1
|
Jacobson KA, Suresh RR, Oliva P. A 2A adenosine receptor agonists, antagonists, inverse agonists and partial agonists. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 170:1-27. [PMID: 37741687 PMCID: PMC10775762 DOI: 10.1016/bs.irn.2023.08.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2023]
Abstract
The Gs-coupled A2A adenosine receptor (A2AAR) has been explored extensively as a pharmaceutical target, which has led to numerous clinical trials. However, only one selective A2AAR agonist (regadenoson, Lexiscan) and one selective A2AAR antagonist (istradefylline, Nouriast) have been approved by the FDA, as a pharmacological agent for myocardial perfusion imaging (MPI) and as a cotherapy for Parkinson's disease (PD), respectively. Adenosine is widely used in MPI, as Adenoscan. Despite numerous unsuccessful clinical trials, medicinal chemical activity around A2AAR ligands has accelerated recently, particularly through structure-based drug design. New drug-like A2AAR antagonists for PD and cancer immunotherapy have been identified, and many clinical trials have ensued. For example, imaradenant (AZD4635), a compound that was designed computationally, based on A2AAR X-ray structures and biophysical mapping. Mixed A2AAR/A2BAR antagonists are also hopeful for cancer treatment. A2AAR antagonists may also have potential as neuroprotective agents for treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Kenneth A Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, United States.
| | - R Rama Suresh
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, United States
| | - Paola Oliva
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, United States
| |
Collapse
|
2
|
Thuraiaiyah J, Kokoti L, Al-Karagholi MAM, Ashina M. Involvement of adenosine signaling pathway in migraine pathophysiology: A systematic review of clinical studies. Cephalalgia 2022; 42:781-792. [PMID: 35301855 DOI: 10.1177/03331024221077665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE To systematically review clinical studies investigating the involvement of adenosine and its receptors in migraine pathophysiology. BACKGROUND Adenosine is a purinergic signaling molecule, clinically used in cardiac imaging during stress tests. Headache is a frequent adverse event after intravenous adenosine administration. Migraine headache relief is reported after intake of adenosine receptor antagonist, caffeine. These findings suggest a possible involvement of adenosine signaling in migraine pathophysiology and its potential as a drug target. METHODS A search through PubMed and EMBASE was undertaken for clinical studies investigating the role of adenosine and its receptors in migraine, published until September 2021. RESULTS A total of 2510 studies were screened by title and abstract. Of these, seven clinical studies were included. The main findings were that adenosine infusion induced headache, and plasma adenosine levels were elevated during ictal compared to interictal periods in migraine patients. CONCLUSION The present systematic review emphasizes a potentially important role of adenosine signaling in migraine pathogenesis. Further randomized and placebo-controlled clinical investigations applying adenosine receptors modulators in migraine patients are needed to further understand the adenosine involvement in migraine.
Collapse
Affiliation(s)
- Janu Thuraiaiyah
- Danish Headache Center, Department of Neurology, Rigshospitalet- Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Lili Kokoti
- Danish Headache Center, Department of Neurology, Rigshospitalet- Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Mohammad Al-Mahdi Al-Karagholi
- Danish Headache Center, Department of Neurology, Rigshospitalet- Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Messoud Ashina
- Danish Headache Center, Department of Neurology, Rigshospitalet- Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.,Danish Headache Knowledge Center, Rigshospitalet - Glostrup, Glostrup, Denmark
| |
Collapse
|
3
|
Duarte P, Cuadrado A, León R. Monoamine Oxidase Inhibitors: From Classic to New Clinical Approaches. Handb Exp Pharmacol 2021; 264:229-259. [PMID: 32852645 DOI: 10.1007/164_2020_384] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Monoamine oxidases (MAOs) are involved in the oxidative deamination of different amines and neurotransmitters. This pointed them as potential targets for several disorders and along the last 70 years a wide variety of MAO inhibitors have been developed as successful drugs for the treatment of complex diseases, being the first drugs approved for depression in the late 1950s. The discovery of two MAO isozymes (MAO-A and B) with different substrate selectivity and tissue expression patterns led to novel therapeutic approaches and to the development of new classes of inhibitors, such as selective irreversible and reversible MAO-B inhibitors and reversible MAO-A inhibitors. Significantly, MAO-B inhibitors constitute a widely studied group of compounds, some of them approved for the treatment of Parkinson's disease. Further applications are under development for the treatment of Alzheimer's disease, amyotrophic lateral sclerosis, and cardiovascular diseases, among others. This review summarizes the most important aspects regarding the development and clinical use of MAO inhibitors, going through mechanistic and structural details, new indications, and future perspectives. Monoamine oxidases (MAOs) catalyze the oxidative deamination of different amines and neurotransmitters. The two different isozymes, MAO-A and MAO-B, are located at the outer mitochondrial membrane in different tissues. The enzymatic reaction involves formation of the corresponding aldehyde and releasing hydrogen peroxide (H2O2) and ammonia or a substituted amine depending on the substrate. MAO's role in neurotransmitter metabolism made them targets for major depression and Parkinson's disease, among other neurodegenerative diseases. Currently, these compounds are being studied for other diseases such as cardiovascular ones.
Collapse
Affiliation(s)
- Pablo Duarte
- Instituto Teófilo Hernando y Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
- Instituto de Investigación Sanitaria, Servicio de Farmacología Clínica, Hospital Universitario de la Princesa, Madrid, Spain
| | - Antonio Cuadrado
- Departmento de Bioquímica, Facultad de Medicina, Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Investigación Sanitaria La Paz (IdiPaz), Instituto de Investigaciones Biomédicas 'Alberto Sols' UAM-CSIC, Universidad Autónoma de Madrid, Madrid, Spain
| | - Rafael León
- Instituto Teófilo Hernando y Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain.
- Instituto de Investigación Sanitaria, Servicio de Farmacología Clínica, Hospital Universitario de la Princesa, Madrid, Spain.
- Instituto de Química Médica, Consejo Superior de Investigaciones CientÚficas (IQM-CSIC), Madrid, Spain.
| |
Collapse
|
4
|
Schepici G, Silvestro S, Bramanti P, Mazzon E. Caffeine: An Overview of Its Beneficial Effects in Experimental Models and Clinical Trials of Parkinson's Disease. Int J Mol Sci 2020; 21:ijms21134766. [PMID: 32635541 PMCID: PMC7369844 DOI: 10.3390/ijms21134766] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/30/2020] [Accepted: 07/03/2020] [Indexed: 12/20/2022] Open
Abstract
Parkinson’s Disease (PD) is a neurological disease characterized by the progressive degeneration of the nigrostriatal dopaminergic pathway with consequent loss of neurons in the substantia nigra pars compacta and dopamine depletion. The cytoplasmic inclusions of α-synuclein (α-Syn), known as Lewy bodies, are the cytologic hallmark of PD. The presence of α-Syn aggregates causes mitochondrial degeneration, responsible for the increase in oxidative stress and consequent neurodegeneration. PD is a progressive disease that shows a complicated pathogenesis. The current therapies are used to alleviate the symptoms of the disease without changing its clinical course. Recently, phytocompounds with neuroprotective effects and antioxidant properties such as caffeine have aroused the interest of researchers. The purpose of this review is to summarize the preclinical studies present in the literature and clinical trials recorded in ClinicalTrial.gov, aimed at illustrating the effects of caffeine used as a nutraceutical compound combined with the current PD therapies. Therefore, the preventive effects of caffeine in the neurodegeneration of dopaminergic neurons encourage the use of this alkaloid as a supplement to reduce the progress of the PD.
Collapse
|
5
|
Recent advances in dopaminergic strategies for the treatment of Parkinson's disease. Acta Pharmacol Sin 2020; 41:471-482. [PMID: 32112042 PMCID: PMC7471472 DOI: 10.1038/s41401-020-0365-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/13/2020] [Indexed: 12/19/2022] Open
Abstract
Parkinson's disease (PD) is the second most common progressive neurodegenerative disease worldwide. However, there is no available therapy reversing the neurodegenerative process of PD. Based on the loss of dopamine or dopaminergic dysfunction in PD patients, most of the current therapies focus on symptomatic relief to improve patient quality of life. As dopamine replacement treatment remains the most effective symptomatic pharmacotherapy for PD, herein we provide an overview of the current pharmacotherapies, summarize the clinical development status of novel dopaminergic agents, and highlight the challenge and opportunity of emerging preclinical dopaminergic approaches aimed at managing the features and progression of PD.
Collapse
|
6
|
Bailey RA, Gutierrez A, Kyser TL, Hemmerle AM, Hufgard JR, Seroogy KB, Vorhees CV, Williams MT. Effects of Preweaning Manganese in Combination with Adult Striatal Dopamine Lesions on Monoamines, BDNF, TrkB, and Cognitive Function in Sprague-Dawley Rats. Neurotox Res 2019; 35:606-620. [PMID: 30612279 DOI: 10.1007/s12640-018-9992-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 11/19/2018] [Accepted: 12/18/2018] [Indexed: 01/25/2023]
Abstract
Manganese (Mn) is an essential nutrient especially during development, but Mn overexposure (MnOE) produces long-term cognitive deficits. Evidence of long-term changes in dopamine in the neostriatum was found in rats from developmental MnOE previously. To examine the relationship between MnOE and dopamine, we tested whether the effects of developmental MnOE would be exaggerated by dopamine reductions induced by 6-hydroxydopamine (6-OHDA) neostriatal infusion when the rats were adults. The experiment consisted of four groups of females and males: Vehicle/Sham, MnOE/Sham, Vehicle/6-OHDA, and MnOE/6-OHDA. Both MnOE/Sham and Vehicle/6-OHDA groups displayed egocentric and allocentric memory deficits, whereas MnOE+6-OHDA had additive effects on spatial memory in the Morris water maze and egocentric learning in the Cincinnati water maze. 6-OHDA reduced dopamine in the neostriatum and nucleus accumbens, reduced norepinephrine in the hippocampus, reduced TH+ cells and TrkB and TH expression in the substantia nigra pars compacta (SNpc), but increased TrkB in the neostriatum. MnOE alone had no effect on monoamines or TrkB in the neostriatum or hippocampus but reduced BDNF in the hippocampus. A number of sex differences were noted; however, only a few significant interactions were found for MnOE and/or 6-OHDA exposure. These data further implicate dopamine and BDNF in the cognitive deficits arising from developmental MnOE.
Collapse
Affiliation(s)
- Rebecca A Bailey
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
- Division of Neurology, Cincinnati Children's Research Foundation, Cincinnati, OH, 45229, USA
- Neuroscience Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Arnold Gutierrez
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
- Division of Neurology, Cincinnati Children's Research Foundation, Cincinnati, OH, 45229, USA
- Neuroscience Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Tara L Kyser
- Neuroscience Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
- Department of Neurology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Ann M Hemmerle
- Department of Neurology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Jillian R Hufgard
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
- Division of Neurology, Cincinnati Children's Research Foundation, Cincinnati, OH, 45229, USA
| | - Kim B Seroogy
- Neuroscience Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
- Department of Neurology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Charles V Vorhees
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
- Division of Neurology, Cincinnati Children's Research Foundation, Cincinnati, OH, 45229, USA
- Neuroscience Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Michael T Williams
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA.
- Division of Neurology, Cincinnati Children's Research Foundation, Cincinnati, OH, 45229, USA.
- Neuroscience Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA.
| |
Collapse
|
7
|
Zhang Q, Cunha APD, Li S, Hao Q, Kainz V, Huang Q, Wu HY. IL-27 regulates HIF-1α-mediated VEGFA response in macrophages of diabetic retinopathy patients and healthy individuals. Cytokine 2018; 113:238-247. [PMID: 30007476 DOI: 10.1016/j.cyto.2018.07.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 07/03/2018] [Accepted: 07/07/2018] [Indexed: 12/18/2022]
Abstract
Human macrophages produce vascular endothelial growth factor A (VEGFA) for angiogenesis in diabetic retinopathy (DR). The regulatory function of IL-27 on human macrophages is not well understood. In particular, the effect of IL-27 on VEGFA response in human macrophages has not been investigated. We find that IL-27 suppresses VEGFA mRNA expression as well as protein secretion by human macrophages. The synergistic action of purinergic signaling and activation of hypoxia-inducible factor 1 alpha (HIF-1α) induces VEGFA production in a positive feedback loop. IL-27 signaling in human macrophages disrupts this positive feedback loop thus suppresses VEGFA production. Blockade of IL-27 signaling with a JAK2 antagonist reverses this downregulatory effect on HIF-1α and partially blocks the inhibitory effect on VEGFA production. Lastly, DR patient macrophages have a higher propensity to produce VEGFA and this is amplified by an in vitro challenge with the pro-inflammatory cytokine IL-1β. IL-27 suppresses VEGFA production by DR patient macrophages even in the presence of IL-1β challenge indicating a potential therapeutic use of IL-27 in the clinic.
Collapse
Affiliation(s)
- Q Zhang
- Department of Ophthalmology, Novartis Institutes for Biomedical Research, Cambridge, MA 02139, USA
| | - A P da Cunha
- Department of Ophthalmology, Novartis Institutes for Biomedical Research, Cambridge, MA 02139, USA
| | - S Li
- Department of Analytical Sciences and Imaging, Novartis Institutes for Biomedical Research, Cambridge, MA 02139, USA
| | - Q Hao
- Department of Analytical Sciences and Imaging, Novartis Institutes for Biomedical Research, Cambridge, MA 02139, USA
| | - V Kainz
- Department of Ophthalmology, Novartis Institutes for Biomedical Research, Cambridge, MA 02139, USA
| | - Q Huang
- Department of Ophthalmology, Novartis Institutes for Biomedical Research, Cambridge, MA 02139, USA
| | - H Y Wu
- Department of Ophthalmology, Novartis Institutes for Biomedical Research, Cambridge, MA 02139, USA.
| |
Collapse
|
8
|
Chan HH, Tse MK, Kumar S, Zhuo L. A novel selective MAO-B inhibitor with neuroprotective and anti-Parkinsonian properties. Eur J Pharmacol 2018; 818:254-262. [DOI: 10.1016/j.ejphar.2017.10.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 09/20/2017] [Accepted: 10/12/2017] [Indexed: 01/16/2023]
|
9
|
Nazario LR, da Silva RS, Bonan CD. Targeting Adenosine Signaling in Parkinson's Disease: From Pharmacological to Non-pharmacological Approaches. Front Neurosci 2017; 11:658. [PMID: 29217998 PMCID: PMC5703841 DOI: 10.3389/fnins.2017.00658] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 11/10/2017] [Indexed: 12/29/2022] Open
Abstract
Parkinson's disease (PD) is one of the most prevalent neurodegenerative disease displaying negative impacts on both the health and social ability of patients and considerable economical costs. The classical anti-parkinsonian drugs based in dopaminergic replacement are the standard treatment, but several motor side effects emerge during long-term use. This mini-review presents the rationale to several efforts from pre-clinical and clinical studies using adenosine receptor antagonists as a non-dopaminergic therapy. As several studies have indicated that the monotherapy with adenosine receptor antagonists reaches limited efficacy, the usage as a co-adjuvant appeared to be a promising strategy. The formulation of multi-targeted drugs, using adenosine receptor antagonists and other neurotransmitter systems than the dopaminergic one as targets, have been receiving attention since Parkinson's disease presents a complex biological impact. While pharmacological approaches to cure or ameliorate the conditions of PD are the leading strategy in this area, emerging positive aspects have arisen from non-pharmacological approaches and adenosine function inhibition appears to improve both strategies.
Collapse
Affiliation(s)
- Luiza R Nazario
- Laboratório de Neuroquímica e Psicofarmacologia, Departamento de Biologia Celular e Molecular, Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Rosane S da Silva
- Laboratório de Neuroquímica e Psicofarmacologia, Departamento de Biologia Celular e Molecular, Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Carla D Bonan
- Laboratório de Neuroquímica e Psicofarmacologia, Departamento de Biologia Celular e Molecular, Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
10
|
Barros AS, Crispim RYG, Cavalcanti JU, Souza RB, Lemos JC, Cristino Filho G, Bezerra MM, Pinheiro TFM, de Vasconcelos SMM, Macêdo DS, de Barros Viana GS, Aguiar LMV. Impact of the Chronic Omega-3 Fatty Acids Supplementation in Hemiparkinsonism Model Induced by 6-Hydroxydopamine in Rats. Basic Clin Pharmacol Toxicol 2017; 120:523-531. [DOI: 10.1111/bcpt.12713] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 09/07/2016] [Indexed: 12/25/2022]
Affiliation(s)
| | | | | | - Ricardo Basto Souza
- Department of Biochemistry and Molecular Biology; Federal University of Ceará; Fortaleza Ceará Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
Accumulating evidence shows a relationship between the human MAO-B (hMAO-B) enzyme and neuropsychiatric/degenerative disorder, personality traits, type II alcoholism, borderline personality disorders, aggressiveness and violence in crime, obsessive-compulsive disorder, depression, suicide, schizophrenia, anorexia nervosa, migraine, dementia, and PD. Thus, MAO-B represents an attractive target for the treatment of a number of human diseases. The discovery, development, and therapeutic use of drugs that inhibit MAO-B are major challenges for future therapy. Various compounds and drugs that selectively target this isoform have been discovered recently. These agents are synthetic compounds or natural products and their analogues, including chalcones, pyrazoles, chromones, coumarins, xanthines, isatin derivatives, thiazolidindiones, (thiazol-2-yl)hydrazones, and analogues of marketed drugs. Despite considerable efforts in understanding the binding interaction with specific substrates or inhibitors, structural information available for the rational design of new hMAO-B inhibitors remains unsatisfactory. Therefore, the quest for novel, potent, and selective hMAO-B inhibitors remains of high interest.
Collapse
Affiliation(s)
- Simone Carradori
- Dipartimento Chimica e Tecnologie del Farmaco, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza Università di Roma , Piazzale Aldo Moro 5, I-00185 Roma, Italy
| | - Romano Silvestri
- Dipartimento Chimica e Tecnologie del Farmaco, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza Università di Roma , Piazzale Aldo Moro 5, I-00185 Roma, Italy
| |
Collapse
|
12
|
Braun AA, Amos-Kroohs RM, Gutierrez A, Lundgren KH, Seroogy KB, Skelton MR, Vorhees CV, Williams MT. Dopamine depletion in either the dorsomedial or dorsolateral striatum impairs egocentric Cincinnati water maze performance while sparing allocentric Morris water maze learning. Neurobiol Learn Mem 2014; 118:55-63. [PMID: 25451306 DOI: 10.1016/j.nlm.2014.10.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 10/24/2014] [Accepted: 10/29/2014] [Indexed: 10/24/2022]
Abstract
Both egocentric route-based learning and spatial learning, as assessed by the Cincinnati water maze (CWM) and Morris water maze (MWM), respectively, are impaired following an 80% dopamine (DA) loss in the neostriatum after 6-hydroxydopamine (6-OHDA) administration in rats. The dorsolateral striatum (DLS) and the dorsomedial striatum (DMS) are implicated in different navigational learning types, namely the DLS is implicated in egocentric learning while the DMS is implicated in spatial learning. This experiment tested whether selective DA loss through 6-OHDA lesions in the DMS or DLS would impair one or both types of navigation. Both DLS and DMS DA loss significantly impaired route-based CWM learning, without affecting spatial or cued MWM performance. DLS 6-OHDA lesions produced a 75% DA loss in this region, with no changes in other monoamine levels in the DLS or DMS. DMS 6-OHDA lesions produced a 62% DA loss in this region, without affecting other monoamine levels in the DMS or DLS. The results indicate a role for DA in DLS and DMS regions in route-based egocentric but not spatial learning and memory. Spatial learning deficits may require more pervasive monoamine reductions within each region before deficits are exhibited. This is the first study to implicate DLS and DMS DA in route-based egocentric navigation.
Collapse
Affiliation(s)
- Amanda A Braun
- Division of Neurology, Department of Pediatrics, Cincinnati Children's Research Foundation, University of Cincinnati College of Medicine, Cincinnati, OH 45229, United States
| | - Robyn M Amos-Kroohs
- Division of Neurology, Department of Pediatrics, Cincinnati Children's Research Foundation, University of Cincinnati College of Medicine, Cincinnati, OH 45229, United States
| | - Arnold Gutierrez
- Division of Neurology, Department of Pediatrics, Cincinnati Children's Research Foundation, University of Cincinnati College of Medicine, Cincinnati, OH 45229, United States
| | - Kerstin H Lundgren
- Department of Neurology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, United States
| | - Kim B Seroogy
- Department of Neurology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, United States
| | - Matthew R Skelton
- Division of Neurology, Department of Pediatrics, Cincinnati Children's Research Foundation, University of Cincinnati College of Medicine, Cincinnati, OH 45229, United States
| | - Charles V Vorhees
- Division of Neurology, Department of Pediatrics, Cincinnati Children's Research Foundation, University of Cincinnati College of Medicine, Cincinnati, OH 45229, United States.
| | - Michael T Williams
- Division of Neurology, Department of Pediatrics, Cincinnati Children's Research Foundation, University of Cincinnati College of Medicine, Cincinnati, OH 45229, United States.
| |
Collapse
|
13
|
Machado-Filho JA, Correia AO, Montenegro ABA, Nobre MEP, Cerqueira GS, Neves KRT, Naffah-Mazzacoratti MDG, Cavalheiro EA, de Castro Brito GA, de Barros Viana GS. Caffeine neuroprotective effects on 6-OHDA-lesioned rats are mediated by several factors, including pro-inflammatory cytokines and histone deacetylase inhibitions. Behav Brain Res 2014; 264:116-25. [DOI: 10.1016/j.bbr.2014.01.051] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 01/28/2014] [Accepted: 01/31/2014] [Indexed: 12/20/2022]
|
14
|
Miguelez C, Morera-Herreras T, Torrecilla M, Ruiz-Ortega JA, Ugedo L. Interaction between the 5-HT system and the basal ganglia: functional implication and therapeutic perspective in Parkinson's disease. Front Neural Circuits 2014; 8:21. [PMID: 24672433 PMCID: PMC3955837 DOI: 10.3389/fncir.2014.00021] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 02/27/2014] [Indexed: 01/15/2023] Open
Abstract
The neurotransmitter serotonin (5-HT) has a multifaceted function in the modulation of information processing through the activation of multiple receptor families, including G-protein-coupled receptor subtypes (5-HT1, 5-HT2, 5-HT4-7) and ligand-gated ion channels (5-HT3). The largest population of serotonergic neurons is located in the midbrain, specifically in the raphe nuclei. Although the medial and dorsal raphe nucleus (DRN) share common projecting areas, in the basal ganglia (BG) nuclei serotonergic innervations come mainly from the DRN. The BG are a highly organized network of subcortical nuclei composed of the striatum (caudate and putamen), subthalamic nucleus (STN), internal and external globus pallidus (or entopeduncular nucleus in rodents, GPi/EP and GPe) and substantia nigra (pars compacta, SNc, and pars reticulata, SNr). The BG are part of the cortico-BG-thalamic circuits, which play a role in many functions like motor control, emotion, and cognition and are critically involved in diseases such as Parkinson's disease (PD). This review provides an overview of serotonergic modulation of the BG at the functional level and a discussion of how this interaction may be relevant to treating PD and the motor complications induced by chronic treatment with L-DOPA.
Collapse
Affiliation(s)
- Cristina Miguelez
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of the Basque Country UPV/EHU Leioa, Spain ; Department of Pharmacology, Faculty of Pharmacy, University of the Basque Country UPV/EHU Vitoria-Gasteiz, Spain
| | - Teresa Morera-Herreras
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of the Basque Country UPV/EHU Leioa, Spain
| | - Maria Torrecilla
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of the Basque Country UPV/EHU Leioa, Spain
| | - Jose A Ruiz-Ortega
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of the Basque Country UPV/EHU Leioa, Spain ; Department of Pharmacology, Faculty of Pharmacy, University of the Basque Country UPV/EHU Vitoria-Gasteiz, Spain
| | - Luisa Ugedo
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of the Basque Country UPV/EHU Leioa, Spain
| |
Collapse
|
15
|
Stössel A, Schlenk M, Hinz S, Küppers P, Heer J, Gütschow M, Müller CE. Dual targeting of adenosine A(2A) receptors and monoamine oxidase B by 4H-3,1-benzothiazin-4-ones. J Med Chem 2013; 56:4580-96. [PMID: 23631427 DOI: 10.1021/jm400336x] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Blockade of A2A adenosine receptors (A2AARs) and inhibition of monoamine oxidase B (MAO-B) in the brain are considered attractive strategies for the treatment of neurodegenerative diseases such as Parkinson's disease (PD). In the present study, benzothiazinones, e.g., 2-(3-chlorophenoxy)-N-(4-oxo-4H-3,1-benzothiazin-2-yl)acetamide (13), were identified as a novel class of potent MAO-B inhibitors (IC50 human MAO-B: 1.63 nM). Benzothiazinones with large substituents in the 2-position, e.g., methoxycinnamoylamino, phenylbutyrylamino, or chlorobenzylpiperazinylbenzamido residues (14, 17, 27, and 28), showed high affinity and selectivity for A2AARs (Ki human A2AAR: 39.5-69.5 nM). By optimizing benzothiazinones for both targets, the first potent, dual-acting A2AAR/MAO-B inhibitors with a nonxanthine structure were developed. The best derivative was N-(4-oxo-4H-3,1-benzothiazin-2-yl)-4-phenylbutanamide (17, Ki human A2A, 39.5 nM; IC50 human MAO-B, 34.9 nM; selective versus other AR subtypes and MAO-A), which inhibited A2AAR-induced cAMP accumulation and showed competitive, reversible MAO-B inhibition. The new compounds may be useful tools for validating the A2AAR/MAO-B dual target approach in PD.
Collapse
Affiliation(s)
- Anne Stössel
- PharmaCenter Bonn, University of Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, Bonn, Germany
| | | | | | | | | | | | | |
Collapse
|
16
|
Rivara S, Piersanti G, Bartoccini F, Diamantini G, Pala D, Riccioni T, Stasi MA, Cabri W, Borsini F, Mor M, Tarzia G, Minetti P. Synthesis of (E)-8-(3-Chlorostyryl)caffeine Analogues Leading to 9-Deazaxanthine Derivatives as Dual A2A Antagonists/MAO-B Inhibitors. J Med Chem 2013; 56:1247-61. [DOI: 10.1021/jm301686s] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Silvia Rivara
- Dipartimento
di Farmacia, Università
degli Studi di Parma, Viale G.P. Usberti 27 A, I-43124 Parma, Italy
| | - Giovanni Piersanti
- Department of Biomolecular Sciences,
University of Urbino, Piazza Rinascimento 6, I-61029 Urbino (PU),
Italy
| | - Francesca Bartoccini
- Department of Biomolecular Sciences,
University of Urbino, Piazza Rinascimento 6, I-61029 Urbino (PU),
Italy
| | - Giuseppe Diamantini
- Department of Biomolecular Sciences,
University of Urbino, Piazza Rinascimento 6, I-61029 Urbino (PU),
Italy
| | - Daniele Pala
- Dipartimento
di Farmacia, Università
degli Studi di Parma, Viale G.P. Usberti 27 A, I-43124 Parma, Italy
| | - Teresa Riccioni
- Sigma-Tau Industrie Farmaceutiche
Riunite
S.p.A., Via Pontina Km 30,400, I-00040 Pomezia, Italy
| | - Maria Antonietta Stasi
- Sigma-Tau Industrie Farmaceutiche
Riunite
S.p.A., Via Pontina Km 30,400, I-00040 Pomezia, Italy
| | - Walter Cabri
- Sigma-Tau Industrie Farmaceutiche
Riunite
S.p.A., Via Pontina Km 30,400, I-00040 Pomezia, Italy
| | - Franco Borsini
- Sigma-Tau Industrie Farmaceutiche
Riunite
S.p.A., Via Pontina Km 30,400, I-00040 Pomezia, Italy
| | - Marco Mor
- Dipartimento
di Farmacia, Università
degli Studi di Parma, Viale G.P. Usberti 27 A, I-43124 Parma, Italy
| | - Giorgio Tarzia
- Department of Biomolecular Sciences,
University of Urbino, Piazza Rinascimento 6, I-61029 Urbino (PU),
Italy
| | - Patrizia Minetti
- Sigma-Tau Industrie Farmaceutiche
Riunite
S.p.A., Via Pontina Km 30,400, I-00040 Pomezia, Italy
| |
Collapse
|
17
|
Gao HC, Zhu H, Song CY, Lin L, Xiang Y, Yan ZH, Bai GH, Ye FQ, Li XK. Metabolic changes detected by ex vivo high resolution 1H NMR spectroscopy in the striatum of 6-OHDA-induced Parkinson's rat. Mol Neurobiol 2012; 47:123-30. [PMID: 22936308 DOI: 10.1007/s12035-012-8336-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2012] [Accepted: 08/16/2012] [Indexed: 10/28/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by the progressive loss of the dopaminergic neurons; however, its crucial mechanism of the metabolic changes of neurotransmitters remains ambiguous. The pathological mechanism of PD might involve cerebral metabolism perturbations. In this study, ex vivo proton nuclear magnetic resonance ((1)H NMR) was used to determine the level changes of 13 metabolites in the bilateral striatum of 6-hydroxydopamine (6-OHDA)-induced PD rats. The results showed that, in the right striatum of 6-OHDA-induced PD rats, increased levels of glutamate (Glu) and γ-aminobutyric acid (GABA) concomitantly with decreased level of glutamine (Gln) were observed compared to the control. Whereas, in the left striatum of 6-OHDA-induced PD rats, increased level of Glu with decreased level of GABA and unchanged Gln were observed. Other cerebral metabolites including lactate, alanine, creatine, succinate, taurine, and glycine were also found to have some perturbations. The observed metabolic changes for Glu, Gln, and GABA are mostly likely the result of a shift in the steady-state equilibrium of the Gln-Glu-GABA metabolic cycle between astrocytes and neurons. The altered Gln and GABA levels are most likely as a strategy to protect neurons from Glu excitotoxic injury after striatal dopamine depletion. Changes in energy metabolism and tricarboxylic acid cycle might be involved in the pathogenesis of PD.
Collapse
Affiliation(s)
- Hong-Chang Gao
- School of Pharmacy, Wenzhou Medical College, Wenzhou, 325035, People's Republic of China.
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Braun AA, Graham DL, Schaefer TL, Vorhees CV, Williams MT. Dorsal striatal dopamine depletion impairs both allocentric and egocentric navigation in rats. Neurobiol Learn Mem 2012; 97:402-8. [PMID: 22465436 DOI: 10.1016/j.nlm.2012.03.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2012] [Revised: 02/25/2012] [Accepted: 03/07/2012] [Indexed: 10/28/2022]
Abstract
Successful navigation requires interactions among multiple but overlapping neural pathways mediating distinct capabilities, including egocentric (self-oriented, route-based) and allocentric (spatial, map-based) learning. Route-based navigation has been shown to be impaired following acute exposure to the dopaminergic (DA) drugs (+)-methamphetamine and (+)-amphetamine, but not the serotoninergic (5-HT) drugs (±)-3,4-methylenedioxymethamphetamine or (±)-fenfluramine. The dopaminergic-rich neostriatum is involved in both allocentric and egocentric navigation. This experiment tested whether dorsal striatal DA loss using bilateral 6-hydroxydopamine (6-OHDA) injections impaired one or both types of navigation. Two weeks following 6-OHDA injections, rats began testing in the Cincinnati water maze (CWM) followed by the Morris water maze (MWM) for route-based and spatial navigation, respectively. 6-OHDA treatment significantly increased latency and errors in the CWM and path length, latency, and cumulative distance in the MWM with no difference on cued MWM trials. Neostriatal DA levels were reduced by 80% at 2 and 7 weeks post-treatment. In addition, 6-OHDA increased DA turnover and decreased norepinephrine (NE) levels. 6-OHDA injections did not alter monoamine levels in the prefrontal cortex. The data support that neostriatal DA modulates both types of navigation.
Collapse
Affiliation(s)
- Amanda A Braun
- Division of Neurology, Department of Pediatrics, Cincinnati Children's Research Foundation, Cincinnati, OH 45229, USA
| | | | | | | | | |
Collapse
|
19
|
Gołembiowska K, Dziubina A. Effect of adenosine A(2A) receptor antagonists and L-DOPA on hydroxyl radical, glutamate and dopamine in the striatum of 6-OHDA-treated rats. Neurotox Res 2011; 21:222-30. [PMID: 21830163 PMCID: PMC3246585 DOI: 10.1007/s12640-011-9263-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Revised: 07/21/2011] [Accepted: 07/28/2011] [Indexed: 11/25/2022]
Abstract
A2A adenosine receptor antagonists have been proposed as a new therapy of PD. Since oxidative stress plays an important role in the pathogenesis of PD, we studied the effect of the selective A2A adenosine receptor antagonists 8-(-3-chlorostyryl)caffeine (CSC) and 4-(2-[7-amino-2-(2-furyl)[1,2,4]triazolo[2,3-a][1,3,5]triazin-5-ylamino]ethyl)phenol (ZM 241385) on hydroxyl radical generation, and glutamate (GLU) and dopamine (DA) extracellular level using a microdialysis in the striatum of 6-OHDA-treated rats. CSC (1 mg/kg) and ZM 241385 (3 mg/kg) given repeatedly for 14 days decreased the production of hydroxyl radical and extracellular GLU level, both enhanced by prior 6-OHDA treatment in dialysates from the rat striatum. CSC and ZM 241385 did not affect DA and its metabolites, 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanilic acid (HVA) extracellular levels in the striatum of 6-OHDA-treated rats. l-DOPA (6 mg/kg) given twice daily for two weeks in the presence of benserazide (3 mg/kg) decreased striatal hydroxyl radical and glutamate extracellular level in 6-OHDA-treated rats. At the same time, l-DOPA slightly but significantly increased the extracellular levels of DOPAC and HVA. A combined repeated administration of l-DOPA and CSC or ZM 241385 did not change the effect of l-DOPA on hydroxyl radical production and glutamate extracellular level in spite of an enhancement of extracellular DA level by CSC and elevation of extracellular level of DOPAC and HVA by ZM 241385. The data suggest that the 6-OHDA-induced damage of nigrostriatal DA-terminals is related to oxidative stress and excessive release of glutamate. Administration of l-DOPA in combination with CSC or ZM 241385, by restoring striatal DA-glutamate balance, suppressed 6-OHDA-induced overproduction of hydroxyl radical.
Collapse
Affiliation(s)
- Krystyna Gołembiowska
- Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, 31-343 Kraków, Poland.
| | | |
Collapse
|
20
|
Locus coeruleus and dorsal raphe neuron activity and response to acute antidepressant administration in a rat model of Parkinson's disease. Int J Neuropsychopharmacol 2011; 14:187-200. [PMID: 20426885 DOI: 10.1017/s146114571000043x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
In addition to noradrenergic and serotonergic systems, dopaminergic neurotransmission seems to play an important role in the aetiopathogenesis of, and recovery from, depression. Moreover, the incidence of depression is higher in patients affected by diseases where the dopaminergic system is highly impaired, such us Parkinson's disease. Here, we investigated the effects of dopamine degeneration on the activity and response to antidepressants of locus coeruleus (LC) noradrenergic and dorsal raphe nucleus (DRN) serotonergic neurons. To this end, single-unit extracellular recordings were performed in control and 6-hydroxydopamine (6-OHDA)-lesioned animals. In this latter group, LC neurons showed a lower basal firing rate as well as less sensitivity to the administration of the serotonin reuptake inhibitor, fluoxetine. The rest of electrophysiological parameters and the response to the administration of the α2-adrenoceptor agonist, clonidine and the noradrenaline reuptake inhibitor, reboxetine remained unaltered. In the DRN, dopamine depletion did not modify the basal electrophysiological characteristics and the response to clonidine or fluoxetine administration. In contrast, the administration of reboxetine more efficiently induced an inhibitory effect in the lesioned group. In additional analyses it was observed that while in control animals, LC and DRN basal firing rate was significantly correlated, this relationship was lost after the 6-OHDA lesion. In conclusion, dopaminergic degeneration alters LC neuron basal activity, the relationship/synteny between both nuclei, and their response to antidepressants. These findings shed fresh light on our understanding of the role of dopamine in depression and the mechanism action of antidepressants.
Collapse
|
21
|
De Araújo DP, Lobato RDFG, Cavalcanti JRLDP, Sampaio LRL, Araújo PVP, Silva MCC, Neves KRT, Fonteles MMDF, Sousa FCFD, Vasconcelos SMM. The contributions of antioxidant activity of lipoic acid in reducing neurogenerative progression of Parkinson's disease: a review. Int J Neurosci 2010; 121:51-7. [PMID: 21126109 DOI: 10.3109/00207454.2010.535934] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
ABSTRACT This work reviews the evidence of the mechanism of neuronal degeneration in Parkinson's disease (PD) and the neuroprotective effect of lipoic acid and its use in the treatment of PD. PD is characterized by slow and progressive degeneration of dopaminergic neurons of the substantia nigra pars compacta, leading to reduction of the striatal dopaminergic terminals. It is known that several factors influence neuronal damage. Among these factors, oxidative stress, immune system activity, microglial cells, and apoptotic mechanisms are of major importance. Currently, several antioxidants have been studied with the aim of reducing/slowing the progression of neurodegenerative processes. Lipoic acid is considered a universal antioxidant because it is an amphipathic substance. Lipoic acid and its reduced form, dihidrolipoic acid, act against reactive oxygen species, reducing oxidative stress. Therefore, this antioxidant has been used in the treatment of many diseases, including a new perspective for the treatment of Parkinson's disease.
Collapse
Affiliation(s)
- Dayane Pessoa De Araújo
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Gołembiowska K, Dziubina A, Kowalska M, Kamińska K. Effect of adenosine A(2A) receptor antagonists on L-DOPA-induced hydroxyl radical formation in rat striatum. Neurotox Res 2009; 15:155-66. [PMID: 19384578 DOI: 10.1007/s12640-009-9016-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2008] [Revised: 10/20/2008] [Accepted: 11/24/2008] [Indexed: 11/25/2022]
Abstract
A(2A) adenosine receptor antagonists have been proposed as a new therapy for Parkinson's disease (PD). Since oxidative stress plays an important role in the pathogenesis of PD, we studied the effect of the selective A(2A) adenosine receptor antagonists 8-(3-chlorostyryl)caffeine (CSC) and 4-(2-[7-amino-2-(2-furyl)[1,2,4]triazolo[2,3-a][1,3,5]triazin-5-ylamino]ethyl)phenol (ZM 241385) on L: -3,4-dihydroxyphenylalanine (L: -DOPA)-induced hydroxyl radical generation using in vivo microdialysis in the striatum of freely moving rats. L: -DOPA (100 mg/kg; in the presence of benserazide, 50 mg/kg) given acutely or repeatedly for 14 days generated a high level of hydroxyl radicals, measured by HPLC with electrochemical detection, as the product of their reaction with p-hydroxybenzoic acid (PBA). CSC (1 mg/kg) and ZM 241385 (3 mg/kg) decreased haloperidol (0.5 mg/kg)-induced catalepsy, while at low doses of 0.1 and 0.3 mg/kg, respectively, they did not display an effect. CSC (1 and 5 mg/kg) and ZM 241385 (3 and 9 mg/kg) given acutely, or CSC (1 mg/kg) and ZM 241385 (3 mg/kg) given repeatedly, increased the production of hydroxyl radicals in dialysates from rat striatum. Both acute and repeated administration of CSC (0.1 and 1 mg/kg) and ZM 241385 (3 mg/kg) decreased L: -DOPA-induced generation of hydroxyl radicals. However, a high single dose of either CSC (5 mg/kg) and ZM 241385 (9 mg/kg) markedly potentiated the effect of L: -DOPA on hydroxyl radical production. The increase in hydroxyl radical production by acute and chronic injection of CSC and ZM 241385 may be related to the increased release of dopamine (DA) and its metabolism in striatal dialysates. Similarly, increased DA release following a single high dose of CSC or ZM 241385 appears to be responsible for augmentation of L: -DOPA-induced hydroxyl radical formation. Conversely, the inhibition of L: -DOPA-induced production of hydroxyl radical by single and repeated low doses of CSC or repeated low doses of ZM 241385 may be related to reduced DA metabolism. Summing up, A(2A) antagonists, used as a supplement of L: -DOPA therapy, depending on the dose used, may have a beneficial or adverse effect on ongoing neurodegenerative processes and accompanying oxidative stress.
Collapse
Affiliation(s)
- Krystyna Gołembiowska
- Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, Kraków 31-343, Poland.
| | | | | | | |
Collapse
|
23
|
Tadaiesky MT, Dombrowski PA, Figueiredo CP, Cargnin-Ferreira E, Da Cunha C, Takahashi RN. Emotional, cognitive and neurochemical alterations in a premotor stage model of Parkinson's disease. Neuroscience 2008; 156:830-40. [PMID: 18817851 DOI: 10.1016/j.neuroscience.2008.08.035] [Citation(s) in RCA: 236] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2008] [Revised: 08/13/2008] [Accepted: 08/18/2008] [Indexed: 02/02/2023]
Abstract
In addition to classic motor symptoms, Parkinson's disease (PD) is characterized by cognitive and emotional deficits, which have been demonstrated to precede motor impairments. The present study addresses the question of whether a partial degeneration of dopaminergic neurons using 6-hydroxydopamine (6-OHDA) in rats is able to induce premotor behavioral signs. The time-course of nigrostriatal damage was evaluated by tyrosine hydroxylase immunohistochemistry and the levels of dopamine, noradrenaline, and 5-HT in various brain regions were analyzed by high performance liquid chromatography (HPLC). Behavioral tests that assessed a variety of psychological functions, including locomotor activity, emotional reactivity and depression, anxiety and memory were conducted on 6-OHDA lesioned rats. Bilateral infusion of 6-OHDA in the striatum of rats caused early (1 week) damage of dopaminergic terminals in striatum and in cell bodies in substantia nigra pars compacta. The nigrostriatal lesion was accompanied by early loss of dopamine in the striatum, which remained stable through a 3-week period of observation. In addition, a late (3 weeks) loss of dopamine in the prefrontal cortex, but not in the hippocampus, was seen. Additional noradrenergic and serotonergic alterations were observed after 6-OHDA administration. The results indicated that 6-OHDA lesioned rats show decreased sucrose consumption and an increased immobility time in the forced swimming test, an anhedonic-depressive-like effect. In addition, an anxiogenic-like activity in the elevated plus maze test and cognitive impairments were observed on the cued version of the Morris water maze and social recognition tests. These findings suggest that partial striatal dopaminergic degeneration and parallel dopaminergic, noradrenergic and serotonergic alterations in striatum and prefrontal cortex may have caused the emotional and cognitive deficits observed in this rat model of early phase PD.
Collapse
Affiliation(s)
- M T Tadaiesky
- Departamento de Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, UFSC, Campus Universitário, Trindade, Florianópolis, SC, Brazil
| | | | | | | | | | | |
Collapse
|