1
|
Liang X, Duan Q, Li B, Wang Y, Bu Y, Zhang Y, Kuang Z, Mao L, An X, Wang H, Yang X, Wan N, Feng Z, Shen W, Miao W, Chen J, Liu S, Storz JF, Liu J, Nevo E, Li K. Genomic structural variation contributes to evolved changes in gene expression in high-altitude Tibetan sheep. Proc Natl Acad Sci U S A 2024; 121:e2322291121. [PMID: 38913905 PMCID: PMC11228492 DOI: 10.1073/pnas.2322291121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 05/06/2024] [Indexed: 06/26/2024] Open
Abstract
Tibetan sheep were introduced to the Qinghai Tibet plateau roughly 3,000 B.P., making this species a good model for investigating genetic mechanisms of high-altitude adaptation over a relatively short timescale. Here, we characterize genomic structural variants (SVs) that distinguish Tibetan sheep from closely related, low-altitude Hu sheep, and we examine associated changes in tissue-specific gene expression. We document differentiation between the two sheep breeds in frequencies of SVs associated with genes involved in cardiac function and circulation. In Tibetan sheep, we identified high-frequency SVs in a total of 462 genes, including EPAS1, PAPSS2, and PTPRD. Single-cell RNA-Seq data and luciferase reporter assays revealed that the SVs had cis-acting effects on the expression levels of these three genes in specific tissues and cell types. In Tibetan sheep, we identified a high-frequency chromosomal inversion that exhibited modified chromatin architectures relative to the noninverted allele that predominates in Hu sheep. The inversion harbors several genes with altered expression patterns related to heart protection, brown adipocyte proliferation, angiogenesis, and DNA repair. These findings indicate that SVs represent an important source of genetic variation in gene expression and may have contributed to high-altitude adaptation in Tibetan sheep.
Collapse
Affiliation(s)
- Xiaolong Liang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou730000, China
| | - Qijiao Duan
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou730000, China
| | - Bowen Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou730000, China
| | - Yinjia Wang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou730000, China
| | - Yueting Bu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou730000, China
| | - Yonglu Zhang
- Fengjia Town Health Center, Rushan City, Weihai City264200, China
| | - Zhuoran Kuang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou730000, China
| | - Leyan Mao
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou730000, China
| | - Xuan An
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou730000, China
| | - Huihua Wang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing100193, China
| | - Xiaojie Yang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou730000, China
| | - Na Wan
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou730000, China
| | - Zhilong Feng
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou730000, China
| | - Wei Shen
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou730000, China
| | - Weilan Miao
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou730000, China
| | - Jiaqi Chen
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou730000, China
| | - Sanyuan Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou730000, China
| | - Jay F. Storz
- School of Biological Sciences, University of Nebraska, Lincoln, NE68588
| | - Jianquan Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou730000, China
| | - Eviatar Nevo
- Institute of Evolution, University of Haifa, Haifa3498838, Israel
| | - Kexin Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou730000, China
| |
Collapse
|
2
|
Lin J, Fu S, Yang C, Redies C. Pax3 overexpression induces cell aggregation and perturbs commissural axon projection during embryonic spinal cord development. J Comp Neurol 2017; 525:1618-1632. [PMID: 27864937 DOI: 10.1002/cne.24146] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 10/06/2016] [Accepted: 10/23/2016] [Indexed: 12/12/2022]
Abstract
Pax3 is a transcription factor that belongs to the paired box family. In the developing spinal cord it is expressed in the dorsal commissural neurons, which project ascending axons contralaterally to form proper spinal cord-brain circuitry. While it has been shown that Pax3 induces cell aggregation in vitro, little is known about the role of Pax3 in cell aggregation and spinal circuit formation in vivo. We have reported that Pax3 is involved in neuron differentiation and that its overexpression induces ectopic cadherin-7 expression. In this study we report that Pax3 overexpression also induces cell aggregation in vivo. Tissue sections and open book preparations revealed that Pax3 overexpression prevents commissural axons from projecting to the contralateral side of the spinal cord. Cells overexpressing Pax3 aggregated in cell clusters that contained shortened neurites with perturbed axon growth and elongation. Pax3-specific shRNA partially rescued the morphological change induced by Pax3 overexpression in vivo. Our results indicate that the normal expression of Pax3 is necessary for proper axonal pathway finding and commissural axon projection. In conclusion, Pax3 regulates neural circuit formation during embryonic development. J. Comp. Neurol. 525:1618-1632, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Juntang Lin
- Institute of Anatomy I, University of Jena School of Medicine, Jena University Hospital, Jena, Germany.,Henan Key Lab of Medical Tissue Regeneration, College of Life Science and Technology, College of Biomedical Engineering, Xinxiang Medical University, Xinxiang, China
| | - Sulei Fu
- Institute of Anatomy I, University of Jena School of Medicine, Jena University Hospital, Jena, Germany
| | - Ciqing Yang
- Institute of Anatomy I, University of Jena School of Medicine, Jena University Hospital, Jena, Germany.,Henan Key Lab of Medical Tissue Regeneration, College of Life Science and Technology, College of Biomedical Engineering, Xinxiang Medical University, Xinxiang, China
| | - Christoph Redies
- Institute of Anatomy I, University of Jena School of Medicine, Jena University Hospital, Jena, Germany
| |
Collapse
|
3
|
Lin J, Wang C, Yang C, Fu S, Redies C. Pax3 and Pax7 interact reciprocally and regulate the expression of cadherin-7 through inducing neuron differentiation in the developing chicken spinal cord. J Comp Neurol 2015; 524:940-62. [PMID: 26287727 DOI: 10.1002/cne.23885] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 08/11/2015] [Accepted: 08/12/2015] [Indexed: 01/12/2023]
Abstract
Pax3 and Pax7 are closely related transcription factors that are widely expressed in the developing nervous system and somites. In the CNS, both genes are expressed in the dorsal part of the neural tube during development. Pax3 and Pax7 are involved in the sonic hedgehog (Shh) signaling pathway and are inhibited by Shh overexpression. The present study confirms in vivo that Pax3 overexpression represses the expression of Pax7, whereas Pax7 overexpression endogenously enhances and ectopically induces the expression of Pax3 in the developing chicken spinal cord. Overexpression of Pax3 and Pax7 represses the endogenous expression of cadherin-7, a member of the cadherin family of morphogenetic genes, and induces its ectopic expression. The present study also shows that overexpression of Pax3 and Pax7 changes the fate and morphology of cells in the neuroepithelial layer and induces the expression of postmitotic neuronal markers. We show that both Pax3 and Pax7 promote the differentiation of neural progenitor cells into neurons. Furthermore, the downregulation of Pax3 and Pax7 with specific shRNAs results in apoptosis in the developing spinal cord. Collectively, these results suggest that the transcription factors Pax3 and Pax7 play important roles in regulating morphogenesis and cell differentiation in the developing spinal cord.
Collapse
Affiliation(s)
- Juntang Lin
- Institute of Anatomy I, University of Jena School of Medicine, Jena University Hospital, D-07743, Jena, Germany.,College of Life Science and Technology, Xinxiang Medical University, 453003, Xinxiang, China
| | - Congrui Wang
- Institute of Anatomy I, University of Jena School of Medicine, Jena University Hospital, D-07743, Jena, Germany.,College of Life Science and Technology, Xinxiang Medical University, 453003, Xinxiang, China
| | - Ciqing Yang
- College of Life Science and Technology, Xinxiang Medical University, 453003, Xinxiang, China
| | - Sulei Fu
- Institute of Anatomy I, University of Jena School of Medicine, Jena University Hospital, D-07743, Jena, Germany
| | - Christoph Redies
- Institute of Anatomy I, University of Jena School of Medicine, Jena University Hospital, D-07743, Jena, Germany
| |
Collapse
|
4
|
Lin J, Wang C, Redies C. Restricted expression of classic cadherins in the spinal cord of the chicken embryo. Front Neuroanat 2014; 8:18. [PMID: 24744704 PMCID: PMC3978366 DOI: 10.3389/fnana.2014.00018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 03/12/2014] [Indexed: 01/12/2023] Open
Abstract
Classic cadherins belong to the family of cadherin genes and play important roles in neurogenesis, neuron migration, and axon growth. In the present study, we compared the expression patterns of 10 classic cadherins (Cdh2, Cdh4, Cdh6, Cdh7, Cdh8, Cdh9, Cdh11, Cdh12, Cdh18, and Cdh20) in the developing chicken spinal cord (SP) by in situ hybridization. Our results indicate that each of the investigated cadherins exhibits a spatially restricted and temporally regulated pattern of expression. At early developmental stages (E2.5–E3), Cdh2 is expressed throughout the neuroepithelial layer. Cdh6 is strongly positive in the roof plate and later also in the floor plate. Cdh7, Cdh11, Cdh12, and Cdh20 are expressed in restricted regions of the basal plate of the SP. At intermediate stages of development (E4–E10), specific expression profiles are observed for all investigated cadherins in the differentiating mantle layer along the dorsoventral, mediolateral, and rostrocaudal dimensions. Expression profiles are especially diverse for Cdh2, Cdh4, Cdh8, Cdh11, and Cdh20 in the dorsal horn, while different pools of motor neurons exhibit signal for Cdh6, Cdh7, Cdh8, Cdh9, Cdh12, and Cdh20 in the ventral horn. Interestingly, subpopulations of cells in the dorsal root ganglion express combinations of different cadherins. In the surrounding tissues, such as the boundary cap cells and the notochord, the cadherins are also expressed differentially. The highly regulated spatiotemporal expression patterns of the classic cadherins indicate that these genes potentially play multiple and diverse roles during the development of the SP and its surrounding tissues.
Collapse
Affiliation(s)
- Juntang Lin
- Institute of Anatomy I, University of Jena School of Medicine - Jena University Hospital Jena, Germany ; Xinxiang Medical University Xinxiang, Henan, China
| | - Congrui Wang
- Institute of Anatomy I, University of Jena School of Medicine - Jena University Hospital Jena, Germany ; Xinxiang Medical University Xinxiang, Henan, China
| | - Christoph Redies
- Institute of Anatomy I, University of Jena School of Medicine - Jena University Hospital Jena, Germany
| |
Collapse
|
5
|
Liu CH, Chien CL. Molecular cloning and characterization of chicken neuronal intermediate filament protein α-internexin. J Comp Neurol 2013; 521:2147-64. [PMID: 23224860 DOI: 10.1002/cne.23278] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Revised: 09/19/2012] [Accepted: 11/28/2012] [Indexed: 01/20/2023]
Abstract
α-Internexin is one of the neuronal intermediate filament (IF) proteins, which also include low-, middle-, and high-molecular-weight neurofilament (NF) triplet proteins, designated NFL, NFM, and NFH, respectively. The expression of α-internexin occurs in most neurons as they begin differentiation and precedes the expression of the NF triplet proteins in mammals. However, little is known about the gene sequence and physiological function of α-internexin in avians. In this study we describe the molecular cloning of the mRNA sequence encoding the chicken α-internexin (chkINA) protein from embryonic brains. The gene structure and predicted amino acid sequence of chkINA exhibited high similarity to those of its zebrafish, mouse, rat, bovine, and human homologs. Data from transient-transfection experiments show that the filamentous pattern of chkINA was found in transfected cells and colocalized with other endogenous IFs, as demonstrated via immunocytochemistry using a chicken-specific antibody. The expression of chkINA was detected at the early stage of development and increased during the developmental process of the chicken. chkINA was expressed widely in chicken brains and colocalized with NF triplet proteins in neuronal processes, as assessed using immunohistochemistry. We also found that chkINA was expressed abundantly in the developing cerebellum and was the major IF protein in the parallel processes of granule neurons. Thus, we suggest that chkINA is a neuron-specific IF protein that may be a useful marker for studies of chicken brain development.
Collapse
Affiliation(s)
- Chi-Hsiu Liu
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan ROC
| | | |
Collapse
|
6
|
Paulson AF, Prasad MS, Thuringer AH, Manzerra P. Regulation of cadherin expression in nervous system development. Cell Adh Migr 2013; 8:19-28. [PMID: 24526207 DOI: 10.4161/cam.27839] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
This review addresses our current understanding of the regulatory mechanisms for classical cadherin expression during development of the vertebrate nervous system. The complexity of the spatial and temporal expression patterns is linked to morphogenic and functional roles in the developing nervous system. While the regulatory networks controlling cadherin expression are not well understood, it is likely that the multiple signaling pathways active in the development of particular domains also regulate the specific cadherins expressed at that time and location. With the growing understanding of the broader roles of cadherins in cell-cell adhesion and non-adhesion processes, it is important to understand both the upstream regulation of cadherin expression and the downstream effects of specific cadherins within their cellular context.
Collapse
Affiliation(s)
- Alicia F Paulson
- Division of Basic Biomedical Sciences; Sanford School of Medicine of The University of South Dakota; Vermillion, SD USA
| | - Maneeshi S Prasad
- Department of Molecular Biosciences; Northwestern University; Evanston, IL USA
| | | | - Pasquale Manzerra
- Division of Basic Biomedical Sciences; Sanford School of Medicine of The University of South Dakota; Vermillion, SD USA
| |
Collapse
|
7
|
Lin J, Redies C. Histological evidence: housekeeping genes beta-actin and GAPDH are of limited value for normalization of gene expression. Dev Genes Evol 2012; 222:369-76. [PMID: 23099774 DOI: 10.1007/s00427-012-0420-x] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 09/28/2012] [Indexed: 10/27/2022]
Abstract
Housekeeping genes are widely used as internal controls for gene expression normalization for western blotting, northern blotting, RT-PCR, etc. They are generally thought to be expressed in all cells of the organism at similar levels because it is assumed that these genes are required for the maintenance of basic cellular function as constitutive genes. However, real-time RT-PCR experiments revealed that their expression may vary depending on the developmental stage, type of tissue examined, experimental condition, and so on. To date, no histological data on their expression are available for embryonic development. In the present study, we compared the histological expression profile of two commonly used housekeeping genes, GAPDH and beta-actin, in the developing chicken embryo by using section and whole mount in situ hybridization supplemented by RT-PCR. Our results show that neither GAPDH mRNA nor beta-actin mRNA is expressed in all cell types or tissues at high levels. Strikingly, expression levels are very low in some organs. Moreover, the two genes show partially complementary expression patterns in the liver, the vascular system and the digestive tract. For example, GAPDH is more strongly expressed in the liver than beta-actin, but at lower levels in the arteries. Vice versa, beta-actin is more strongly expressed in the gizzard than GAPDH, but it is almost absent from cardiac muscle cells. Researchers should consider these histological results when using GAPGD and beta-actin for gene expression normalization in their experiments.
Collapse
Affiliation(s)
- Juntang Lin
- Institute of Anatomy I, University of Jena School of Medicine, Jena University Hospital, Jena, Germany.
| | | |
Collapse
|
8
|
Lin J, Wang C, Redies C. Expression of delta-protocadherins in the spinal cord of the chicken embryo. J Comp Neurol 2012; 520:1509-31. [PMID: 22102158 DOI: 10.1002/cne.22808] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Protocadherins constitute the largest subfamily of cadherin genes and are widely expressed in the nervous system. In the present study, we cloned eight members of the delta-protocadherin subfamily of cadherins (Pcdh1, Pcdh7, Pcdh8, Pcdh9, Pcdh10, Pcdh17, Pcdh18, and Pcdh19) from the chicken, and investigated their expression in the developing chicken spinal cord by in situ hybridization. Our results showed that each of the investigated delta-protocadherins exhibits a spatially restricted and temporally regulated pattern of expression. Pcdh1, Pcdh8, Pcdh18, and Pcdh19 are expressed in restricted dorsoventral domains of the neuroepithelial layer at early developmental stages (E2.5–E4). In the differentiating mantle layer, specific expression profiles are observed for all eight delta-protocadherins along the dorsoventral, mediolateral, and rostrocaudal dimensions at intermediate stages of development (E6–E10). Expression profiles are especially diverse in the motor column, where different pools of motor neurons exhibit signal for subsets of delta-protocadherins. In the dorsal root ganglion, subpopulations of cells express combinations of Pcdh1, Pcdh7, Pcdh8, Pcdh9, Pcdh10, and Pcdh17. The ventral boundary cap cells are positive for Pcdh7, Pcdh9, and Pcdh10. Signals for Pcdh8, Pcdh18, and Pcdh19 are found in the meninges. Surrounding tissues, such as the notochord, dermomyotome, and sclerotome also exhibit differential expression patterns. The highly regulated spatiotemporal expression patterns of delta-protocadherins suggest that they have multiple and diverse functions during development of the spinal cord and its surrounding tissues.
Collapse
Affiliation(s)
- Juntang Lin
- Institute of Anatomy I, University of Jena School of Medicine, Jena University Hospital, D-07743 Jena, Germany
| | | | | |
Collapse
|
9
|
Lin J, Luo J, Redies C. Differential regional expression of multiple ADAMs during feather bud formation. Dev Dyn 2011; 240:2142-52. [DOI: 10.1002/dvdy.22703] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2011] [Indexed: 01/02/2023] Open
|
10
|
Lin J, Luo J, Redies C. Molecular characterization and expression analysis of ADAM12 during chicken embryonic development. Dev Growth Differ 2011; 52:757-69. [PMID: 21158755 DOI: 10.1111/j.1440-169x.2010.01212.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
ADAM12 is a member of the disintegrin and metalloprotease (ADAM) family of molecules, which consist of multiple domains. ADAM12 is involved in different physiological and pathological processes. In the present study, full-length sequences of two chicken ADAM12 isoforms were cloned and identified by reverse transcription-polymerase chain reaction (RT-PCR), rapid amplification of cDNA ends methods and bioinformatics analysis. The long isoform consists of all domains characteristic for ADAMs and is strongly expressed in different tissues, whereas the short isoform lacks large parts of the metalloprotease and disintegrin domains and is only expressed weakly. Results from semi-quantitative RT-PCR show that the complete ADAM12 is stably expressed throughout chicken embryonic development, while the short isoform is only regionally detectable in the lung and brain. Results from in situ hybridization show that chicken ADAM12 is expressed exclusively in tissues and organs derived from the neural tube, the neural crest or the mesoderm, with a highly regulated spatiotemporal expression pattern. Our data confirm and extend studies of ADAM12 in other species, and suggest that ADAM12 may play a role in the development of several organs, including the formation of feather buds.
Collapse
Affiliation(s)
- Juntang Lin
- Institute of Anatomy I, University of Jena School of Medicine, Jena University Hospital, Teichgraben 7, D-07743 Jena, Germany
| | | | | |
Collapse
|
11
|
Borgatti R, Marelli S, Bernardini L, Novelli A, Cavallini A, Tonelli A, Bassi MT, Dallapiccola B. Bilateral frontoparietal polymicrogyria (BFPP) syndrome secondary to a 16q12.1-q21 chromosome deletion involving GPR56 gene. Clin Genet 2009; 76:573-6. [PMID: 19807741 DOI: 10.1111/j.1399-0004.2009.01262.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
12
|
Kim D, Kang SS, Jin EJ. Alterations in the temporal expression and function of cadherin-7 inhibit cell migration and condensation during chondrogenesis of chick limb mesenchymal cells in vitro. J Cell Physiol 2009; 221:161-70. [DOI: 10.1002/jcp.21840] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
13
|
Abellán A, Legaz I, Vernier B, Rétaux S, Medina L. Olfactory and amygdalar structures of the chicken ventral pallium based on the combinatorial expression patterns of LIM and other developmental regulatory genes. J Comp Neurol 2009; 516:166-86. [DOI: 10.1002/cne.22102] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
14
|
Abellán A, Medina L. Subdivisions and derivatives of the chicken subpallium based on expression of LIM and other regulatory genes and markers of neuron subpopulations during development. J Comp Neurol 2009; 515:465-501. [DOI: 10.1002/cne.22083] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
15
|
Lin J, Luo J, Redies C. Differential expression of five members of the ADAM family in the developing chicken brain. Neuroscience 2008; 157:360-75. [DOI: 10.1016/j.neuroscience.2008.08.053] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2008] [Accepted: 08/26/2008] [Indexed: 11/29/2022]
|