosine kinase and mechanism of antidepressant-induced GDNF production in C6 glioma cells and normal human astrocytes. The amitriptyline (a tricyclic antidepressant)-induced ERK activation was specifically and completely inhibited by fibroblast growth factor receptor (FGFR) tyrosine kinase inhibitors and siRNA for FGFR1 and -2. Treatment with amitriptyline or several different classes of antidepressants, but not non-antidepressants, acutely increased the phosphorylation of FGFRs and FGFR substrate 2α (FRS2α). Amitriptyline-induced CREB phosphorylation and GDNF production were blocked by FGFR-tyrosine kinase inhibitors. Therefore, antidepressants activate the FGFR/FRS2α/ERK/CREB signaling cascade, thus resulting in GDNF production. Furthermore, we attempted to elucidate how antidepressants activate FGFR signaling. The effect of amitriptyline was inhibited by heparin, non-permeant FGF-2 neutralizing antibodies, and matrix metalloproteinase (MMP) inhibitors. Serotonin (5-HT) also increased GDNF production through FGFR2 (Tsuchioka, M., Takebayashi, M., Hisaoka, K., Maeda, N., and Nakata, Y. (2008) J. Neurochem. 106, 244-257); however, the effect of 5-HT was not inhibited by heparin and MMP inhibitors. These results suggest that amitriptyline-induced FGFR activation might occur through an extracellular pathway, in contrast to that of 5-HT. The current data show that amitriptyline-induced FGFR activation might occur by the MMP-dependent shedding of FGFR ligands, such as FGF-2, thus resulting in GDNF production.
Collapse
Affiliation(s)
- Kazue Hisaoka
- Division of Psychiatry and Neuroscience, Institute for Clinical Research, 3-1 Aoyama, Kure 737-0023, Japan
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
INTRODUCTION Approximately 5% of the population worldwide suffers from industrial, military or recreational noise-induced hearing loss (NIHL) at a great economic cost and detriment to the quality of life of the affected individuals. This review discusses pharmacological strategies to attenuate NIHL that have been developed in animal models and that are now beginning to be tested in field trials. AREAS COVERED The review describes the epidemiology, pathology and pathophysiology of NIHL in experimental animals and humans. The underlying molecular mechanisms of damage are then discussed as a basis for therapeutic approaches to ameliorate the loss of auditory function. Finally, studies in military, industrial and recreational settings are evaluated. Literature was searched using the terms 'noise-induced hearing loss' and 'noise trauma'. EXPERT OPINION NIHL, in principle, can be prevented. With the current pace of development, oral drugs to protect against NIHL should be available within the next 5-10 years. Positive results from ongoing trials combined with additional laboratory tests might accelerate the time from the bench to clinical treatment.
Collapse
Affiliation(s)
- Naoki Oishi
- Kresge Hearing Research Institute, Medical Sciences Bldg I, 1150 West Medical Center Drive, Ann Arbor, MI 48109-5616, USA
| | | |
Collapse
|
15
|
Ohlemiller KK. Recent findings and emerging questions in cochlear noise injury. Hear Res 2008; 245:5-17. [PMID: 18790034 PMCID: PMC2610263 DOI: 10.1016/j.heares.2008.08.007] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2008] [Revised: 08/12/2008] [Accepted: 08/19/2008] [Indexed: 12/11/2022]
Affiliation(s)
- Kevin K Ohlemiller
- Fay and Carl Simons Center for the Biology of Hearing and Deafness, Central Institute for the Deaf at Washington University, Department of Otolaryngology, Washington University Medical School, St. Louis, MO 63110, USA.
| |
Collapse
|
16
|
Qi H, Li DQ, Bian F, Chuang EY, Jones DB, Pflugfelder SC. Expression of glial cell-derived neurotrophic factor and its receptor in the stem-cell-containing human limbal epithelium. Br J Ophthalmol 2008; 92:1269-74. [PMID: 18723744 DOI: 10.1136/bjo.2007.132431] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AIM To evaluate the expression pattern of glial cell line-derived neurotrophic factor (GDNF) with its receptors GDNF family receptor alpha-1 (GFR alpha-1) and Ret in the human corneal and limbal tissues, as well as in the primary human limbal epithelial cultures (PHLEC). METHODS Expression of GDNF and its receptors, and the co-localisation with stem cell associated and differentiation markers were evaluated by immunofluorescent staining, western blot analysis and real-time PCR in the fresh human corneoscleral tissues, as well as in the PHLEC. Single cell colony-forming and wound-healing assays were also evaluated in PHLEC. RESULTS GDNF and GFR alpha-1 were found to be expressed by a subset of basal cells and co-localised with ATP-binding cassette, subfamily G (WHITE), member 2 (ABCG2) and p63, but not with cytokeratin 3 in the human limbal basal epithelium. In PHLEC, they were expressed by a small population of cells in the less differentiated stage. The GDNF and GFR alpha-1-positive subpopulations were enriched for the expression of ABCG2 and p63 (p<0.01). Recombinant human GDNF promoted the proliferation and wound healing of epithelial cells in the PHLEC. In contrast, Ret was abundantly located in the human corneal epithelium except for the basal cells of the limbal epithelium. CONCLUSION These findings indicate that GDNF and GFR alpha-1 may represent a property for the phenotype of human corneal epithelial precursor cells. GDNF may signal independently of Ret through GFR alpha-1 in the stem cell-containing limbal epithelium.
Collapse
Affiliation(s)
- H Qi
- Ocular Surface Center, Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|
17
|
Yamashita D, Shiotani A, Kanzaki S, Nakagawa M, Ogawa K. Neuroprotective effects of T-817MA against noise-induced hearing loss. Neurosci Res 2008; 61:38-42. [PMID: 18343519 DOI: 10.1016/j.neures.2008.01.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2007] [Revised: 01/06/2008] [Accepted: 01/15/2008] [Indexed: 11/25/2022]
Abstract
Oxidative stress, including reactive oxygen species and other free radicals, is thought to play an important role in neuronal cell death, including noise-induced hearing loss. 1-{3-[2-(1-Benzothiophen-5-yl)ethoxy]propyl}azetidin-3-ol maleate (T-817MA), a novel neurotrophic agent, protects against oxidative stress-induced neurotoxicity. This study examines the effects of T-817MA in noise-induced ototoxicity in the cochlea. Guinea pigs received treatment with T-817MA-enhanced water (0.2, 0.7 mg/ml) or untreated water (control) beginning 10 days prior to noise exposure and continuing through this study. All subjects were exposed to 4-kHz octave-band noise at 120-dB SPL for 5h. Auditory thresholds were assessed by sound-evoked auditory brainstem response at 4, 8, and 16kHz, prior to and 10 days following noise exposure. Hair cell damage was analyzed by quantitative histology. T-817MA significantly reduced threshold deficits and hair cell death. These results suggest T-817MA reduces noise-induced hearing loss and cochlear damage, suggesting functional and morphological protection.
Collapse
Affiliation(s)
- Daisuke Yamashita
- Department of Otolaryngology, Keio University Hospital, 35 Shinanomachi, Shinjuku-Ku, Tokyo, Japan.
| | | | | | | | | |
Collapse
|