1
|
Zhang ML, Li WX, Wang XY, Wu YL, Chen XF, Zhang H, Yang LQ, Wu CZ, Zhang SQ, Chen YL, Feng KR, Wang B, Niu L, Kong DX, Tang JF. Oxymatrine ameliorates experimental autoimmune encephalomyelitis by rebalancing the homeostasis of gut microbiota and reducing blood-brain barrier disruption. Front Cell Infect Microbiol 2023; 12:1095053. [PMID: 36710971 PMCID: PMC9878311 DOI: 10.3389/fcimb.2022.1095053] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 12/20/2022] [Indexed: 01/15/2023] Open
Abstract
Background Increasing evidence suggests that gut dysbiosis can directly or indirectly affect the immune system through the brain-gut axis and play a role in the occurrence and development of Multiple sclerosis (MS). Oxymatrine (OMAT) has been shown to ameliorate the symptoms of MS in the classical experimental autoimmune encephalomyelitis (EAE) model of MS, but whether its therapeutic role is through the correction of gut dysbiosis, is unclear. Methods The effects of OMAT on intestinal flora and short-chain fatty acids in EAE model mice were evaluated by 16S rRNA sequencing and GC-MS/MS, respectively, and the function change of the blood-brain barrier and intestinal epithelial barrier was further tested by immunohistochemical staining, Evans Blue leakage detection, and RT-qPCR. Results The alpha and beta diversity in the feces of EAE mice were significantly different from that of the control group but recovered substantially after OMAT treatment. Besides, the OMAT treatment significantly affected the gut functional profiling and the abundance of genes associated with energy metabolism, amino acid metabolism, the immune system, infectious diseases, and the nervous system. OMAT also decreased the levels of isobutyric acid and isovaleric acid in EAE mice, which are significantly related to the abundance of certain gut microbes and were consistent with the reduced expression of TNF-a, IL-6, and IL-1b. Furthermore, OMAT treatment significantly increased the expression of ZO-1 and occludin in the brains and colons of EAE mice and decreased blood-brain barrier permeability. Conclusion OMAT may alleviate the clinical and pathological symptoms of MS by correcting dysbiosis, restoring gut ecological and functional microenvironment, and inhibiting immune cell-mediated inflammation to remodel the brain-gut axis.
Collapse
Affiliation(s)
- Ming-Liang Zhang
- Department of Pharmacy, the First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China,Henan Province Engineering Research Center of Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, Henan Provincial Key Laboratory for Clinical Pharmacy of Traditional Chinese Medicine, Zhengzhou, China
| | - Wei-Xia Li
- Department of Pharmacy, the First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China,Henan Province Engineering Research Center of Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, Henan Provincial Key Laboratory for Clinical Pharmacy of Traditional Chinese Medicine, Zhengzhou, China
| | - Xiao-Yan Wang
- Department of Pharmacy, the First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China,Henan Province Engineering Research Center of Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, Henan Provincial Key Laboratory for Clinical Pharmacy of Traditional Chinese Medicine, Zhengzhou, China
| | - Ya-Li Wu
- Department of Pharmacy, the First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Xiao-Fei Chen
- Department of Pharmacy, the First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Hui Zhang
- Department of Pharmacy, the First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Liu-Qing Yang
- Department of Pharmacy, the First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Cheng-Zhao Wu
- Chengdu University of Chinese Medicine, Chengdu, China
| | - Shu-Qi Zhang
- Department of Pharmacy, the First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Yu-Long Chen
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Ke-Ran Feng
- Chengdu University of Chinese Medicine, Chengdu, China
| | - Bin Wang
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Lu Niu
- Department of Pharmacy, the First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - De-Xin Kong
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Jin-Fa Tang
- Department of Pharmacy, the First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China,Henan Province Engineering Research Center of Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, Henan Provincial Key Laboratory for Clinical Pharmacy of Traditional Chinese Medicine, Zhengzhou, China,School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China,*Correspondence: Jin-Fa Tang,
| |
Collapse
|
2
|
Monobutyrin and Monovalerin Affect Brain Short-Chain Fatty Acid Profiles and Tight-Junction Protein Expression in ApoE-Knockout Rats Fed High-Fat Diets. Nutrients 2020; 12:nu12041202. [PMID: 32344633 PMCID: PMC7230324 DOI: 10.3390/nu12041202] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/13/2020] [Accepted: 04/20/2020] [Indexed: 12/19/2022] Open
Abstract
Monobutyrin (MB) and monovalerin (MV), esters of short-chain fatty acids (SCFAs), have previously been shown to reduce liver cholesterol and inflammation in conventional rats fed high-fat diets. This study explored the potential effects of MB and MV in hypercholesterolemic apolipoprotein E-knockout (ApoE-/-) rats. ApoE-/- rats were fed three high-fat (HF) diets, pure or supplemented with MB or MV (1%), for 5 weeks. One group of conventional rats (C) was also fed the pure high-fat diet and another group of ApoE-/- rats a low-fat (LF) diet. Blood and liver lipids, urinary lactulose/mannitol, SCFAs (blood and brain), tight junction proteins (small intestine and brain), and inflammation-related markers (blood, brain, and liver) were analyzed. MV supplementation elevated serum high-density lipoprotein (HDL) cholesterol and valeric acid concentration (p < 0.05), while the amounts of isovaleric acid in the brain were reduced (p < 0.05). MB increased butyric acid amounts in the brain, while the plasma concentration of interleukin 10 (IL-10) was lowered (p < 0.05). Both MV and MB upregulated the expression of occludin and zonula occludens-1 (ZO-1) in the brain (p < 0.05). Supplementation of MB or MV affected HDL cholesterol, the expression of tight junction proteins, and SCFA profiles. MB and MV may therefore be promising supplements to attenuate lipid metabolic disorders caused by high-fat intake and genetic deficiency.
Collapse
|
3
|
Abstract
The three essential branched-chain amino acids (BCAAs), leucine, isoleucine and valine, share the first enzymatic steps in their metabolic pathways, including a reversible transamination followed by an irreversible oxidative decarboxylation to coenzyme-A derivatives. The respective oxidative pathways subsequently diverge and at the final steps yield acetyl- and/or propionyl-CoA that enter the Krebs cycle. Many disorders in these pathways are diagnosed through expanded newborn screening by tandem mass spectrometry. Maple syrup urine disease (MSUD) is the only disorder of the group that is associated with elevated body fluid levels of the BCAAs. Due to the irreversible oxidative decarboxylation step distal enzymatic blocks in the pathways do not result in the accumulation of amino acids, but rather to CoA-activated small carboxylic acids identified by gas chromatography mass spectrometry analysis of urine and are therefore classified as organic acidurias. Disorders in these pathways can present with a neonatal onset severe-, or chronic intermittent- or progressive forms. Metabolic instability and increased morbidity and mortality are shared between inborn errors in the BCAA pathways, while treatment options remain limited, comprised mainly of dietary management and in some cases solid organ transplantation.
Collapse
Affiliation(s)
- I Manoli
- Organic Acid Research Section, Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, MD, USA
| | - C P Venditti
- Organic Acid Research Section, Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, MD, USA
| |
Collapse
|
5
|
Szczesniak O, Hestad KA, Hanssen JF, Rudi K. Isovaleric acid in stool correlates with human depression. Nutr Neurosci 2015; 19:279-83. [PMID: 25710209 DOI: 10.1179/1476830515y.0000000007] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Human depression is a major burden, both on the individuals who suffer from the disease and on society at large. Traditionally, depression has been linked to psychological and biological causes, but there has been increasing interest in the gut-brain axis. In this regard, we have recently shown that specific bacteria are correlated with human depression, and we hypothesize that volatile fatty acids (VFAs) are mediators. METHODS Here, we analyzed the direct correlation between VFAs, depression and cortisol in a cohort consisting of 34 depressed patients and 17 controls. RESULTS We found statistically significant correlations between depression and the VFA isovaleric acid, as well as between isovaleric acid and cortisol. Furthermore, bacteria that previously have been identified as being correlated with depression were also correlated with isovaleric acid. Isovaleric acid showed a bimodal distribution in which the depressed patients were overrepresented in the high level group (P < 0.00005, binominal test). DISCUSSION It has recently been shown that gut-derived VFAs can cross the blood-brain barrier, where isovaleric acid interferes with synaptic neurotransmitter release. The multiple correlation patterns, in addition to a potential mechanistic model, point towards a potential causal relationship between depression and isovaleric acid.
Collapse
Affiliation(s)
- Olga Szczesniak
- a Department of Chemistry, Biotechnology and Food Science , Norwegian University of Life Sciences , P.O. Box 5003, 1432 Ås , Norway
| | - Knut A Hestad
- b Department of Research , Innlandet Hospital Trust , Brumunddal , Norway.,c Hedmark University College , Elverum , Norway.,d Department of Psychology , Norwegian University of Science and Technology , Trondheim , Norway
| | - Jon Fredrik Hanssen
- a Department of Chemistry, Biotechnology and Food Science , Norwegian University of Life Sciences , P.O. Box 5003, 1432 Ås , Norway
| | - Knut Rudi
- a Department of Chemistry, Biotechnology and Food Science , Norwegian University of Life Sciences , P.O. Box 5003, 1432 Ås , Norway
| |
Collapse
|
6
|
Knerr I, Weinhold N, Vockley J, Gibson KM. Advances and challenges in the treatment of branched-chain amino/keto acid metabolic defects. J Inherit Metab Dis 2012; 35:29-40. [PMID: 21290185 PMCID: PMC4136412 DOI: 10.1007/s10545-010-9269-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Revised: 12/10/2010] [Accepted: 12/23/2010] [Indexed: 12/12/2022]
Abstract
Disorders of branched-chain amino/keto acid metabolism encompass diverse entities, including maple syrup urine disease (MSUD), the 'classical' organic acidurias isovaleric acidemia (IVA), propionic acidemia (PA), methylmalonic acidemia (MMA) and, among others, rarely described disorders such as 2-methylbutyryl-CoA dehydrogenase deficiency (MBDD) or isobutyryl-CoA dehydrogenase deficiency (IBDD). Our focus in this review is to highlight the biochemical basis underlying recent advances and ongoing challenges of long-term conservative therapy including precursor/protein restriction, replenishment of deficient substrates, and the use of antioxidants and anaplerotic agents which refill the Krebs cycle. Ongoing clinical assessments of affected individuals in conjunction with monitoring of disease-specific biochemical parameters remain essential. It is likely that mass spectrometry-based 'metabolomics' may be a helpful tool in the future for studying complete biochemical profiles and diverse metabolic phenotypes. Prospective studies are needed to test the effectiveness of adjunct therapies such as antioxidants, ornithine-alpha-ketoglutarate (OKG) or creatine in addition to specialized diets and to optimize current therapeutic strategies in affected individuals. With the individual life-time risk and degree of severity being unknown in asymptomatic individuals with MBDD or IBDD, instructions regarding risks for metabolic stress and fasting avoidance along with clinical monitoring are reasonable interventions at the current time. Overall, it is apparent that carefully designed prospective clinical investigations and multicenter cohort-controlled trials are needed in order to leverage that knowledge into significant breakthroughs in treatment strategies and appropriate approaches.
Collapse
Affiliation(s)
- Ina Knerr
- Children's and Adolescents' Hospital, Otto-Heubner Centrum, Pediatric Metabolic Unit, Charité - Universitätsmedizin, Berlin, Germany.
| | | | | | | |
Collapse
|
7
|
Seminotti B, Fernandes CG, Leipnitz G, Amaral AU, Zanatta A, Wajner M. Neurochemical evidence that lysine inhibits synaptic Na+,K+-ATPase activity and provokes oxidative damage in striatum of young rats in vivo. Neurochem Res 2010; 36:205-14. [PMID: 20976553 DOI: 10.1007/s11064-010-0302-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2010] [Indexed: 12/19/2022]
Abstract
Lysine (Lys) accumulation in tissues and biological fluids is the biochemical hallmark of patients affected by familial hyperlysinemia (FH) and other inherited metabolic disorders. In the present study we investigated the effects of acute administration of Lys on relevant parameters of energy metabolism and oxidative stress in striatum of young rats. We verified that Lys in vivo intrastriatal injection did not change the citric acid cycle function and creatine kinase activity, but, in contrast, significantly inhibited synaptic Na(+),K(+)-ATPase activity in striatum prepared 2 and 12 h after injection. Moreover, Lys induced lipid peroxidation and diminished the concentrations of glutathione 2 h after injection. These effects were prevented by the antioxidant scavengers melatonin and the combination of α-tocopherol and ascorbic acid. Lys also inhibited glutathione peroxidase activity 12 h after injection. Therefore it is assumed that inhibition of synaptic Na(+),K(+)-ATPase and oxidative damage caused by brain Lys accumulation may possibly contribute to the neurological manifestations of FH and other neurometabolic conditions with high concentrations of this amino acid.
Collapse
Affiliation(s)
- Bianca Seminotti
- Departamento de Bioquímica, Universidade Federal de Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | | | | | | | | |
Collapse
|