1
|
Boros M, Sóki N, Molnár A, Ábrahám H. Morphological study of the postnatal hippocampal development in the TRPV1 knockout mice. Temperature (Austin) 2023; 10:102-120. [PMID: 37187833 PMCID: PMC10177702 DOI: 10.1080/23328940.2023.2167444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/25/2022] [Accepted: 12/01/2022] [Indexed: 01/15/2023] Open
Abstract
Transient receptor potential vanilloid 1 (TRPV1) is a non-selective cation channel with polymodal sensory function. TRPV1 links to fever, while, according to previous studies on TRPV1 knock-out (KO) mice, the role of the channel in the generation of febrile seizure is debated. In the hippocampal formation, functional TRPV1 channels are expressed by Cajal-Retzius cells, which have a role in guidance of migrating neurons during development. Despite the developmental aspects of febrile seizure as well as of Cajal-Retzius cells, no information is available about the hippocampal development in TRPV1 KO mouse. Therefore, in the present work postnatal development of the hippocampal formation was studied in TRPV1 KO mice. Several morphological characteristics including neuronal positioning and maturation, synaptogenesis and myelination were examined with light microscopy following immunohistochemical detection of protein markers of various neurons, synapses, and myelination. Regarding the cytoarchitectonics, neuronal migration, morphological, and neurochemical maturation, no substantial difference could be detected between TRPV1 KO and wild-type control mice. Our data indicate that synapse formation and myelination occur similarly in TRPV1 KO and in control animals. We have found slightly, but not significantly larger numbers of persisting Cajal-Retzius cells in the KO mice than in controls. Our result strengthens previous suggestion concerning the role of TRPV1 channel in the postnatal apoptotic cell death of Cajal-Retzius cells. However, the fact that the hippocampus of KO mice lacks major developmental abnormalities supports the use of TRPV1 KO in various animal models of diseases and pathological conditions.
Collapse
Affiliation(s)
- Melinda Boros
- Department of Medical Biology and Central Electron Microscopic Laboratory, University of Pécs Medical School, Pécs, Hungary
| | - Noémi Sóki
- Department of Medical Biology and Central Electron Microscopic Laboratory, University of Pécs Medical School, Pécs, Hungary
| | - Abigél Molnár
- Department of Medical Biology and Central Electron Microscopic Laboratory, University of Pécs Medical School, Pécs, Hungary
| | - Hajnalka Ábrahám
- Department of Medical Biology and Central Electron Microscopic Laboratory, University of Pécs Medical School, Pécs, Hungary
- Institute for the Psychology of Special Needs, Bárczi Gusztáv Faculty of Special Needs Education, Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|
2
|
Causeret F, Moreau MX, Pierani A, Blanquie O. The multiple facets of Cajal-Retzius neurons. Development 2021; 148:268379. [PMID: 34047341 DOI: 10.1242/dev.199409] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Cajal-Retzius neurons (CRs) are among the first-born neurons in the developing cortex of reptiles, birds and mammals, including humans. The peculiarity of CRs lies in the fact they are initially embedded into the immature neuronal network before being almost completely eliminated by cell death at the end of cortical development. CRs are best known for controlling the migration of glutamatergic neurons and the formation of cortical layers through the secretion of the glycoprotein reelin. However, they have been shown to play numerous additional key roles at many steps of cortical development, spanning from patterning and sizing functional areas to synaptogenesis. The use of genetic lineage tracing has allowed the discovery of their multiple ontogenetic origins, migratory routes, expression of molecular markers and death dynamics. Nowadays, single-cell technologies enable us to appreciate the molecular heterogeneity of CRs with an unprecedented resolution. In this Review, we discuss the morphological, electrophysiological, molecular and genetic criteria allowing the identification of CRs. We further expose the various sources, migration trajectories, developmental functions and death dynamics of CRs. Finally, we demonstrate how the analysis of public transcriptomic datasets allows extraction of the molecular signature of CRs throughout their transient life and consider their heterogeneity within and across species.
Collapse
Affiliation(s)
- Frédéric Causeret
- Université de Paris, Imagine Institute, Team Genetics and Development of the Cerebral Cortex, F-75015 Paris, France.,Université de Paris, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, F-75014 Paris, France
| | - Matthieu X Moreau
- Université de Paris, Imagine Institute, Team Genetics and Development of the Cerebral Cortex, F-75015 Paris, France.,Université de Paris, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, F-75014 Paris, France
| | - Alessandra Pierani
- Université de Paris, Imagine Institute, Team Genetics and Development of the Cerebral Cortex, F-75015 Paris, France.,Université de Paris, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, F-75014 Paris, France.,Groupe Hospitalier Universitaire Paris Psychiatrie et Neurosciences, F-75014 Paris, France
| | - Oriane Blanquie
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, D-55128 Mainz, Germany
| |
Collapse
|
3
|
Mavrovic M, Uvarov P, Delpire E, Vutskits L, Kaila K, Puskarjov M. Loss of non-canonical KCC2 functions promotes developmental apoptosis of cortical projection neurons. EMBO Rep 2020; 21:e48880. [PMID: 32064760 DOI: 10.15252/embr.201948880] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 01/16/2020] [Accepted: 01/24/2020] [Indexed: 01/01/2023] Open
Abstract
KCC2, encoded in humans by the SLC12A5 gene, is a multifunctional neuron-specific protein initially identified as the chloride (Cl- ) extruder critical for hyperpolarizing GABAA receptor currents. Independently of its canonical function as a K-Cl cotransporter, KCC2 regulates the actin cytoskeleton via molecular interactions mediated through its large intracellular C-terminal domain (CTD). Contrary to the common assumption that embryonic neocortical projection neurons express KCC2 at non-significant levels, here we show that loss of KCC2 enhances apoptosis of late-born upper-layer cortical projection neurons in the embryonic brain. In utero electroporation of plasmids encoding truncated, transport-dead KCC2 constructs retaining the CTD was as efficient as of that encoding full-length KCC2 in preventing elimination of migrating projection neurons upon conditional deletion of KCC2. This was in contrast to the effect of a full-length KCC2 construct bearing a CTD missense mutation (KCC2R952H ), which disrupts cytoskeletal interactions and has been found in patients with neurological and psychiatric disorders, notably seizures and epilepsy. Together, our findings indicate ion transport-independent, CTD-mediated regulation of developmental apoptosis by KCC2 in migrating cortical projection neurons.
Collapse
Affiliation(s)
- Martina Mavrovic
- Molecular and Integrative Biosciences, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.,Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Pavel Uvarov
- Molecular and Integrative Biosciences, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.,Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Eric Delpire
- Department of Anesthesiology, Vanderbilt University, Nashville, TN, USA
| | - Laszlo Vutskits
- Department of Basic Neurosciences, University of Geneva Medical School, Geneva 4, Switzerland.,Department of Anesthesiology, Pharmacology, Intensive Care and Emergency Medicine, University Hospitals of Geneva, Geneva 4, Switzerland
| | - Kai Kaila
- Molecular and Integrative Biosciences, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.,Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Martin Puskarjov
- Molecular and Integrative Biosciences, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
4
|
Riva M, Genescu I, Habermacher C, Orduz D, Ledonne F, Rijli FM, López-Bendito G, Coppola E, Garel S, Angulo MC, Pierani A. Activity-dependent death of transient Cajal-Retzius neurons is required for functional cortical wiring. eLife 2019; 8:50503. [PMID: 31891351 PMCID: PMC6938399 DOI: 10.7554/elife.50503] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 12/06/2019] [Indexed: 12/19/2022] Open
Abstract
Programmed cell death and early activity contribute to the emergence of functional cortical circuits. While most neuronal populations are scaled-down by death, some subpopulations are entirely eliminated, raising the question of the importance of such demise for cortical wiring. Here, we addressed this issue by focusing on Cajal-Retzius neurons (CRs), key players in cortical development that are eliminated in postnatal mice in part via Bax-dependent apoptosis. Using Bax-conditional mutants and CR hyperpolarization, we show that the survival of electrically active subsets of CRs triggers an increase in both dendrite complexity and spine density of upper layer pyramidal neurons, leading to an excitation/inhibition imbalance. The survival of these CRs is induced by hyperpolarization, highlighting an interplay between early activity and neuronal elimination. Taken together, our study reveals a novel activity-dependent programmed cell death process required for the removal of transient immature neurons and the proper wiring of functional cortical circuits.
Collapse
Affiliation(s)
- Martina Riva
- Institut Imagine, Université de Paris, Paris, France.,Institut Jacques Monod, CNRS UMR 7592, Université de Paris, Paris, France.,Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Université de Paris, Paris, France
| | - Ioana Genescu
- Institut de Biologie de l'École Normale Supérieure (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Chloé Habermacher
- Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Université de Paris, Paris, France.,INSERM U1128, Paris, France
| | | | - Fanny Ledonne
- Institut Jacques Monod, CNRS UMR 7592, Université de Paris, Paris, France
| | - Filippo M Rijli
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | | | - Eva Coppola
- Institut Imagine, Université de Paris, Paris, France.,Institut Jacques Monod, CNRS UMR 7592, Université de Paris, Paris, France.,Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Université de Paris, Paris, France
| | - Sonia Garel
- Institut de Biologie de l'École Normale Supérieure (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Maria Cecilia Angulo
- Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Université de Paris, Paris, France.,INSERM U1128, Paris, France
| | - Alessandra Pierani
- Institut Imagine, Université de Paris, Paris, France.,Institut Jacques Monod, CNRS UMR 7592, Université de Paris, Paris, France.,Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Université de Paris, Paris, France
| |
Collapse
|
5
|
Abstract
In spite of the high metabolic cost of cellular production, the brain contains only a fraction of the neurons generated during embryonic development. In the rodent cerebral cortex, a first wave of programmed cell death surges at embryonic stages and affects primarily progenitor cells. A second, larger wave unfolds during early postnatal development and ultimately determines the final number of cortical neurons. Programmed cell death in the developing cortex is particularly dependent on neuronal activity and unfolds in a cell-specific manner with precise temporal control. Pyramidal cells and interneurons adjust their numbers in sync, which is likely crucial for the establishment of balanced networks of excitatory and inhibitory neurons. In contrast, several other neuronal populations are almost completely eliminated through apoptosis during the first two weeks of postnatal development, highlighting the importance of programmed cell death in sculpting the mature cerebral cortex.
Collapse
Affiliation(s)
- Fong Kuan Wong
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, United Kingdom; .,MRC Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, United Kingdom
| | - Oscar Marín
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, United Kingdom; .,MRC Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, United Kingdom
| |
Collapse
|
6
|
Anstötz M, Quattrocolo G, Maccaferri G. Cajal-Retzius cells and GABAergic interneurons of the developing hippocampus: Close electrophysiological encounters of the third kind. Brain Res 2018; 1697:124-133. [PMID: 30071194 DOI: 10.1016/j.brainres.2018.07.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 07/17/2018] [Accepted: 07/28/2018] [Indexed: 01/24/2023]
Abstract
In contrast to the large number of studies investigating the electrophysiological properties and synaptic connectivity of hippocampal pyramidal neurons, granule cells, and GABAergic interneurons, much less is known about Cajal-Retzius cells. In this review article, we discuss the possible reasons underlying this difference, and review experimental work performed on this cell type in the hippocampus, comparing it with results obtained in the neocortex. Our main emphasis is on data obtained with in vitro electrophysiology. In particular, we address the bidirectional connectivity between Cajal-Retzius cells and GABAergic interneurons, examine their synaptic properties and propose specific functions of Cajal-Retzius cell/GABAergic interneuron microcircuits. Lastly, we discuss the potential involvement of these microcircuits in critical physiological hippocampal functions such as postnatal neurogenesis or pathological scenarios such as temporal lobe epilepsy.
Collapse
Affiliation(s)
- Max Anstötz
- Department of Physiology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Giulia Quattrocolo
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology, Trondheim, Norway
| | - Gianmaria Maccaferri
- Department of Physiology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
7
|
Meyer G, González-Gómez M. The heterogeneity of human Cajal-Retzius neurons. Semin Cell Dev Biol 2018; 76:101-111. [DOI: 10.1016/j.semcdb.2017.08.059] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 08/24/2017] [Accepted: 08/28/2017] [Indexed: 12/29/2022]
|
8
|
Blanquie O, Liebmann L, Hübner CA, Luhmann HJ, Sinning A. NKCC1-Mediated GABAergic Signaling Promotes Postnatal Cell Death in Neocortical Cajal-Retzius Cells. Cereb Cortex 2018; 27:1644-1659. [PMID: 26819276 DOI: 10.1093/cercor/bhw004] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
During early development, a substantial proportion of central neurons undergoes programmed cell death. This activity-dependent process is essential for the proper structural and functional development of the brain. To uncover cell type-specific differences in the regulation of neuronal survival versus apoptosis, we studied activity-regulated cell death in Cajal-Retzius neurons (CRNs) and the overall neuronal population in the developing mouse cerebral cortex. CRNs in the upper neocortical layer represent an early-born neuronal population, which is important for cortical development and largely disappears by apoptosis during neonatal stages. In contrast to the overall neuronal population, activity blockade with tetrodotoxin improved survival of CRNs in culture. Activation of GABAA receptors also blocked spontaneous activity and caused overall cell death including apoptosis of CRNs. Blockade of the Na-K-Cl transporter NKCC1 in vitro or its genetic deletion in vivo rescued CRNs from apoptosis. This effect was mediated by blockade of the p75NTR receptor signaling pathway. In summary, we discovered a novel developmental death pathway mediated by NKCC1, via GABAA receptor-mediated membrane depolarization and p75NTR signaling in CRNs. This pathway controls apoptosis of CRNs and may be critically involved in neurodevelopmental disorders such as autism and schizophrenia.
Collapse
Affiliation(s)
- Oriane Blanquie
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| | - Lutz Liebmann
- Institute of Human Genetics, University Hospital Jena, Friedrich Schiller University Jena, D-07743 Jena, Germany
| | - Christian A Hübner
- Institute of Human Genetics, University Hospital Jena, Friedrich Schiller University Jena, D-07743 Jena, Germany
| | - Heiko J Luhmann
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| | - Anne Sinning
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| |
Collapse
|
9
|
Meyer G, González-Gómez M. The Subpial Granular Layer and Transient Versus Persisting Cajal-Retzius Neurons of the Fetal Human Cortex. Cereb Cortex 2017; 28:2043-2058. [DOI: 10.1093/cercor/bhx110] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 04/18/2017] [Indexed: 12/20/2022] Open
Affiliation(s)
- Gundela Meyer
- Units of Anatomy (MGG) and Histology (GM), Department of Basic Medical Science, Faculty of Medicine, University of La Laguna, Tenerife, Spain
| | - Miriam González-Gómez
- Units of Anatomy (MGG) and Histology (GM), Department of Basic Medical Science, Faculty of Medicine, University of La Laguna, Tenerife, Spain
| |
Collapse
|
10
|
|
11
|
Hwang JH, Chan YC. Expressions of ion co-transporter genes in salicylate-induced tinnitus and treatment effects of spirulina. BMC Neurol 2016; 16:159. [PMID: 27590453 PMCID: PMC5009550 DOI: 10.1186/s12883-016-0682-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 08/26/2016] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Although the activity of tinnitus-related ion co-transporter are known, their mRNA expressions has seldom been reported. We aimed to investigate the mRNA expressions of tinnitus-related ion co-transporter genes, and treatment effects of Spirulina. METHODS The mRNA expressions of K(+)-Cl(-) co-transporter (KCC2) and Na-K-2Cl co-transporter 1 (NKCC1) genes in the cochlea and brain of mice were evaluated after tinnitus was induced by intraperitoneal injection of salicylate. The effects of spirulina water extract on these gene expressions were investigated. RESULTS Compared to the control group, the tinnitus scores increased significantly, however, the salicylate-induced tinnitus could be reduced significantly by spirulina water extract. The tinnitus group had higher of borderline significance mRNA expression of KCC2 gene in the cochlear, significantly higher in the temporal lobes and in the frontal lobes. Meanwhile, compared to the tinnitus group, the spirulina group had significantly lower mRNA expression of KCC2 gene in the cochlear, temporal lobes, frontal lobes and parahippocampus/hippocampus. However, the NKCC1 mRNA expression was not significantly different between three groups in the cochlea and these brain areas. CONCLUSION Salicylate-induced tinnitus might be associated with increased mRNA expression of KCC2 gene, but not with mRNA expressions of NKCC1 gene in the cochlear and some tinnitus-related brain areas. Spirulina reduced the expression of KCC2 genes in salicylate-induced tinnitus.
Collapse
Affiliation(s)
- Juen-Haur Hwang
- Department of Otolaryngology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan
- School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Yin-Ching Chan
- Department of Food and Nutrition, Providence University, Taichung, Taiwan
| |
Collapse
|
12
|
Skorput AGJ, Yeh HH. Effects of ethanol exposure in utero on Cajal-Retzius cells in the developing cortex. Alcohol Clin Exp Res 2015; 39:853-62. [PMID: 25845402 DOI: 10.1111/acer.12696] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 01/31/2015] [Indexed: 11/28/2022]
Abstract
BACKGROUND Prenatal exposure to ethanol exerts teratogenic effects on the developing brain. Here, we tested the hypothesis that exposure to ethanol in utero alters the disposition of Cajal-Retzius cells that play a key role in orchestrating proliferation, migration, and laminar integration of cortical neurons in the embryonic cortex. METHODS Pregnant Ebf2-EGFP mice, harboring EGFP-fluorescent Cajal-Retzius cells, were subjected to a 2% w/w ethanol consumption regimen starting at neural tube closure and lasting throughout gestation. Genesis of Cajal-Retzius cells was assessed by means of 5-bromo-2-deoxyuridine (BrdU) immunofluorescence at embryonic day 12.5, their counts and distribution were determined between postnatal day (P)0 and P4, patch clamp electrophysiology was performed between P2 and P3 to analyze GABA-mediated synaptic activity, and open-field behavioral testing was conducted in P45-P50 adolescents. RESULTS In Ebf2-EGFP embryos exposed to ethanol in utero, we found increased BrdU labeling and expanded distribution of Cajal-Retzius cells in the cortical hem, pointing to increased genesis and proliferation. Postnatally, we found an increase in Cajal-Retzius cell number in cortical layer I. In addition, they displayed altered patterning of spontaneous GABA-mediated synaptic barrages and enhanced GABA-mediated synaptic activity, suggesting enhanced GABAergic tone. CONCLUSIONS These findings, together, underscore that Cajal-Retzius cells contribute to the ethanol-induced aberration of cortical development and abnormal GABAergic neurotransmission at the impactful time when intracortical circuits form.
Collapse
Affiliation(s)
- Alexander G J Skorput
- Department of Physiology and Neurobiology, Geisel School of Medicine at Dartmouth, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire
| | | |
Collapse
|
13
|
Casanova EL, Casanova MF. Genetics studies indicate that neural induction and early neuronal maturation are disturbed in autism. Front Cell Neurosci 2014; 8:397. [PMID: 25477785 PMCID: PMC4237056 DOI: 10.3389/fncel.2014.00397] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Accepted: 11/05/2014] [Indexed: 01/11/2023] Open
Abstract
Postmortem neuropathological studies of autism consistently reveal distinctive types of malformations, including cortical dysplasias, heterotopias, and various neuronomorphometric abnormalities. In keeping with these observations, we review here that 88% of high-risk genes for autism influence neural induction and early maturation of the neuroblast. In addition, 80% of these same genes influence later stages of differentiation, including neurite and synapse development, suggesting that these gene products exhibit long-lasting developmental effects on cell development as well as elements of redundancy in processes of neural proliferation, growth, and maturation. We also address the putative genetic overlap of autism with conditions like epilepsy and schizophrenia, with implications to shared and divergent etiologies. This review imports the necessity of a frameshift in our understanding of the neurodevelopmental basis of autism to include all stages of neuronal maturation, ranging from neural induction to synaptogenesis.
Collapse
Affiliation(s)
- Emily L Casanova
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of Louisville Louisville, KY, USA
| | - Manuel F Casanova
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of Louisville Louisville, KY, USA
| |
Collapse
|
14
|
Kirischuk S, Luhmann HJ, Kilb W. Cajal-Retzius cells: update on structural and functional properties of these mystic neurons that bridged the 20th century. Neuroscience 2014; 275:33-46. [PMID: 24931764 DOI: 10.1016/j.neuroscience.2014.06.009] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 06/03/2014] [Accepted: 06/03/2014] [Indexed: 02/02/2023]
Abstract
Cajal-Retzius cells (CRc) represent a mostly transient neuronal cell type localized in the uppermost layer of the developing neocortex. The observation that CRc are a major source of the extracellular matrix protein reelin, which is essential for the laminar development of the cerebral cortex, attracted the interest in this unique cell type. In this review we will (i) describe the morphological and molecular properties of neocortical CRc, with a special emphasize on the question which markers can be used to identify CRc, (ii) summarize reports that identified the different developmental origins of CRc, (iii) discuss the fate of CRc, including recent evidence for apoptotic cell death and a possible persistence of some CRc, (iv) provide a detailed description of the electrical membrane properties and transmitter receptors of CRc, and (v) address the role of CRc in early neuronal circuits and cortical development. Finally, we speculate whether CRc may provide a link between early network activity and the structural maturation of neocortical circuits.
Collapse
Affiliation(s)
- S Kirischuk
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, D-55128 Mainz, Germany
| | - H J Luhmann
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, D-55128 Mainz, Germany
| | - W Kilb
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, D-55128 Mainz, Germany.
| |
Collapse
|
15
|
Novel GABAergic circuits mediating excitation/inhibition of Cajal-Retzius cells in the developing hippocampus. J Neurosci 2013; 33:5486-98. [PMID: 23536064 DOI: 10.1523/jneurosci.5680-12.2013] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cajal-Retzius cells are a class of neurons believed to play critical roles during cortical development. However, their network computational functions remain poorly understood. Although work in the neocortex and hippocampus has shown that Cajal-Retzius cells receive predominantly, if not exclusively, spontaneous GABA(A) receptor-mediated input, the cellular sources originating these events remain unclear. However, a precise definition of the presynaptic GABAergic interneurons contacting Cajal-Retzius cells is important to understand the microcircuits and network patterns controlling their activation. Here, we have taken advantage of electrophysiological and anatomical techniques applied to mouse hippocampal slices in vitro to directly address this question. Our paired recording experiments indicate that Cajal-Retzius cells receive small-amplitude, kinetically slow synaptic input from stratum lacunosum-moleculare interneurons, anatomically identified as neurogliaform cells. In addition, a convergence of optogenetic, electrophysiological, and pharmacological experiments shows that Cajal-Retzius cells receive GABAergic input from oriens lacunosum-moleculare cells and that this input has different physiological properties (i.e., larger amplitude and faster kinetics) from the one provided by neurogliaform cells. Last, we show that GABAergic evoked synaptic input onto Cajal-Retzius cells may either increase their excitability and trigger action potentials or inhibit spontaneous firing by depolarization block. We propose that the specific type of response depends on both the membrane potential of Cajal-Retzius cells and the kinetics of the received GABAergic input. In conclusion, we have unraveled a novel hippocampal microcircuit with complex GABAergic synaptic signaling, which we suggest may play a role in the refinement of the hippocampal network and connections during development.
Collapse
|
16
|
Capogna M. Chemokines and HIV-1 virus: opposing players in Cajal-Retzius cell function. J Physiol 2012; 590:2949-50. [PMID: 22753620 PMCID: PMC3406380 DOI: 10.1113/jphysiol.2012.234542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Marco Capogna
- MRC Anatomical Neuropharmacology Unit, Department of Pharmacology, University of Oxford, Oxford OX1 3TH, UK.
| |
Collapse
|
17
|
Cosgrove KE, Maccaferri G. mGlu1α-dependent recruitment of excitatory GABAergic input to neocortical Cajal-Retzius cells. Neuropharmacology 2012; 63:486-93. [PMID: 22579657 DOI: 10.1016/j.neuropharm.2012.04.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 04/20/2012] [Accepted: 04/23/2012] [Indexed: 11/16/2022]
Abstract
Cajal-Retzius cells are thought to play an important role for cortical development, and receive primarily spontaneous GABAergic input mediated by GABA(A) receptors. However, neither the effects of synaptically-released GABA on their excitability nor the cellular source(s) of spontaneous GABAergic currents have been yet determined. By directly recording electrophysiological responses from identified Cajal-Retzius cells of the CXCR4-EGFP mouse, we show that GABAergic input can trigger supra-threshold responses, and that the pharmacological activation of mGlu1α receptors with the group I agonist DHPG powerfully increases the frequency of spontaneous GABAergic currents. These effects appeared mediated by a network mechanism, because responses to DHPG were completely prevented both by surgical disconnection of layer I from lower layers and by exposure of slices to TTX. We propose that the cellular source underlying the observed effect of DHPG are layer I-targeting Martinotti-like interneurons, which we show express functional group I mGluRs and respond to DHPG with supra-threshold depolarization already at early developmental stages. In conclusion, our work suggests that conditions of enhanced glutamate release may be critical at early developmental stages for the recruitment of an mGlu1α-dependent micro-circuit, which then leads to the activation of Cajal-Retzius cells.
Collapse
Affiliation(s)
- Kathleen E Cosgrove
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | | |
Collapse
|
18
|
Marchionni I, Beaumont M, Maccaferri G. The chemokine CXCL12 and the HIV-1 envelope protein gp120 regulate spontaneous activity of Cajal-Retzius cells in opposite directions. J Physiol 2012; 590:3185-202. [PMID: 22473778 DOI: 10.1113/jphysiol.2011.224873] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Activation of the CXC chemokine receptor 4 (CXCR4) in Cajal–Retzius cells by CXC chemokine ligand 12 (CXCL12) is important for controlling their excitability. CXCR4 is also a co-receptor for the glycoprotein 120 (gp120) of the envelope of the human immunodeficiency virus type 1 (HIV-1), and binding of gp120 to CXCR4 may produce pathological effects. In order to study CXCR4-dependent modulation of membrane excitability, we recorded in cell-attached configuration spontaneous action currents from hippocampal stratum lacunosum-moleculare Cajal–Retzius cells of the CXCR4-EGFP mouse. CXCL12 (50 nM) powerfully inhibited firing independently of synaptic transmission, suggesting that CXCR4 regulates an intrinsic conductance. This effect was prevented by conditioning slices with BAPTA-AM (200 μM), and by blockers of the BK calcium-dependent potassium channels (TEA (1 mM), paxilline (10 μM) and iberiotoxin (100 nM)). In contrast, exposure to gp120 (pico- to nanomolar range, alone or in combination with soluble cluster of differentiation 4 (CD4)), enhanced spontaneous firing frequency. This effect was prevented by the CXCR4 antagonist AMD3100 (1 μM) and was absent in EGFP-negative stratum lacunosum-moleculare interneurons. Increased excitability was prevented by treating slices with BAPTA-AM or bumetanide, suggesting that gp120 activates a mechanism that is both calcium- and chloride-dependent. In conclusion, our results demonstrate that CXCL12 and gp120 modulate the excitability of Cajal–Retzius cells in opposite directions. We propose that CXCL12 and gp120 either generate calcium responses of different strength or activate distinct pools of intracellular calcium, leading to agonist-specific responses, mediated by BK channels in the case of CXCL12, and by a chloride-dependent mechanism in the case of gp120.
Collapse
Affiliation(s)
- Ivan Marchionni
- Northwestern University, Department of Physiology, Feinberg School of Medicine, 303 E Chicago Ave, Tarry Blg Rm 5-707, Chicago, IL 60611, USA
| | | | | |
Collapse
|
19
|
Ben-Ari Y, Tyzio R, Nehlig A. Excitatory action of GABA on immature neurons is not due to absence of ketone bodies metabolites or other energy substrates. Epilepsia 2011; 52:1544-58. [PMID: 21692780 DOI: 10.1111/j.1528-1167.2011.03132.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Brain slices incubated with glucose have provided most of our knowledge on cellular, synaptic, and network driven mechanisms. It has been recently suggested that γ-aminobutyric acid (GABA) excites neonatal neurons in conventional glucose-perfused slices but not when ketone bodies metabolites, pyruvate, and/or lactate are added, suggesting that the excitatory actions of GABA are due to energy deprivation when glucose is the sole energy source. In this article, we review the vast number of studies that show that slices are not energy deprived in glucose-containing medium, and that addition of other energy substrates at physiologic concentrations does not alter the excitatory actions of GABA on neonatal neurons. In contrast, lactate, like other weak acids, can produce an intracellular acidification that will cause a reduction of intracellular chloride and a shift of GABA actions. The effects of high concentrations of lactate, and particularly of pyruvate (4-5 mm), as used are relevant primarily to pathologic conditions; these concentrations not being found in the brain in normal "control" conditions. Slices in glucose-containing medium may not be ideal, but additional energy substrates neither correspond to physiologic conditions nor alter GABA actions. In keeping with extensive observations in a wide range of animal species and brain structures, GABA depolarizes immature neurons and the reduction of the intracellular concentration of chloride ([Cl(-)](i)) is a basic property of brain maturation that has been preserved throughout evolution. In addition, this developmental sequence has important clinical implications, notably concerning the higher incidence of seizures early in life and their long-lasting deleterious sequels. Immature neurons have difficulties exporting chloride that accumulates during seizures, leading to permanent increase of [Cl(-)](i) that converts the inhibitory actions of GABA to excitatory and hampers the efficacy of GABA-acting antiepileptic drugs.
Collapse
|
20
|
Kolbaev SN, Achilles K, Luhmann HJ, Kilb W. Effect of depolarizing GABA(A)-mediated membrane responses on excitability of Cajal-Retzius cells in the immature rat neocortex. J Neurophysiol 2011; 106:2034-44. [PMID: 21775719 DOI: 10.1152/jn.00699.2010] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In immature neurons activation of ionotropic GABA receptors induces depolarizing membrane responses due to a high intracellular Cl(-) concentration ([Cl(-)](i)). However, it is difficult to draw conclusions about the functional consequences of subthreshold GABAergic depolarizations, since GABAergic membrane shunting and additional effects on voltage-dependent ion channels or action potential threshold must be considered. To systematically investigate factors that determine the GABAergic effect on neuronal excitability we performed whole cell patch-clamp recordings from Cajal-Retzius cells in immature rat neocortex, using [Cl(-)](i) between 10 and 50 mM. The effect of focal GABA application was quantified by measuring various parameters of GABAergic responses including the shift in minimal threshold current (rheobase). The rheobase shift was correlated with other parameters of the GABAergic responses by multiple linear regression analyses with a set of simple mathematical models. Our experiments demonstrate that focal GABA application induces heterogeneous rheobase shifts in Cajal-Retzius cells that could not be predicted reliably from [Cl(-)](i) or the GABAergic membrane depolarization. Implementation of a linear mathematical model, which takes the GABAergic membrane conductance and the difference between action potential threshold and GABA reversal potential into account, resulted in a close correlation between calculated and experimentally obtained rheobase shifts. Addition of a linear term proportional to the GABAergic membrane depolarization improved the accuracy of correlation. The main advantage of using multiple linear regression with simple models is that direction and strength of GABAergic excitability shifts can be analyzed by using only measured parameters of GABAergic responses and with minimal a priori information about cellular parameters.
Collapse
Affiliation(s)
- S N Kolbaev
- Institute of Physiology and Pathophysiology, University Medical Center Mainz, Johannes Gutenberg University, Mainz, Germany
| | | | | | | |
Collapse
|
21
|
Kolbaev SN, Luhmann HJ, Kilb W. Activity-dependent scaling of GABAergic excitation by dynamic Cl- changes in Cajal-Retzius cells. Pflugers Arch 2011; 461:557-65. [PMID: 21336585 DOI: 10.1007/s00424-011-0935-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Revised: 02/04/2011] [Accepted: 02/04/2011] [Indexed: 11/29/2022]
Abstract
To unravel the functional implications of activity-dependent Cl- changes during early stages of neuronal development, we determined which changes in the GABA reversal potential (E (GABA)) and GABAergic rheobase shifts were induced by episodes of GABA(A) receptor activation using gramicidin-perforated patch-clamp recordings from Cajal-Retzius cells in tangential cortical slices of newborn mice. Under this condition, focal application of the GABA(A) agonist muscimol (10 μM) depolarized the membrane by 15 ± 0.8 mV (n = 35). Such subthreshold GABAergic depolarizations considerably reduced the rheobase, corresponding to an excitatory action. After repetitive focal muscimol applications (50 pulses at 0.5 Hz) a significant reduction of E (GABA) and an attenuation of the excitatory GABAergic rheobase shift were observed, while the GABAergic membrane conductance and the absolute value of the rheobase were unaltered after the muscimol pulses. Bath application of 100 μM carbachol induced bursts of spontaneous GABAergic postsynaptic potentials. Both, E (GABA) and the excitatory GABAergic rheobase shift was significantly reduced after such barrage of carbachol-induced GABAergic postsynaptic potentials, while neither the GABAergic membrane conductance nor the absolute value of the rheobase was affected under this condition. Both results indicate that GABAergic activity itself can limit the excitatory effects of GABA(A) receptor activation, which supports the hypothesis that the low capacity of the Cl- homeostasis in immature neurons could be a substrate for synaptic scaling and homeostatic plasticity.
Collapse
Affiliation(s)
- Sergey N Kolbaev
- Institute of Physiology and Pathophysiology, University Medical Center Mainz, Johannes Gutenberg University, Duesbergweg 6, 55128, Mainz, Germany
| | | | | |
Collapse
|
22
|
Depolarizing actions of GABA in immature neurons depend neither on ketone bodies nor on pyruvate. J Neurosci 2011; 31:34-45. [PMID: 21209187 DOI: 10.1523/jneurosci.3314-10.2011] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
GABA depolarizes immature neurons because of a high [Cl(-)](i) and orchestrates giant depolarizing potential (GDP) generation. Zilberter and coworkers (Rheims et al., 2009; Holmgren et al., 2010) showed recently that the ketone body metabolite DL-3-hydroxybutyrate (DL-BHB) (4 mM), lactate (4 mM), or pyruvate (5 mM) shifted GABA actions to hyperpolarizing, suggesting that the depolarizing effects of GABA are attributable to inadequate energy supply when glucose is the sole energy source. We now report that, in rat pups (postnatal days 4-7), plasma D-BHB, lactate, and pyruvate levels are 0.9, 1.5, and 0.12 mM, respectively. Then, we show that DL-BHB (4 mM) and pyruvate (200 μM) do not affect (i) the driving force for GABA(A) receptor-mediated currents (DF(GABA)) in cell-attached single-channel recordings, (2) the resting membrane potential and reversal potential of synaptic GABA(A) receptor-mediated responses in perforated patch recordings, (3) the action potentials triggered by focal GABA applications, or (4) the GDPs determined with electrophysiological recordings and dynamic two-photon calcium imaging. Only very high nonphysiological concentrations of pyruvate (5 mM) reduced DF(GABA) and blocked GDPs. Therefore, DL-BHB does not alter GABA signals even at the high concentrations used by Zilberter and colleagues, whereas pyruvate requires exceedingly high nonphysiological concentrations to exert an effect. There is no need to alter conventional glucose enriched artificial CSF to investigate GABA signals in the developing brain.
Collapse
|
23
|
Abstract
Although the rigorous anatomical definition of the microcircuitry of the brain is essential for understanding its functions, the modulation of the physiological properties of neurons and synapses may confer an additional level of complexity. Here, I review two examples of neuromodulation within a specific microcircuit of the hippocampus, i.e. the local network of stratum lacunosum-moleculare. In particular, I will examine the actions of two different types of neuromodulators on the excitability and electrical coupling of two specific classes of cells. First, I will review the effects of noradrenaline on GABAergic networks. Particular emphasis will be placed on neurogliaform cells. Then, I will describe the chemokinergic modulation of spontaneous firing of Cajal-Retzius cells, mediated by the chemokine (C-X-C motif) ligand 12/stromal cell-derived factor-1 α (CXCL12/SDF-1) via the CXC chemokine receptor 4 (CXCR4). The complexities created by these diverse types of modulations for network activity, together with their potential implications for stratum lacunosum-moleculare processing of information in vivo, will be also presented and briefly discussed.
Collapse
Affiliation(s)
- Gianmaria Maccaferri
- Department of Physiology, Feinberg School of Medicine, Northwestern University Medical School, Chicago, IL 60611, USA.
| |
Collapse
|
24
|
Marchionni I, Takács VT, Nunzi MG, Mugnaini E, Miller RJ, Maccaferri G. Distinctive properties of CXC chemokine receptor 4-expressing Cajal-Retzius cells versus GABAergic interneurons of the postnatal hippocampus. J Physiol 2010; 588:2859-78. [PMID: 20547684 DOI: 10.1113/jphysiol.2010.190868] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The CXC chemokine receptor 4 (CXCR4) for the chemokine (C-X-C motif) ligand 12/stromal cell-derived factor-1 alpha (CXCL12/SDF-1 alpha) is highly expressed in the postnatal CA1 stratum lacunosum-moleculare. However, both the network events triggered by SDF-1 alpha in this microcircuit and the cellular targets of this chemokine remain virtually unexplored. Here, we have studied SDF-1 alpha-mediated neuromodulation of the stratum lacunosum-moleculare by directly comparing the properties of CXCR4-expressing Cajal-Retzius cells vs. CXCR4-non-expressing interneurons, and by recording the electrophysiological effects caused by application of SDF-1 alpha on either cell type. We demonstrate that SDF-1 alpha dramatically reduces spontaneous firing in Cajal-Retzius cells via hyerpolarization, and that cessation of firing is prevented by the CXCR4-specific antagonist AMD3100. In contrast, no effects on the excitability of interneurons of the same layer were observed following exposure to the chemokine. We also provide evidence that, despite the expression of functional glutamate receptors, Cajal-Retzius cells are integrated in the synaptic network of the stratum lacunosum-moleculare via excitatory GABAergic input. Furthermore, we show that the axons of Cajal-Retzius cells target specifically the stratum lacunosum-moleculare and the dentate gyrus, but lack postsynaptic specializations opposite to their axonal varicosities. These results, taken together with our observation that SDF-1 alpha reduces evoked field responses at the entorhinal cortex-CA1 synapse, suggest that Cajal-Retzius cells produce a diffuse output that may impact information processing of stratum lacunosum-moleculare. We propose that pathological alterations of local levels of SDF-1 alpha or CXCR4 expression may affect the functions of an important hippocampal microcircuit.
Collapse
Affiliation(s)
- Ivan Marchionni
- Dept. of Physiology, Feinberg School of Medicine, Northwestern University, 303 E Chicago Avenue, Chicago, IL 60611, USA
| | | | | | | | | | | |
Collapse
|