1
|
ERK: A Double-Edged Sword in Cancer. ERK-Dependent Apoptosis as a Potential Therapeutic Strategy for Cancer. Cells 2021; 10:cells10102509. [PMID: 34685488 PMCID: PMC8533760 DOI: 10.3390/cells10102509] [Citation(s) in RCA: 146] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 09/16/2021] [Accepted: 09/17/2021] [Indexed: 12/12/2022] Open
Abstract
The RAF/MEK/ERK signaling pathway regulates diverse cellular processes as exemplified by cell proliferation, differentiation, motility, and survival. Activation of ERK1/2 generally promotes cell proliferation, and its deregulated activity is a hallmark of many cancers. Therefore, components and regulators of the ERK pathway are considered potential therapeutic targets for cancer, and inhibitors of this pathway, including some MEK and BRAF inhibitors, are already being used in the clinic. Notably, ERK1/2 kinases also have pro-apoptotic functions under certain conditions and enhanced ERK1/2 signaling can cause tumor cell death. Although the repertoire of the compounds which mediate ERK activation and apoptosis is expanding, and various anti-cancer compounds induce ERK activation while exerting their anti-proliferative effects, the mechanisms underlying ERK1/2-mediated cell death are still vague. Recent studies highlight the importance of dual-specificity phosphatases (DUSPs) in determining the pro- versus anti-apoptotic function of ERK in cancer. In this review, we will summarize the recent major findings in understanding the role of ERK in apoptosis, focusing on the major compounds mediating ERK-dependent apoptosis. Studies that further define the molecular targets of these compounds relevant to cell death will be essential to harnessing these compounds for developing effective cancer treatments.
Collapse
|
2
|
Moritz CP, Tholance Y, Rosier C, Reynaud-Federspiel E, Svahn J, Camdessanché JP, Antoine JC. Completing the Immunological Fingerprint by Refractory Proteins: Autoantibody Screening via an Improved Immunoblotting Technique. Proteomics Clin Appl 2019; 13:e1800157. [PMID: 30768763 DOI: 10.1002/prca.201800157] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 01/30/2019] [Indexed: 12/14/2022]
Abstract
PURPOSE Identifying autoantigens of serological autoantibodies requires expensive methods, such as protein microarrays or IP+MS. Thus, sera are commonly pre-screened for interesting immunopatterns via immunocytochemistry/immunohistochemistry. However, distinguishing immunopatterns can be difficult and intracellular antigens are less accessible. Therefore, a simple and cheap immunoblot screening able to distinguish immunopatterns and to detect refractory proteins is presented. EXPERIMENTAL DESIGN Five steps of immunoblotting-based autoantigen screening are revised: (1) choice of protein source, (2) protein extraction, (3) protein separation, (4) protein transfer, (5) antigen detection. Thereafter, 52 patients' sera with chronic inflammatory demyelinating polyneuropathy (CIDP) and 45 controls were screened. RESULTS The protein source impacts the detected antigen set. Steps 2-4 can be adapted for refractory proteins. Furthermore, longitudinal cutting of protein lanes saves ≥75% of time and material and allows for exact comparison of band patterns. As the latter are individually specific and temporarily constant, we call them "immunological fingerprints". In a proof-of-principle, a 155 kDa immunoband was detected with two anti-neurofascin-155-positive CIDP sera and two further immunobands (120/220 kDa) specific to a subgroup of 3-6 of 52 CIDP patients. CONCLUSIONS AND CLINICAL RELEVANCE Adapted immunoblotting is a cheap and simple method for accurate serum screening including refractory and intracellular antigens.
Collapse
Affiliation(s)
- Christian P Moritz
- Synaptopathies and Autoantibodies, Faculty of Medicine Jacques Lisfranc, University Jean Monnet, University of Lyon, 42270, Saint-Priest en Jarez, France.,Institut NeuroMyoGene INSERM U1217/CNRS UMR 5310, University Jean Monnet, University of Lyon, 42270, Saint-Priest en Jarez, France
| | - Yannick Tholance
- Synaptopathies and Autoantibodies, Faculty of Medicine Jacques Lisfranc, University Jean Monnet, University of Lyon, 42270, Saint-Priest en Jarez, France.,Institut NeuroMyoGene INSERM U1217/CNRS UMR 5310, University Jean Monnet, University of Lyon, 42270, Saint-Priest en Jarez, France.,Biochemistry Laboratory, Centre Hospitalier Universitaire de Saint-Étienne, 42055, Saint-Étienne, France
| | - Carole Rosier
- Synaptopathies and Autoantibodies, Faculty of Medicine Jacques Lisfranc, University Jean Monnet, University of Lyon, 42270, Saint-Priest en Jarez, France.,Neurology Department, Centre Hospitalier Universitaire de Saint-Étienne, 42055, Saint-Étienne, France
| | - Evelyne Reynaud-Federspiel
- Synaptopathies and Autoantibodies, Faculty of Medicine Jacques Lisfranc, University Jean Monnet, University of Lyon, 42270, Saint-Priest en Jarez, France.,Institut NeuroMyoGene INSERM U1217/CNRS UMR 5310, University Jean Monnet, University of Lyon, 42270, Saint-Priest en Jarez, France
| | - Juliette Svahn
- Synaptopathies and Autoantibodies, Faculty of Medicine Jacques Lisfranc, University Jean Monnet, University of Lyon, 42270, Saint-Priest en Jarez, France
| | - Jean-Philippe Camdessanché
- Synaptopathies and Autoantibodies, Faculty of Medicine Jacques Lisfranc, University Jean Monnet, University of Lyon, 42270, Saint-Priest en Jarez, France.,Institut NeuroMyoGene INSERM U1217/CNRS UMR 5310, University Jean Monnet, University of Lyon, 42270, Saint-Priest en Jarez, France.,Neurology Department, Centre Hospitalier Universitaire de Saint-Étienne, 42055, Saint-Étienne, France
| | - Jean-Christophe Antoine
- Synaptopathies and Autoantibodies, Faculty of Medicine Jacques Lisfranc, University Jean Monnet, University of Lyon, 42270, Saint-Priest en Jarez, France.,Institut NeuroMyoGene INSERM U1217/CNRS UMR 5310, University Jean Monnet, University of Lyon, 42270, Saint-Priest en Jarez, France.,Neurology Department, Centre Hospitalier Universitaire de Saint-Étienne, 42055, Saint-Étienne, France
| |
Collapse
|
3
|
Advances in cellular models to explore the pathophysiology of amyotrophic lateral sclerosis. Mol Neurobiol 2013; 49:966-83. [PMID: 24198229 DOI: 10.1007/s12035-013-8573-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 10/15/2013] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS), the most common adult-onset motor neuron disorder, is fatal for most patients less than 3 years from when the first symptoms appear. The aetiologies for sporadic and most familial forms of ALS are unknown, but genetic factors are increasingly recognized as causal in a subset of patients. Studies of disease physiology suggest roles for oxidative stress, glutamate-mediated excitotoxicity or protein aggregation; how these pathways interact in the complex pathophysiology of ALS awaits elucidation. Cellular models are being used to examine disease mechanisms. Recent advances include the availability of expanded cell types, from neuronal or glial cell culture to motoneuron-astrocyte co-culture genetically or environmentally modified. Cell culture experiments confirmed the central role of glial cells in ALS. The recent adaptation of induced pluripotent stem cells (iPSC) for ALS modeling could allow a broader perspective and is expected to generate new hypotheses, related particularly to mechanisms underlying genetic factors. Cellular models have provided meaningful advances in the understanding of ALS, but, to date, complete characterization of in vitro models is only partially described. Consensus on methodological approaches, strategies for validation and techniques that allow rapid adaptation to new genetic or environmental influences is needed. In this article, we review the principal cellular models being employed in ALS and highlight their contribution to the understanding of disease mechanisms. We conclude with recommendations on means to enhance the robustness and generalizability of the different concepts for experimental ALS.
Collapse
|
4
|
Effects of bee venom on glutamate-induced toxicity in neuronal and glial cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2011; 2012:368196. [PMID: 21904562 PMCID: PMC3166716 DOI: 10.1155/2012/368196] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Revised: 05/02/2011] [Accepted: 05/30/2011] [Indexed: 11/18/2022]
Abstract
Bee venom (BV), which is extracted from honeybees, is used in traditional Korean medical therapy. Several groups have demonstrated the anti-inflammatory effects of BV in osteoarthritis both in vivo and in vitro. Glutamate is the predominant excitatory neurotransmitter in the central nervous system (CNS). Changes in glutamate release and uptake due to alterations in the activity of glutamate transporters have been reported in many neurodegenerative diseases, including Parkinson's disease, Alzheimer's disease, and amyotrophic lateral sclerosis. To assess if BV can prevent glutamate-mediated neurotoxicity, we examined cell viability and signal transduction in glutamate-treated neuronal and microglial cells in the presence and absence of BV. We induced glutamatergic toxicity in neuronal cells and microglial cells and found that BV protected against cell death. Furthermore, BV significantly inhibited the cellular toxicity of glutamate, and pretreatment with BV altered MAP kinase activation (e.g., JNK, ERK, and p38) following exposure to glutamate. These findings suggest that treatment with BV may be helpful in reducing glutamatergic cell toxicity in neurodegenerative diseases.
Collapse
|
5
|
Boutahar N, Wierinckx A, Camdessanche JP, Antoine JC, Reynaud E, Lassabliere F, Lachuer J, Borg J. Differential effect of oxidative or excitotoxic stress on the transcriptional profile of amyotrophic lateral sclerosis-linked mutant SOD1 cultured neurons. J Neurosci Res 2011; 89:1439-50. [PMID: 21647936 DOI: 10.1002/jnr.22672] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2011] [Revised: 03/17/2011] [Accepted: 03/29/2011] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive, lethal, degenerative disorder of motor neurons. The causes of most cases of ALS are as yet undefined. In a previous study, it was shown that N-methyl-D-aspartate (NMDA) and H(2)O(2) stimuli reduce neuronal survival in cortical neurons in culture (Boutahar et al., 2008). To identify variations in gene expression in response to these neurotoxins in transgenic vs. control cortical neurons cultures, both microarray and RT-PCR analysis were performed. High-density oligonucleotide microarrays showed changes in the expression of about 600 genes involved in protein degradation, neurotrophic factors pathway, cell cycle, inflammation, cytoskeleton, cell adhesion, transcription, or signalling. The most up-regulated genes following H(2)O(2) treatment were involved in cytoskeletal organization and axonal transport, such as ARAP2, KIF17, and DKK2, or in trophic factors pathways, such as insulin-like growth factor-binding protein 4 (IGFBP4), FGF17, and serpin2. The most down-regulated genes were involved in ion transport, such as TRPV1. After NMDA treatment, the most up-regulated genes were involved in protein degradation, such as ubiquitin-conjugating enzyme E2I and cathepsin H, and the most down-regulated genes were involved in ion transport, such as SCN7A. We conclude that these neurotoxins act through different transcriptional inductions, and these changes may reflect an adaptative cellular response to the cellular stress induced by the neurotoxins involved in ALS in the presence of mutant human SOD1.
Collapse
Affiliation(s)
- Nadia Boutahar
- Laboratoire de Neurobiochimie, Université de Lyon, Saint-Etienne, France
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Zhong Z, Wang Y, Guo H, Sagare A, Fernández JA, Bell RD, Barrett TM, Griffin JH, Freeman RS, Zlokovic BV. Protein S protects neurons from excitotoxic injury by activating the TAM receptor Tyro3-phosphatidylinositol 3-kinase-Akt pathway through its sex hormone-binding globulin-like region. J Neurosci 2010; 30:15521-34. [PMID: 21084607 PMCID: PMC3012432 DOI: 10.1523/jneurosci.4437-10.2010] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Accepted: 09/15/2010] [Indexed: 11/21/2022] Open
Abstract
The anticoagulant factor protein S (PS) protects neurons from hypoxic/ischemic injury. However, molecular mechanisms mediating PS protection in injured neurons remain unknown. Here, we show mouse recombinant PS protects dose-dependently mouse cortical neurons from excitotoxic NMDA-mediated neuritic bead formation and apoptosis by activating the phosphatidylinositol 3-kinase (PI3K)-Akt pathway (EC(50) = 26 ± 4 nm). PS stimulated phosphorylation of Bad and Mdm2, two downstream targets of Akt, which in neurons subjected to pathological overstimulation of NMDA receptors (NMDARs) increased the antiapoptotic Bcl-2 and Bcl-X(L) levels and reduced the proapoptotic p53 and Bax levels. Adenoviral transduction with a kinase-deficient Akt mutant (Ad.Akt(K179A)) resulted in loss of PS-mediated neuronal protection, Akt activation, and Bad and Mdm2 phosphorylation. Using the TAM receptors tyrosine kinases Tyro3-, Axl-, and Mer-deficient neurons, we showed that PS protected neurons lacking Axl and Mer, but not Tyro3, suggesting a requirement of Tyro3 for PS-mediated protection. Consistent with these results, PS dose-dependently phosphorylated Tyro3 on neurons (EC(50) = 25 ± 3 nm). In an in vivo model of NMDA-induced excitotoxic lesions in the striatum, PS dose-dependently reduced the lesion volume in control mice (EC(50) = 22 ± 2 nm) and protected Axl(-/-) and Mer(-/-) transgenic mice, but not Tyro3(-/-) transgenic mice. Using different structural PS analogs, we demonstrated that the C terminus sex hormone-binding globulin-like (SHBG) domain of PS is critical for neuronal protection in vitro and in vivo. Thus, our data show that PS protects neurons by activating the Tyro3-PI3K-Akt pathway via its SHGB domain, suggesting potentially a novel neuroprotective approach for acute brain injury and chronic neurodegenerative disorders associated with excessive activation of NMDARs.
Collapse
Affiliation(s)
- Zhihui Zhong
- Center for Neurodegenerative and Vascular Brain Disorders, Department of Neurosurgery and Neurology, and
| | - Yaoming Wang
- Center for Neurodegenerative and Vascular Brain Disorders, Department of Neurosurgery and Neurology, and
| | - Huang Guo
- Center for Neurodegenerative and Vascular Brain Disorders, Department of Neurosurgery and Neurology, and
| | - Abhay Sagare
- Center for Neurodegenerative and Vascular Brain Disorders, Department of Neurosurgery and Neurology, and
| | - José A. Fernández
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California 92037
| | - Robert D. Bell
- Center for Neurodegenerative and Vascular Brain Disorders, Department of Neurosurgery and Neurology, and
| | - Theresa M. Barrett
- Center for Neurodegenerative and Vascular Brain Disorders, Department of Neurosurgery and Neurology, and
| | - John H. Griffin
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California 92037
| | - Robert S. Freeman
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York 14642, and
| | - Berislav V. Zlokovic
- Center for Neurodegenerative and Vascular Brain Disorders, Department of Neurosurgery and Neurology, and
| |
Collapse
|
7
|
Boutahar N, Reynaud E, Lassabliere F, Borg J. Brain-derived neurotrophic factor inhibits cell cycle reentry but not endoplasmic reticulum stress in cultured neurons following oxidative or excitotoxic stress. J Neurosci Res 2010; 88:2263-71. [DOI: 10.1002/jnr.22384] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
8
|
Zini M, Passariello CL, Gottardi D, Cetrullo S, Flamigni F, Pignatti C, Minarini A, Tumiatti V, Milelli A, Melchiorre C, Stefanelli C. Cytotoxicity of methoctramine and methoctramine-related polyamines. Chem Biol Interact 2009; 181:409-16. [PMID: 19576191 DOI: 10.1016/j.cbi.2009.06.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2009] [Revised: 06/22/2009] [Accepted: 06/24/2009] [Indexed: 11/30/2022]
Abstract
Methoctramine and its analogues are polymethylene tetramines that selectively bind to a variety of receptor sites. Although these compounds are widely used as pharmacological tools for receptor characterization, the toxicological properties of these polyamine-based structures are largely unknown. We have evaluated the cytotoxic effects of methoctramine and related symmetrical analogues differing in polymethylene chain length between the inner nitrogens against a panel of cell lines. Methoctramine caused cell death only at high micromolar concentrations, whereas its pharmacological action is exerted at nanomolar level. Increasing the spacing between the inner nitrogen atoms resulted in a significative increase in cytotoxicity. In particular, an elevated cytotoxicity is associated to a methylene chain length of 12 units dividing the inner amine functions (compound 5). H9c2 cardiomyoblasts were the most sensitive cells, followed by SH-SY5Y neuroblastoma, whereas HL60 leukaemia cells were much more resistant. Methoctramine and related compounds down-regulated ornithine decarboxylase, the first enzyme of polyamine biosynthesis even at non-toxic concentration. Further, methoctramine and compound 5 caused a limited up-regulation of spermine/spermidine N-acetyltransferase, suggesting that interference in polyamine metabolism is not a primary mechanism of toxicity. Methoctramine and its analogues bound to DNA with a higher affinity than spermine, but the correlation with their toxic effect was poor. The highly toxic compound 5 killed the cells in the absence of caspase activation and caused an increase in p53 expression and ERK1/2 phosphorylation. Compound 5 was directly oxidized by cell homogenates producing hydrogen peroxide and its toxic effect was partially subdued by the inhibition of its uptake, by the NMDA ligand MK-801, and by the antioxidant N-acetylcysteine, suggesting that compound 5 can act at different cellular levels and lead to oxidative stress.
Collapse
Affiliation(s)
- Maddalena Zini
- Department of Biochemistry "G. Moruzzi", University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|