1
|
Uğuz AC, Okan A, Doğanyiğit Z, Yilmaz S, Ateş Ş, Arikan Söylemez ES, Karabulut S, Kumru AS, Espino J. Evaluation of TRPM2 Channel-Mediated Autophagic Signaling Pathway in Hippocampus and Cortex Tissues of Rat Offspring Following Prenatal Exposure to Elevated Alcohol Levels. ENVIRONMENTAL TOXICOLOGY 2024. [PMID: 39387650 DOI: 10.1002/tox.24427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/05/2024] [Accepted: 09/17/2024] [Indexed: 10/15/2024]
Abstract
Fetal alcohol syndrome (FAS) can occur because of high amount of alcohol intake during pregnancy and is characterized by both physical and neurological problems. Children diagnosed with FAS have difficulties in learning, memory, and coordination. Hippocampus has a major role in memory and learning. We aimed to determine whether alcohol exposure during pregnancy had any effect on offspring by evaluating learning ability as well as oxidative stress and autophagy in the hippocampus and cortex tissues of litters. Attention was also paid to sex differences. To do so, TRPM2, Beclin1, p62, LC3B, IBA1, parvalbumin, GAD65, and mGluR5 expression levels were evaluated by immunohistochemistry. Lactate dehydrogenase (LDH), and malondialdehyde (MDA) levels, as well as total oxidant (TOS) and total antioxidant (TAS) status were determined by ELISA. Learning experiments were evaluated by the Morris water maze (MWM) test. Our findings demonstrated that IBA1, LC3B, GAD65, and mGluR5 expression levels were higher in female rats of the chronic alcohol exposure (CAE) model. Our IHC results revealed that TRPM2 expression levels were significantly increased in both males and females in the CAE group. Likewise, TAS was lower, and TOS was higher in CAE animals. Moreover, MWM outcomes supported a learning deficiency in CAE litters compared to controls and indicated that female offspring outperformed males in learning experiments. Therefore, our results revealed the detrimental effects of alcohol exposure during pregnancy on autophagy signaling in the hippocampus and cortex tissue of litters, which could affect the learning ability of animals.
Collapse
Affiliation(s)
- Abdülhadi Cihangir Uğuz
- Department of Biophysics, School of Medicine, Karamanoğlu Mehmetbey University, Karaman, Türkiye
| | - Aslı Okan
- Department of Histology and Embryology, School of Medicine, Yozgat Bozok University, Yozgat, Türkiye
| | - Züleyha Doğanyiğit
- Department of Histology and Embryology, School of Medicine, Yozgat Bozok University, Yozgat, Türkiye
| | - Seher Yilmaz
- Department of Anatomy, School of Medicine, Yozgat Bozok University, Yozgat, Türkiye
| | - Şükrü Ateş
- Department of Anatomy, School of Medicine, Yozgat Bozok University, Yozgat, Türkiye
| | - Evrim Suna Arikan Söylemez
- Department of Medical Biology, School of Medicine, Afyonkarahisar Health Sciences University, Afyonkarahisar, Türkiye
| | - Sebahattin Karabulut
- Department of Physiology, School of Medicine, Sivas Cumhuriyet University, Sivas, Türkiye
| | - Alper Serhat Kumru
- Department of Pharmacology and Toxicology, School of Veterinary Medicine, Sivas, Türkiye
| | - Javier Espino
- Department of Physiology, Faculty of Science, University of Extremadura, Badajoz, Spain
| |
Collapse
|
2
|
Mohamed H, Deniz OG, Kaplan S. The neuroprotective effects of baobab and black seed on the rat hippocampus exposed to a 900-MHz electromagnetic field. J Chem Neuroanat 2024; 137:102405. [PMID: 38447905 DOI: 10.1016/j.jchemneu.2024.102405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 03/01/2024] [Accepted: 03/01/2024] [Indexed: 03/08/2024]
Abstract
This study investigated the potential effects on the hippocampus of electromagnetic fields (EMFs) disseminated by mobile phones and the roles of baobab (Adansonia digitata) (AD) and black seed (Nigella sativa) (BS) in mitigating these. Fifty-six male, 12-week-old Wistar albino rats were divided into eight groups of seven animals each. No EMF exposure was applied to the control, AD or BS groups, while the rats in the Sham group were placed in an EMF system with no exposure. A 900-MHz EMF was applied to the EMF+AD, EMF+BS, EMF+AD+BS and EMF groups for 1 hour a day for 28 days. Pyramidal neurons in the hippocampus were subsequently counted using the optical fractionator technique, one of the unbiased stereological methods. Tissue sections were also evaluated histopathologically under light and electron microscopy. The activities of the enzymes catalase (CAT) and superoxide dismutase (SOD) were also determined in blood serum samples. Analysis of the stereological data revealed no statistically significant differences between the EMF and control or sham groups in terms of pyramidal neuron numbers (p>0.05). However, stereological examination revealed a crucial difference in the entire hippocampus between the control group and the AD (p<0.01) and BS (p<0.05) groups. Moreover, exposure to 900-MHz EMF produced adverse changes in the structures of neurons at histopathological analysis. Qualitative examinations suggest that a combination of herbal products such as AD and BS exerts a protective effect against such EMF side-effects.
Collapse
Affiliation(s)
- Hamza Mohamed
- Department of Anatomy, Faculty of Medicine, Northern Border University, Arar, Saudi Arabia
| | - Omur Gulsum Deniz
- Department of Histology and Embryology, Faculty of Medicine, Bolu Abant İzzet Baysal University, Bolu, Turkey
| | - Suleyman Kaplan
- Department of Histology and Embryology, Ondokuz Mayıs University, Samsun, Turkey.
| |
Collapse
|
3
|
Davis D, Birnbaum L, Ben-Ishai P, Taylor H, Sears M, Butler T, Scarato T. Wireless technologies, non-ionizing electromagnetic fields and children: Identifying and reducing health risks. Curr Probl Pediatr Adolesc Health Care 2023; 53:101374. [PMID: 36935315 DOI: 10.1016/j.cppeds.2023.101374] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Abstract
Children today are conceived and live in a sea of wireless radiation that did not exist when their parents were born. The launch of the digital age continues to transform the capacity to respond to emergencies and extend global communications. At the same time that this increasingly ubiquitous technology continues to alter the nature of commerce, medicine, transport and modern life overall, its varied and changing forms have not been evaluated for their biological or environmental impacts. Standards for evaluating radiation from numerous wireless devices were first set in 1996 to avoid heating tissue and remain unchanged since then in the U.S. and many other nations. A wide range of evidence indicates that there are numerous non-thermal effects from wireless radiation on reproduction, development, and chronic illness. Many widely used devices such as phones and tablets function as two-way microwave radios, sending and receiving various frequencies of information-carrying microwave radiation on multiple simultaneously operating antennas. Expert groups advising governments on this matter do not agree on the best approaches to be taken. The American Academy of Pediatrics recommends limited screen time for children under the age of two, but more than half of all toddlers regularly have contact with screens, often without parental engagement. Young children of parents who frequently use devices as a form of childcare can experience delays in speech acquisition and bonding, while older children report feelings of disappointment due to 'technoference'-parental distraction due to technology. Children who begin using devices early in life can become socially, psychologically and physically addicted to the technology and experience withdrawal upon cessation. We review relevant experimental, epidemiological and clinical evidence on biological and other impacts of currently used wireless technology, including advice to include key questions at pediatric wellness checkups from infancy to young adulthood. We conclude that consistent with advice in pediatric radiology, an approach that recommends that microwave radiation exposures be As Low As Reasonably Achievable (ALARA) seems sensible and prudent, and that an independently-funded training, research and monitoring program should be carried out on the long term physical and psychological impacts of rapidly changing technological milieu, including ways to mitigate impacts through modifications in hardware and software. Current knowledge of electrohypersensitivity indicates the importance of reducing wireless exposures especially in schools and health care settings.
Collapse
Affiliation(s)
- Devra Davis
- Medicine, Ondokuz Mayis University, Samsun, Turkey; Environmental Health Trust, Teton Village, WY, USA.
| | - Linda Birnbaum
- National Institute of Environmental Health Sciences and National Toxicology Program, Scholar in Residence, Nicholas School of the Environment, Duke University, USA
| | | | - Hugh Taylor
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT USA; Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Meg Sears
- Ottawa Hospital Research Institute, Prevent Cancer Now, Ottawa, Canada
| | | | | |
Collapse
|
4
|
Rui G, Liu LY, Guo L, Xue YZ, Lai PP, Gao P, Xing JL, Li J, Ding GR. Effects of 5.8 GHz microwave on hippocampal synaptic plasticity of rats. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2022; 32:2247-2259. [PMID: 34293966 DOI: 10.1080/09603123.2021.1952165] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 07/02/2021] [Indexed: 06/13/2023]
Abstract
OBJECTIVE 5.8 GHz spectrum is gaining more attention in wireless technology. To explore the potential hazards, we investigated the effect of exposure to 5.8 GHz microwave on learning and memory ability of rats. Methods: Morris Water maze (MWM), Novel object recognition (NOR) and Fear conditioning test (FCT) were used to evaluate the ability of spatial and non-spatial memory of rats. The hippocampal morphology, the level of brain injury factors in serum and the mitochondrial membrane potential of hippocampal neurons was examined to evaluate the damage of hippocampal neurons. The density of dendritic spines, the ultrastructure of synapses and the level of PSD95, Synaptophysin, p-CREB and CREB were detected to evaluate the hippocampal synaptic plasticity. RESULTS Compared with Sham group, there was no significant difference in the performance of ethology (in MWM, NOR, FCT) in Microwave 2 h group or Microwave 4 h group. The hippocampal morphology, the serum level of brain injury factors and the content of mitochondrial JC-1 monomer in Microwave 2 h group or Microwave 4 h group did not change obviously, compared with Sham group. The density of dendritic spines, the ultrastructure of synapse and the level of PSD95, Synaptophysin, p-CREB and CREB in hippocampus in Microwave 2 h group or Microwave 4 h group did not significantly change, compared with Sham group. CONCLUSION Under this experimental condition, exposure to 5.8 GHz microwave could not affect the hippocampal synaptic plasticity of rats.
Collapse
Affiliation(s)
- Gang Rui
- Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi'an, Shaanxi, China
- Department of Radiation Protection Medicine, Air Force Medical University, Xi'an, Shaanxi, China
| | - Li-Yuan Liu
- Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi'an, Shaanxi, China
- Department of Radiation Protection Medicine, Air Force Medical University, Xi'an, Shaanxi, China
| | - Ling Guo
- Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi'an, Shaanxi, China
- Department of Radiation Protection Medicine, Air Force Medical University, Xi'an, Shaanxi, China
| | - Yi-Zhe Xue
- Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi'an, Shaanxi, China
- Department of Radiation Protection Medicine, Air Force Medical University, Xi'an, Shaanxi, China
| | - Pan-Pan Lai
- Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi'an, Shaanxi, China
- Department of Radiation Protection Medicine, Air Force Medical University, Xi'an, Shaanxi, China
| | - Peng Gao
- Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi'an, Shaanxi, China
- Department of Radiation Protection Medicine, Air Force Medical University, Xi'an, Shaanxi, China
| | - Jun-Ling Xing
- Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi'an, Shaanxi, China
- Department of Radiation Protection Medicine, Air Force Medical University, Xi'an, Shaanxi, China
| | - Jing Li
- Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi'an, Shaanxi, China
- Department of Radiation Protection Medicine, Air Force Medical University, Xi'an, Shaanxi, China
| | - Gui-Rong Ding
- Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi'an, Shaanxi, China
- Department of Radiation Protection Medicine, Air Force Medical University, Xi'an, Shaanxi, China
| |
Collapse
|
5
|
Belpomme D, Irigaray P. Why electrohypersensitivity and related symptoms are caused by non-ionizing man-made electromagnetic fields: An overview and medical assessment. ENVIRONMENTAL RESEARCH 2022; 212:113374. [PMID: 35537497 DOI: 10.1016/j.envres.2022.113374] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/30/2022] [Accepted: 04/25/2022] [Indexed: 06/14/2023]
Abstract
Much of the controversy over the cause of electrohypersensitivity (EHS) lies in the absence of recognized clinical and biological criteria for a widely accepted diagnosis. However, there are presently sufficient data for EHS to be acknowledged as a distinctly well-defined and objectively characterized neurologic pathological disorder. Because we have shown that 1) EHS is frequently associated with multiple chemical sensitivity (MCS) in EHS patients, and 2) that both individualized disorders share a common pathophysiological mechanism for symptom occurrence; it appears that EHS and MCS can be identified as a unique neurologic syndrome, regardless their causal origin. In this overview we distinguish the etiology of EHS itself from the environmental causes that trigger pathophysiological changes and clinical symptoms after EHS has occurred. Contrary to present scientifically unfounded claims, we indubitably refute the hypothesis of a nocebo effect to explain the genesis of EHS and its presentation. We as well refute the erroneous concept that EHS could be reduced to a vague and unproven "functional impairment". To the contrary, we show here there are objective pathophysiological changes and health effects induced by electromagnetic field (EMF) exposure in EHS patients and most of all in healthy subjects, meaning that excessive non-thermal anthropogenic EMFs are strongly noxious for health. In this overview and medical assessment we focus on the effects of extremely low frequencies, wireless communications radiofrequencies and microwaves EMF. We discuss how to better define and characterize EHS. Taken into consideration the WHO proposed causality criteria, we show that EHS is in fact causally associated with increased exposure to man-made EMF, and in some cases to marketed environmental chemicals. We therefore appeal to all governments and international health institutions, particularly the WHO, to urgently consider the growing EHS-associated pandemic plague, and to acknowledge EHS as a mainly new real EMF causally-related pathology.
Collapse
Affiliation(s)
- Dominique Belpomme
- Medical Oncology Department, Paris University, Paris, France; European Cancer and Environment Research Institute (ECERI), Brussels, Belgium.
| | - Philippe Irigaray
- European Cancer and Environment Research Institute (ECERI), Brussels, Belgium
| |
Collapse
|
6
|
Elamin AAE, Deniz OG, Kaplan S. The effects of Gum Arabic, curcumin (Curcuma longa) and Garcinia kola on the rat hippocampus after electromagnetic field exposure: A stereological and histological study. J Chem Neuroanat 2022; 120:102060. [PMID: 34915150 DOI: 10.1016/j.jchemneu.2021.102060] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 12/09/2021] [Accepted: 12/09/2021] [Indexed: 11/25/2022]
Abstract
The present study was designed to focus on the potential effects of the electromagnetic field (EMF) emitted by mobile phones on hippocampal pyramidal neurons and to investigate the role of curcumin (Cur), Garcinia kola (GK) and Gum Arabic (GA) in reducing these adverse effects. Fifty-four 12-week-old male Wistar albino rats were used. These were randomly divided into nine groups of six rats each. The control, Cur, GK and GA groups were not exposed to EMF, while the sham group was kept in the EMF exposure system without being exposed to EMF. The EMF+Cur, EMF+GK, EMF+GA and EMF groups were exposed to 900 MHz EMF for one hour a day for 28 days. The number of the pyramidal neurons in the cornu ammonis (CA) of the hippocampus was estimated using the optical fractionator technique. Histopathological changes were evaluated under light and electron microscopes. The activities of the superoxide dismutase (SOD) and catalase (CAT) enzymes were also evaluated from serum samples. Significant levels of CAT and SOD activities were observed in the EMF group compared to the control group (p = 0.000; p = 0.001) respectively. Microscopic observations showed that dark-coloured nuclei with unclear neuron boundaries were frequently observed in the EMF group. Stereological data analysis revealed a significant decrease in the CA's total number of pyramidal neurons in the EMF group compared to the control and sham groups (p = 0.000; p = 0.000) respectively. Cur and GK were observed to provide significant protection in the EMF+Cur and EMF+GK groups compared to the EMF group (p = 0.000; p = 0.000) respectively. No significant difference was observed between the EMF+GA group and EMF group (p = 0.989). Exposure to 900 MHz EMF causes severe alterations in the number and structure of hippocampal pyramidal neurons. Cur and GK exhibit a protective effect against these deleterious effects, but GA showed no protective effect.
Collapse
Affiliation(s)
| | - Omur Gulsum Deniz
- Department of Histology and Embryology, Faculty of Medicine, Bolu Abant İzzet Baysal University, Bolu, Turkey
| | - Suleyman Kaplan
- Department of Histology and Embryology, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey.
| |
Collapse
|
7
|
Hasan I, Rubayet Jahan M, Nabiul Islam M, Rafiqul Islam M. Effect of 2400 MHz mobile phone radiation exposure on the behavior and hippocampus morphology in Swiss mouse model. Saudi J Biol Sci 2022; 29:102-110. [PMID: 35002399 PMCID: PMC8716897 DOI: 10.1016/j.sjbs.2021.08.063] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/23/2021] [Accepted: 08/19/2021] [Indexed: 12/14/2022] Open
Abstract
Electromagnetic field exposure to the nervous system can cause neurological changes. The effects of extremely low-frequency electromagnetic fields, such as second-generation and third-generation radiation, have been studied in most studies. The current study aimed to explore fourth-generation cellular phone radiation on hippocampal morphology and behavior in mice. Swiss albino male mice (n = 30) were randomly categorized into 3 groups; control, 40 min, and 60 min exposure to 2400 MHz radiofrequency electromagnetic radiation (RF-EMR) daily for 60 days. The control mice were housed in the same environments but were not exposed to anything. Anxiety-like behaviors were tested using the elevated plus-maze. For histological and stereological examination, the brain was dissected from the cranial cavity. On Cresyl violet stained brain slices, the number of pyramidal neurons in the cornu ammonis of the hippocampus were counted. In exposed mice compared to control mice, a significant increase in anxiety-like behavior has been observed. Histological observations have shown many black and dark blue cytoplasmic cells with shrunken morphology degenerative alterations in the neuronal hippocampus in the radiation exposed mice. In the RF-EMR mouse hippocampus, stereological analyses revealed a significant decrease in pyramidal and granule neurons compared to controls. Our findings suggest that 2400-MHz RF-EMR cell phone radiation affects the structural integrity of the hippocampus, which would lead to behavioral changes such as anxiety. However, it alerts us to the possible long-term detrimental effects of exposure to RF-EMR.
Collapse
Affiliation(s)
- Imam Hasan
- Department of Anatomy and Histology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Mir Rubayet Jahan
- Department of Anatomy and Histology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh.,Division of Neuroanatomy, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube 755-8505, Japan
| | - Md Nabiul Islam
- Division of Neuroanatomy, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube 755-8505, Japan
| | - Mohammad Rafiqul Islam
- Department of Anatomy and Histology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| |
Collapse
|
8
|
Deniz ÖG, Kaplan S. The effects of different herbals on the rat hippocampus exposed to electromagnetic field for one hour during the prenatal period. J Chem Neuroanat 2021; 119:102043. [PMID: 34808256 DOI: 10.1016/j.jchemneu.2021.102043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 11/02/2021] [Accepted: 11/02/2021] [Indexed: 11/25/2022]
Abstract
The purpose of this study was to highlight the possible effects on the hippocampus of the electromagnetic field (EMF) emitted by mobile phones, and to investigate whether these potential effects can be reduced using various antioxidant substances. Twenty-seven female Wistar albino rats were divided into nine equal groups, each containing three pregnant rats aged 8-10 weeks and weighing 200-250 gr. The EMF groups were exposed to 900 Megahertz (MHz) EMF for 1 h (hr) a day for 21 days. No EMF exposure was applied to the Cont and also the groups given only Garcinia kola (GK), Momordica charantia (MC), and thymoquinone (TQ). The Sham group was kept in the polycarbonate EMF exposure system, but was not exposed to EMF. Four weeks after birth, rat pups were subjected to behavioural tests. Brain tissue samples were evaluated using histological, stereological, functional, and immunohistochemical methods. The numbers of pyramidal neurons in the rat cornu ammonis (CA) were determined using the optical fractionator method. Superoxide dismutase (SOD) and catalase (CAT) enzyme activities in the blood samples were also evaluated. The analysis data indicated that total pyramidal neuron numbers were decreased significantly in the CA of the EMF (1 hr) group (p < 0.01). Our results also showed that the protective effect of MC was more potent than that of the other antioxidant substances (p < 0.01). A 900 MHz EMF can cause deleterious changes in the brain. It can also be suggested that GK, MC and TQ are capable of reducing these adverse effects.
Collapse
Affiliation(s)
- Ömür Gülsüm Deniz
- Department of Histology and Embryology, Faculty of Medicine, Bolu Abant İzzet Baysal University, Bolu Turkey.
| | - Süleyman Kaplan
- Department of Histology and Embryology, Faculty of Medicine, Ondokuz Mayıs University, Samsun Turkey
| |
Collapse
|
9
|
Hu C, Zuo H, Li Y. Effects of Radiofrequency Electromagnetic Radiation on Neurotransmitters in the Brain. Front Public Health 2021; 9:691880. [PMID: 34485223 PMCID: PMC8415840 DOI: 10.3389/fpubh.2021.691880] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 07/13/2021] [Indexed: 12/29/2022] Open
Abstract
With the rapid development of electronic information in the past 30 years, technical achievements based on electromagnetism have been widely used in various fields pertaining to human production and life. Consequently, electromagnetic radiation (EMR) has become a substantial new pollution source in modern civilization. The biological effects of EMR have attracted considerable attention worldwide. The possible interaction of EMR with human organs, especially the brain, is currently where the most attention is focused. Many studies have shown that the nervous system is an important target organ system sensitive to EMR. In recent years, an increasing number of studies have focused on the neurobiological effects of EMR, including the metabolism and transport of neurotransmitters. As messengers of synaptic transmission, neurotransmitters play critical roles in cognitive and emotional behavior. Here, the effects of EMR on the metabolism and receptors of neurotransmitters in the brain are summarized.
Collapse
Affiliation(s)
- Cuicui Hu
- Anhui Medical University, Academy of Life Sciences, Hefei, China.,Department of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Hongyan Zuo
- Department of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Yang Li
- Anhui Medical University, Academy of Life Sciences, Hefei, China.,Department of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, China
| |
Collapse
|
10
|
Hong Y, Liang YP, Chen WQ, You LX, Ni QF, Gao XY, Lin XR. Protective effects of upregulated HO-1 gene against the apoptosis of human retinal pigment epithelial cells in vitro. Int J Ophthalmol 2021; 14:649-655. [PMID: 34012878 DOI: 10.18240/ijo.2021.05.03] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 03/25/2021] [Indexed: 01/13/2023] Open
Abstract
AIM To investigate the protective effect of heme oxygenase-1 (HO-1) against H2O2-induced apoptosis in human ARPE-19 cells. METHODS The lentiviral vector expressing HO-1 was prepared and transfected into apoptotic ARPE-19 cells induced by H2O2. Functional experiments including cell counting kit-8 (CCK-8) assay, flow cytometry (FCM) and mitochondrial membrane potential assay were conducted. RESULTS The ultrastructure of ARPE-19 cells was observed using transmission electron microscope (TEM). It was found that exogenous HO-1 significantly ameliorated H2O2-induced loss of cell viability, apoptosis and intracellular levels of reactive oxygen species (ROS) in ARPE-19 cells. The overexpression of HO-1 facilitated the transfer of nuclear factor erythroid-2-related factor 2 (Nrf2) from cytoplasm to nucleus, which in turn upregualted expressions HO-1 and B-cell lymphoma-2 (Bcl-2). Furthermore, HO-1 upregulation further inhibited H2O2-induced release of cysteinyl aspartate specific proteinase-3 (caspase-3). CONCLUSION Exogenous HO-1 protect ARPE-19 cells against H2O2-induced oxidative stress by regulating the expressions of Nrf2, HO-1, Bcl-2, and caspase-3.
Collapse
Affiliation(s)
- Yu Hong
- Department of Ophthalmology, the Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, Fujian Province, China
| | - Yu-Ping Liang
- Department of Ophthalmology, the Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, Fujian Province, China
| | - Wei-Qi Chen
- Department of Ophthalmology, the Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, Fujian Province, China
| | - Liu-Xia You
- Department of Clinical Laboratory, the Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, Fujian Province, China
| | - Qing-Feng Ni
- Department of Ophthalmology, the Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, Fujian Province, China
| | - Xiu-Yun Gao
- Department of Ophthalmology, the Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, Fujian Province, China
| | - Xiao-Rong Lin
- Department of Clinical Laboratory, the Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, Fujian Province, China
| |
Collapse
|
11
|
Chen C, Ma Q, Deng P, Lin M, Gao P, He M, Lu Y, Pi H, He Z, Zhou C, Zhang Y, Yu Z, Zhang L. 1800 MHz Radiofrequency Electromagnetic Field Impairs Neurite Outgrowth Through Inhibiting EPHA5 Signaling. Front Cell Dev Biol 2021; 9:657623. [PMID: 33912567 PMCID: PMC8075058 DOI: 10.3389/fcell.2021.657623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 03/24/2021] [Indexed: 12/16/2022] Open
Abstract
The increasing intensity of environmental radiofrequency electromagnetic fields (RF-EMF) has increased public concern about its health effects. Of particular concern are the influences of RF-EMF exposure on the development of the brain. The mechanisms of how RF-EMF acts on the developing brain are not fully understood. Here, based on high-throughput RNA sequencing techniques, we revealed that transcripts related to neurite development were significantly influenced by 1800 MHz RF-EMF exposure during neuronal differentiation. Exposure to RF-EMF remarkably decreased the total length of neurite and the number of branch points in neural stem cells-derived neurons and retinoic acid-induced Neuro-2A cells. The expression of Eph receptors 5 (EPHA5), which is required for neurite outgrowth, was inhibited remarkably after RF-EMF exposure. Enhancing EPHA5 signaling rescued the inhibitory effects of RF-EMF on neurite outgrowth. Besides, we identified that cAMP-response element-binding protein (CREB) and RhoA were critical downstream factors of EPHA5 signaling in mediating the inhibitory effects of RF-EMF on neurite outgrowth. Together, our finding revealed that RF-EMF exposure impaired neurite outgrowth through EPHA5 signaling. This finding explored the effects and key mechanisms of how RF-EMF exposure impaired neurite outgrowth and also provided a new clue to understanding the influences of RF-EMF on brain development.
Collapse
Affiliation(s)
- Chunhai Chen
- Department of Occupational Health, Third Military Medical University, Chongqing, China.,Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education, Chongqing, China
| | - Qinglong Ma
- Department of Occupational Health, Third Military Medical University, Chongqing, China.,Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education, Chongqing, China
| | - Ping Deng
- Department of Occupational Health, Third Military Medical University, Chongqing, China.,Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education, Chongqing, China
| | - Min Lin
- Department of Occupational Health, Third Military Medical University, Chongqing, China
| | - Peng Gao
- Department of Occupational Health, Third Military Medical University, Chongqing, China.,Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education, Chongqing, China
| | - Mindi He
- Department of Occupational Health, Third Military Medical University, Chongqing, China.,Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education, Chongqing, China
| | - Yonghui Lu
- Department of Occupational Health, Third Military Medical University, Chongqing, China.,Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education, Chongqing, China
| | - Huifeng Pi
- Department of Occupational Health, Third Military Medical University, Chongqing, China.,Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education, Chongqing, China
| | - Zhixin He
- Department of Occupational Health, Third Military Medical University, Chongqing, China
| | - Chao Zhou
- Department of Occupational Health, Third Military Medical University, Chongqing, China
| | - Yanwen Zhang
- Department of Occupational Health, Third Military Medical University, Chongqing, China.,Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education, Chongqing, China
| | - Zhengping Yu
- Department of Occupational Health, Third Military Medical University, Chongqing, China.,Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education, Chongqing, China
| | - Lei Zhang
- Department of Occupational Health, Third Military Medical University, Chongqing, China.,Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education, Chongqing, China
| |
Collapse
|
12
|
Shabani Z, Mohammad Nejad D, Ghadiri T, Karimipour M. Evaluation of the neuroprotective effects of Vitamin E on the rat substantia nigra neural cells exposed to electromagnetic field: An ultrastructural study. Electromagn Biol Med 2021; 40:428-437. [PMID: 33794719 DOI: 10.1080/15368378.2021.1907404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Electromagnetic fields (EMFs) could induce oxidative stress (OS) in human tissues. Lipid peroxidation (LPO) is the main hallmark of OS that harms neural cell components, primarily lipids in the myelin sheaths and membranes. Vitamin E is a lipophilic antioxidant that protects cells from OS-related damages and inhibits the LPO process. In this study, male rats were assigned into three groups of Control, EMF, and EMF+ Vitamin E. The EMF producer equipment produced an alternate current of 50 Hz, 3 Mili Tesla (mT). At the end of the experiment, half of the substantia nigra in every sample was used for measurement of the malondialdehyde (MDA) level as the end-product of the LPO and activity of superoxide dismutase (SOD) enzyme. The next half of the tissue was prepared for transmission electron microscopy (TEM). In the EMF group, MDA level was enhanced and SOD value decreased significantly compared to the control group, but Vitamin E could restore these changes. In rats undergone EMF, heterochromatic nucleus and destruction in some portions of the nuclear membrane were detected. The segmental separation or destruction of myelin sheath lamellae was observed in nerve fibers. In treated animals, the nucleus was round, less heterochromatic, with a regular membrane. Separation of myelin sheath lamellae in some nerve fibers was slighter than the radiation group. Considering the results, EMF exposure induces LPO and triggers ultrastructural changes in the cell membranes, nucleus, and myelin sheath of substantia nigra cells, but Vitamin E consumption weakens these neuropathological alterations.
Collapse
Affiliation(s)
- Zahra Shabani
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Daryoush Mohammad Nejad
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Anatomical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tahereh Ghadiri
- Department of Neurosciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Karimipour
- Department of Anatomical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Neurosciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
13
|
Sağir D, Okur Z. Effects of cellular phone electromagnetic field exposure on the hippocampi of rats in childhood and adolescence. NEUROL SCI NEUROPHYS 2021. [DOI: 10.4103/nsn.nsn_206_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
14
|
Abstract
In today's world, most children are exposed to various manmade electromagnetic fields (EMFs). EMFs are electromagnetic waves less than 300 GHz. A developing child's brain is vulnerable to electromagnetic radiation; thus, their caregivers' concerns about the health effects of EMFs are increasing. EMF exposure is divided into 2 categories: extremely low frequencies (ELFs; 3-3,000 Hz), involving high-voltage transmission lines and in-house wiring; and radiofrequencies (RFs; 30 kHz to 300 GHz), involving mobile phones, smart devices, base stations, WiFi, and 5G technologies. The biological effects of EMFs on humans include stimulation, thermal, and nonthermal, the latter of which is the least known. Among the various health issues related to EMFs, the most important issue is human carcinogenicity. According to the International Agency for Research on Cancer's (IARC's) evaluation of carcinogenic risks to humans, ELFs and RFs were evaluated as possible human carcinogens (Group 2B). However, the World Health Organization's (WHO's) view of EMFs remains undetermined. This article reviews the current knowledge of EMF exposure on humans, specifically children. EMF exposure sources, biological effects, current WHO and IARC opinions on carcinogenicity, and effects of EMF exposures on children will be discussed. As well-controlled EMF experiments in children are nearly impossible, scientific knowledge should be interpreted objectively. Precautionary approaches are recommended for children until the potential health effects of EMF are confirmed.
Collapse
Affiliation(s)
- Jin-Hwa Moon
- Department of Pediatrics, Hanyang University School of Medicine, Seoul, Korea
| |
Collapse
|
15
|
Maurya R, Singh N, Jindal T, Pathak VK, Dutta MK. Machine learning-based identification of radiofrequency electromagnetic radiation (RF-EMR) effect on brain morphology: a preliminary study. Med Biol Eng Comput 2020; 58:1751-1765. [PMID: 32483764 DOI: 10.1007/s11517-020-02198-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 05/22/2020] [Indexed: 11/28/2022]
Abstract
The brain of a human and other organisms is affected by the electromagnetic field (EMF) radiations, emanating from the cell phones and mobile towers. Prolonged exposure to EMF radiations may cause neurological changes in the brain, which in turn may bring chemical as well as morphological changes in the brain. Conventionally, the identification of EMF radiation effect on the brain is performed using cellular-level analysis. In the present work, an automatic image processing-based approach is used where geometric features extracted from the segmented brain region has been analyzed for identifying the effect of EMF radiation on the morphology of a brain, using drosophila as a specimen. Genetic algorithm-based evolutionary feature selection algorithm has been used to select an optimal set of geometrical features, which, when fed to the machine learning classifiers, result in their optimal performance. The best classification accuracy has been obtained with the neural network with an optimally selected subset of geometrical features. A statistical test has also been performed to prove that the increase in the performance of classifier post-feature selection is statistically significant. This machine learning-based study indicates that there exists discrimination between the microscopic brain images of the EMF-exposed drosophila and non-exposed drosophila. Graphical abstract Proposed Methodology for identification of radiofrequency electromagnetic radiation (RF-EMR) effect on the morphology of brain of Drosophila.
Collapse
Affiliation(s)
- Ritesh Maurya
- Centre for Advanced Studies, Dr. A.P.J. Abdul Kalam Technical University, New Campus, Lucknow, 226031, India
| | - Neha Singh
- Amity Institute for Environmental Toxicology, Safety and Management, Amity University, Noida, India
| | - Tanu Jindal
- Amity Institute for Environmental Toxicology, Safety and Management, Amity University, Noida, India
| | | | - Malay Kishore Dutta
- Centre for Advanced Studies, Dr. A.P.J. Abdul Kalam Technical University, New Campus, Lucknow, 226031, India.
| |
Collapse
|
16
|
Electrohypersensitivity as a Newly Identified and Characterized Neurologic Pathological Disorder: How to Diagnose, Treat, and Prevent It. Int J Mol Sci 2020; 21:ijms21061915. [PMID: 32168876 PMCID: PMC7139347 DOI: 10.3390/ijms21061915] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/03/2020] [Accepted: 03/05/2020] [Indexed: 01/26/2023] Open
Abstract
Since 2009, we built up a database which presently includes more than 2000 electrohypersensitivity (EHS) and/or multiple chemical sensitivity (MCS) self-reported cases. This database shows that EHS is associated in 30% of the cases with MCS, and that MCS precedes the occurrence of EHS in 37% of these EHS/MCS-associated cases. EHS and MCS can be characterized clinically by a similar symptomatic picture, and biologically by low-grade inflammation and an autoimmune response involving autoantibodies against O-myelin. Moreover, 80% of the patients with EHS present with one, two, or three detectable oxidative stress biomarkers in their peripheral blood, meaning that overall these patients present with a true objective somatic disorder. Moreover, by using ultrasonic cerebral tomosphygmography and transcranial Doppler ultrasonography, we showed that cases have a defect in the middle cerebral artery hemodynamics, and we localized a tissue pulsometric index deficiency in the capsulo-thalamic area of the temporal lobes, suggesting the involvement of the limbic system and the thalamus. Altogether, these data strongly suggest that EHS is a neurologic pathological disorder which can be diagnosed, treated, and prevented. Because EHS is becoming a new insidious worldwide plague involving millions of people, we ask the World Health Organization (WHO) to include EHS as a neurologic disorder in the international classification of diseases.
Collapse
|
17
|
Singh A, Singh N, Jindal T, Rosado-Muñoz A, Dutta MK. A novel pilot study of automatic identification of EMF radiation effect on brain using computer vision and machine learning. Biomed Signal Process Control 2020. [DOI: 10.1016/j.bspc.2019.101821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
18
|
Okechukwu C. Effects of radiofrequency electromagnetic field exposure on neurophysiology. ADVANCES IN HUMAN BIOLOGY 2020. [DOI: 10.4103/aihb.aihb_96_19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
19
|
Sharma A, Sharma S, Shrivastava S, Singhal PK, Shukla S. Mobile phone induced cognitive and neurochemical consequences. J Chem Neuroanat 2019; 102:101684. [DOI: 10.1016/j.jchemneu.2019.101684] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 09/20/2019] [Accepted: 09/20/2019] [Indexed: 12/17/2022]
|
20
|
Baş O, Çankaya S, Enginyurt Ö, Aslan A, Uydu HA, Odaci E, Yılmaz A, Demir A, Gul T. The effect of acute organophosphate intoxication on female rat hippocampus cornu ammonis region pyramidal neuron numbers, biochemistry and morphology. J Chem Neuroanat 2019; 100:101652. [DOI: 10.1016/j.jchemneu.2019.101652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 04/03/2019] [Accepted: 05/24/2019] [Indexed: 12/27/2022]
|
21
|
Wang HY, Li CF, Yu C, Dong J, Zou Y, Nie BB, Li JK, Ma L, Peng RY. The specific absorption rate in different brain regions of rats exposed to electromagnetic plane waves. Sci Rep 2019; 9:13277. [PMID: 31527693 PMCID: PMC6746715 DOI: 10.1038/s41598-019-49719-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 08/27/2019] [Indexed: 11/09/2022] Open
Abstract
Accurate dosimetry of a specific brain region in rats exposed to an electromagnetic field (EMF) is essential for studies focusing on dose-effect relationship of the region. However, only dosimetry of whole brain or whole body were evaluated in most of previous studies. In this study, a numerical voxel rat model with 10 segmented brain regions was constructed. Then, the effects of frequency, incidence direction, and E-polarization direction of plane wave EMF on brain region averaged specific absorption rate (BRSAR) of rats were investigated. At last, the reliability of using whole-body averaged SAR (WBDSAR) and whole-brain averaged SAR (WBRSAR) as estimations of BRSAR were also evaluated. Our results demonstrated that the BRSAR depended on the frequency, incidence direction, and E-polarization direction of the EMF. Besides, the largest deviation could be up to 13.1 dB between BRSAR and WBDSAR and 9.59 dB between BRSAR and WBRSAR. The results suggested that to establish an accurate dose-effect relationship, the variance of the BRSAR induced by alteration of frequency, incidence direction, and E-polarization direction of EMF should be avoided or carefully evaluated. Furthermore, the use of WBDSAR and WBRSAR as estimations of BRSAR should be restricted to certain conditions such that the deviations are not too large.
Collapse
Affiliation(s)
- Hao-Yu Wang
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Chun-Fang Li
- Beijing Institute of Radiation Medicine, Beijing, 100850, China.,First Medical Center of PLA General Hospital, Beijing, 100853, China
| | - Chao Yu
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Ji Dong
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Yong Zou
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Bin-Bin Nie
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Jia-Kai Li
- Hainan Hospital of PLA General Hospital, Sanya, 572013, Hainan, China
| | - Lin Ma
- First Medical Center of PLA General Hospital, Beijing, 100853, China
| | - Rui-Yun Peng
- Beijing Institute of Radiation Medicine, Beijing, 100850, China.
| |
Collapse
|
22
|
Keleş Aİ, Nyengaard JR, Odacı E. Changes in pyramidal and granular neuron numbers in the rat hippocampus 7 days after exposure to a continuous 900-MHz electromagnetic field during early and mid-adolescence. J Chem Neuroanat 2019; 101:101681. [PMID: 31465830 DOI: 10.1016/j.jchemneu.2019.101681] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/30/2019] [Accepted: 08/25/2019] [Indexed: 11/19/2022]
Abstract
The aim of this study was to investigate qualitative and quantitative changes in pyramidal and granule neurons in the male rat hippocampus after exposure to a continuous 900-megahertz (MHz) electromagnetic field (EMF) for 25 days during early and mid-adolescence. Three-week-old (21 day) healthy Sprague Dawley male rats were divided equally into control (CON), pseudo-exposed (PEX) and EMF groups. EMF rats were exposed to a 900-MHz EMF in an EMF-application cage, while the PEX rats were placed in the same cage without being exposed to EMF. No procedure was performed in CON. EMF was applied for 1 h/day, every day for 25 days. Following the 900-MHz EMF and pseudo-exposed applications, behavioral tests were performed for seven days. Then, all animals were euthanized and their brains were removed. Following histological tissue procedures, sections were taken from tissues and stained with toluidine blue. The optical fractionation technique was performed to estimate the pyramidal neuron numbers in the CA1, CA2-3 and hilus regions of the hippocampus and granule neuron numbers in the dentate gyrus region. Our findings indicated that the number of pyramidal and granule neurons in the hippocampus of the EMF group was statistically higher than PEX. Furthermore, the histopathological results showed that the cytoplasm of pyramidal (in the hilus, CA1, CA2 and CA3 region) and granular (in the dentate gyrus region) cells at the hippocampus were disrupted, as evident by intensive staining around cytoplasm and some artifacts were detected in the EMF group. In addition, statistical comparisons of the mean body weights and brain weights of the study groups revealed no significant differences. There was no statistically significant difference between the PEX and EMF groups in terms of temperature (p > 0.05) or humidity (p > 0.05) in the cages. In conclusion, higher numbers of both pyramidal and granule neurons were found in the male rat hippocampus after continuous 900-MHz EMF treatment.
Collapse
Affiliation(s)
- Ayşe İkinci Keleş
- Department of Histology and Embryology, Faculty of Medicine, Niğde Ömer Halisdemir University, Niğde, Turkey.
| | - Jens Randel Nyengaard
- Department of Clinical Medicine, Core Centre for Molecular Morphology, Section for Stereology and Microscopy, Aarhus University Hospital, Aarhus C, Denmark
| | - Ersan Odacı
- Department of Histology and Embryology, Karadeniz Technical University Medical Faculty, Trabzon, Turkey
| |
Collapse
|
23
|
Conflicts of Interest and Misleading Statements in Official Reports about the Health Consequences of Radiofrequency Radiation and Some New Measurements of Exposure Levels. MAGNETOCHEMISTRY 2019. [DOI: 10.3390/magnetochemistry5020031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Official reports to governments throughout the Western world attempt to allay public concern about the increasing inescapability of the microwaves (also known as radiofrequency radiation or RF) emitted by “smart” technologies, by repeating the dogma that the only proven biological effect of RF is acute tissue heating, and assuring us that the levels of radiation to which the public are exposed are significantly less than those needed to cause acute tissue heating. The present paper first shows the origin of this “thermal-only” dogma in the military paranoia of the 1950s. It then reveals how financial conflict of interest and intentionally misleading statements have been powerful factors in preserving that dogma in the face of now overwhelming evidence that it is false, using one 2018 report to ministers of the New Zealand government as an example. Lastly, some new pilot measurements of ambient RF power densities in Auckland city are reported and compared with levels reported in other cities, various international exposure limits, and levels shown scientifically to cause biological harm. It is concluded that politicians in the Western world should stop accepting soothing reports from individuals with blatant conflicts of interest and start taking the health and safety of their communities seriously.
Collapse
|
24
|
Belpomme D, Hardell L, Belyaev I, Burgio E, Carpenter DO. Thermal and non-thermal health effects of low intensity non-ionizing radiation: An international perspective. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 242:643-658. [PMID: 30025338 DOI: 10.1016/j.envpol.2018.07.019] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 05/31/2018] [Accepted: 07/04/2018] [Indexed: 05/24/2023]
Abstract
Exposure to low frequency and radiofrequency electromagnetic fields at low intensities poses a significant health hazard that has not been adequately addressed by national and international organizations such as the World Health Organization. There is strong evidence that excessive exposure to mobile phone-frequencies over long periods of time increases the risk of brain cancer both in humans and animals. The mechanism(s) responsible include induction of reactive oxygen species, gene expression alteration and DNA damage through both epigenetic and genetic processes. In vivo and in vitro studies demonstrate adverse effects on male and female reproduction, almost certainly due to generation of reactive oxygen species. There is increasing evidence the exposures can result in neurobehavioral decrements and that some individuals develop a syndrome of "electro-hypersensitivity" or "microwave illness", which is one of several syndromes commonly categorized as "idiopathic environmental intolerance". While the symptoms are non-specific, new biochemical indicators and imaging techniques allow diagnosis that excludes the symptoms as being only psychosomatic. Unfortunately standards set by most national and international bodies are not protective of human health. This is a particular concern in children, given the rapid expansion of use of wireless technologies, the greater susceptibility of the developing nervous system, the hyperconductivity of their brain tissue, the greater penetration of radiofrequency radiation relative to head size and their potential for a longer lifetime exposure.
Collapse
Affiliation(s)
- Dominique Belpomme
- European Cancer Environment Research Institute, Brussels, Belgium; Paris V University Hospital, Paris, France
| | - Lennart Hardell
- European Cancer Environment Research Institute, Brussels, Belgium; Department of Oncology, Orebro University Hospital, Faculty of Medicine, Orebro, Sweden
| | - Igor Belyaev
- European Cancer Environment Research Institute, Brussels, Belgium; Department of Radiobiology, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Science, Bratislava, Slovak Republic; Laboratory of Radiobiology, Institute of General Physics, Russian Academy of Science, Moscow, Russian Federation
| | - Ernesto Burgio
- European Cancer Environment Research Institute, Brussels, Belgium; Instituto Scientifico Biomedico Euro Mediterraneo, Mesagne, Italy
| | - David O Carpenter
- European Cancer Environment Research Institute, Brussels, Belgium; Institute for Health and the Environment, University at Albany, Albany, NY, USA; Child Health Research Centre, The University of Queensland, Faculty of Medicine, Brisbane, Australia.
| |
Collapse
|
25
|
Keleş Aİ, Yıldırım M, Gedikli Ö, Çolakoğlu S, Kaya H, Baş O, Sönmez OF, Odacı E. The effects of a continuous 1-h a day 900-MHz electromagnetic field applied throughout early and mid-adolescence on hippocampus morphology and learning behavior in late adolescent male rats. J Chem Neuroanat 2018; 94:46-53. [PMID: 30189239 DOI: 10.1016/j.jchemneu.2018.08.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 08/28/2018] [Accepted: 08/28/2018] [Indexed: 12/26/2022]
Abstract
The purpose of this study was to investigate hippocampus morphology and changes in learning behavior in male rats in late adolescence exposed to the effect of a continuous 1-h a day 900-megahertz (MHz) electromagnetic field (EMF). Twenty-four male Sprague Dawley rats aged 3-weeks were divided equally into control, sham and EMF groups. EMF group rats were exposed to a 900-MHz EMF inside an EMF cage, while the sham group rats were placed in the same cage but were not exposed to such an effect. No procedure was performed on the control group. Following 25-day application of EMF, passive avoidance, 8-arm radial maze and Y-maze tests were applied to determine rats' learning and memory performances. Open field and rotarod tests were applied to assess locomotor activity. At the end of the tests, the animals' brains were removed. Sections were taken and stained with toluidine blue. The regions of the hippocampus were subjected to histopathological evaluation. At histopathological examination, impairments of pyramidal and granular cell structures were observed in the EMF group hippocampus. No significant change was observed in learning, memory or locomotor behavior in any group. In conclusion, 900-MHz EMF applied in early and mid-adolescence causes no changes in learning, memory or locomotor behavior.
Collapse
Affiliation(s)
- Ayşe İkinci Keleş
- Department of Histology and Embryology, Faculty of Medicine, Niğde Ömer Halisdemir University, Niğde, Turkey.
| | - Mehmet Yıldırım
- Department of Physiology, Faculty of Medicine, Health Sciences University, İstanbul, Turkey
| | - Öznur Gedikli
- Department of Physiology, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Sedar Çolakoğlu
- Department of Anatomy, Faculty of Medicine, Düzce University, Düzce, Turkey
| | - Haydar Kaya
- Department of Electrical and Electronics, Faculty of Engineering, Karadeniz Technical University, Trabzon, Turkey
| | - Orhan Baş
- Department of Anatomy, Faculty of Medicine, Ordu University, Ordu, Turkey
| | - Osman Fikret Sönmez
- Department of of Neurosurgery, Tepecik Education and Research Hospital, İzmir, Turkey
| | - Ersan Odacı
- Department of Histology and Embryology, Faculty of Medicine, Niğde Ömer Halisdemir University, Niğde, Turkey; Department of Physiology, Faculty of Medicine, Health Sciences University, İstanbul, Turkey; Department of Physiology, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey; Department of Anatomy, Faculty of Medicine, Düzce University, Düzce, Turkey; Department of Electrical and Electronics, Faculty of Engineering, Karadeniz Technical University, Trabzon, Turkey; Department of Anatomy, Faculty of Medicine, Ordu University, Ordu, Turkey; Department of of Neurosurgery, Tepecik Education and Research Hospital, İzmir, Turkey
| |
Collapse
|
26
|
Ertilav K, Uslusoy F, Ataizi S, Nazıroğlu M. Long term exposure to cell phone frequencies (900 and 1800 MHz) induces apoptosis, mitochondrial oxidative stress and TRPV1 channel activation in the hippocampus and dorsal root ganglion of rats. Metab Brain Dis 2018; 33:753-763. [PMID: 29332300 DOI: 10.1007/s11011-017-0180-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 12/26/2017] [Indexed: 12/11/2022]
Abstract
Mobile phone providers use electromagnetic radiation (EMR) with frequencies ranging from 900 to 1800 MHz. The increasing use of mobile phones has been accompanied by several potentially pathological consequences, such as neurological diseases related to hippocampal (HIPPON) and dorsal root ganglion neuron (DRGN). The TRPV1 channel is activated different stimuli, including CapN, high temperature and oxidative stress. We investigated the contribution TRPV1 to mitochondrial oxidative stress and apoptosis in HIPPON and DRGN following long term exposure to 900 and 1800 MHz in a rat model. Twenty-four adult rats were equally divided into the following groups: (1) control, (2) 900 MHz, and (3) 1800 MHz exposure. Each experimental group was exposed to EMR for 60 min/ 5 days of the week during the one year. The 900 and 1800 MHz EMR exposure induced increases in TRPV1 currents, intracellular free calcium influx (Ca2+), reactive oxygen species (ROS) production, mitochondrial membrane depolarization (JC-1), apoptosis, and caspase 3 and 9 activities in the HIPPON and DRGN. These deleterious processes were further increased in the 1800 MHz experimental group compared to the 900 MHz exposure group. In conclusion, mitochondrial oxidative stress, programmed cell death and Ca2+ entry pathway through TRPV1 activation in the HIPPON and DRGN of rats were increased in the rat model following exposure to 900 and 1800 MHz cell frequencies. Our results suggest that exposure to 900 and 1800 MHz EMR may induce a dose-associated, TRPV1-mediated stress response.
Collapse
Affiliation(s)
- Kemal Ertilav
- Departmant of Neurosurgery, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| | - Fuat Uslusoy
- Department of Plastic Reconstructive and Aesthetic Surgery, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| | - Serdar Ataizi
- Departmant of Neurosurgery, Yunusemre General State Hospital, Eskişehir, Turkey
| | - Mustafa Nazıroğlu
- Neuroscience Research Center, Suleyman Demirel University, TR-32260, Isparta, Turkey.
| |
Collapse
|
27
|
Fragopoulou AF, Polyzos A, Papadopoulou M, Sansone A, Manta AK, Balafas E, Kostomitsopoulos N, Skouroliakou A, Chatgilialoglu C, Georgakilas A, Stravopodis DJ, Ferreri C, Thanos D, Margaritis LH. Hippocampal lipidome and transcriptome profile alterations triggered by acute exposure of mice to GSM 1800 MHz mobile phone radiation: An exploratory study. Brain Behav 2018; 8:e01001. [PMID: 29786969 PMCID: PMC5991598 DOI: 10.1002/brb3.1001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 03/29/2018] [Accepted: 04/02/2018] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND The widespread use of wireless devices during the last decades is raising concerns about adverse health effects of the radiofrequency electromagnetic radiation (RF-EMR) emitted from these devices. Recent research is focusing on unraveling the underlying mechanisms of RF-EMR and potential cellular targets. The "omics" high-throughput approaches are powerful tools to investigate the global effects of RF-EMR on cellular physiology. METHODS In this work, C57BL/6 adult male mice were whole-body exposed (nExp = 8) for 2 hr to GSM 1800 MHz mobile phone radiation at an average electric field intensity range of 4.3-17.5 V/m or sham-exposed (nSE = 8), and the RF-EMR effects on the hippocampal lipidome and transcriptome profiles were assessed 6 hr later. RESULTS The data analysis of the phospholipid fatty acid residues revealed that the levels of four fatty acids [16:0, 16:1 (6c + 7c), 18:1 9c, eicosapentaenoic acid omega-3 (EPA, 20:5 ω3)] and the two fatty acid sums of saturated and monounsaturated fatty acids (SFA and MUFA) were significantly altered (p < 0.05) in the exposed group. The observed changes indicate a membrane remodeling response of the tissue phospholipids after nonionizing radiation exposure, reducing SFA and EPA, while increasing MUFA residues. The microarray data analysis demonstrated that the expression of 178 genes changed significantly (p < 0.05) between the two groups, revealing an impact on genes involved in critical biological processes, such as cell cycle, DNA replication and repair, cell death, cell signaling, nervous system development and function, immune system response, lipid metabolism, and carcinogenesis. CONCLUSIONS This study provides preliminary evidence that mobile phone radiation induces hippocampal lipidome and transcriptome changes that may explain the brain proteome changes and memory deficits previously shown by our group.
Collapse
Affiliation(s)
- Adamantia F. Fragopoulou
- Department of Cell Biology and BiophysicsFaculty of BiologyUniversity of AthensZografouAthensGreece
- Department of Women’s and Children’s HealthKarolinska InstitutetStockholmSweden
| | - Alexandros Polyzos
- Institute of Molecular Biology, Genetics and BiotechnologyBiomedical Research FoundationAcademy of AthensAthensGreece
- Present address:
Joan and Sanford I. Weill Department of MedicineWeill Cornell Medical CollegeNew York10065New York
| | - Maria‐Despoina Papadopoulou
- Institute of Molecular Biology, Genetics and BiotechnologyBiomedical Research FoundationAcademy of AthensAthensGreece
| | - Anna Sansone
- Consiglio Nazionale delle RicercheISOFBolognaItaly
| | - Areti K. Manta
- Department of Cell Biology and BiophysicsFaculty of BiologyUniversity of AthensZografouAthensGreece
| | - Evangelos Balafas
- Laboratory Animal FacilitiesCenter of Clinical, Experimental Surgery and Translational ResearchBiomedical Research FoundationAcademy of AthensAthensGreece
| | - Nikolaos Kostomitsopoulos
- Laboratory Animal FacilitiesCenter of Clinical, Experimental Surgery and Translational ResearchBiomedical Research FoundationAcademy of AthensAthensGreece
| | | | - Chryssostomos Chatgilialoglu
- Consiglio Nazionale delle RicercheISOFBolognaItaly
- Institute of Nanoscience and Nanotechnology (INN)NCSR DemokritosAthensGreece
| | - Alexandros Georgakilas
- DNA Damage LaboratoryDepartment of PhysicsSchool of Applied Mathematical and Physical SciencesNational Technical University of Athens (NTUA)AthensGreece
| | - Dimitrios J. Stravopodis
- Department of Cell Biology and BiophysicsFaculty of BiologyUniversity of AthensZografouAthensGreece
| | | | - Dimitris Thanos
- Institute of Molecular Biology, Genetics and BiotechnologyBiomedical Research FoundationAcademy of AthensAthensGreece
| | - Lukas H. Margaritis
- Department of Cell Biology and BiophysicsFaculty of BiologyUniversity of AthensZografouAthensGreece
| |
Collapse
|
28
|
Petitdant N, Lecomte A, Robidel F, Gamez C, Blazy K, Villégier AS. Alteration of adaptive behaviors of progeny after maternal mobile phone exposure. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:10894-10903. [PMID: 29397508 DOI: 10.1007/s11356-017-1178-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 12/27/2017] [Indexed: 06/07/2023]
Abstract
Exposure of pregnant women to radiofrequency (RF) devices raises questions on their possible health consequences for their progeny. We examined the hazard threshold of gestational RF on the progeny's glial homeostasis, sensory-motor gating, emotionality, and novelty seeking and tested whether maternal immune activation would increase RF toxicity. Pregnant dams were daily restrained with loop antennas adjoining the abdomen (fetus body specific absorption rates (SAR): 0, 0.7, or 2.6 W/kg) and received three lipopolysaccharide (LPS) intra-peritoneal injections (0 or 80 μg/kg). Scores in the prepulse startle inhibition, fear conditioning, open field, and elevated plus maze were assessed at adolescence and adulthood. Glial fibrillary acidic protein (GFAP) and interleukines-1β (ILs) were quantified. LPS induced a SAR-dependent reduction of the prepulse startle inhibition in adults. Activity in the open field was reduced at 2.6 W/kg at adolescence. GFAP and ILs, emotional memory, and anxiety-related behaviors were not modified. These data support the hypothesis that maternal immune activation increased the developmental RF exposure-induced long-term neurobiological impairments. These data support the fact that fetuses who receive combined environmental exposures with RF need special attention for protection.
Collapse
Affiliation(s)
- Nicolas Petitdant
- Toxicology Unit, National Institute for Environmental Protection and Industrial Risks (INERIS), Verneuil-en-Halatte, France
- PériTox-INERIS Laboratory, UMR-I 01 Jules Verne University of Picardy, 80054, Amiens, France
| | - Anthony Lecomte
- Toxicology Unit, National Institute for Environmental Protection and Industrial Risks (INERIS), Verneuil-en-Halatte, France
- PériTox-INERIS Laboratory, UMR-I 01 Jules Verne University of Picardy, 80054, Amiens, France
| | - Franck Robidel
- Toxicology Unit, National Institute for Environmental Protection and Industrial Risks (INERIS), Verneuil-en-Halatte, France
- PériTox-INERIS Laboratory, UMR-I 01 Jules Verne University of Picardy, 80054, Amiens, France
| | - Christelle Gamez
- Toxicology Unit, National Institute for Environmental Protection and Industrial Risks (INERIS), Verneuil-en-Halatte, France
- PériTox-INERIS Laboratory, UMR-I 01 Jules Verne University of Picardy, 80054, Amiens, France
| | - Kelly Blazy
- Toxicology Unit, National Institute for Environmental Protection and Industrial Risks (INERIS), Verneuil-en-Halatte, France
- PériTox-INERIS Laboratory, UMR-I 01 Jules Verne University of Picardy, 80054, Amiens, France
| | - Anne-Sophie Villégier
- Toxicology Unit, National Institute for Environmental Protection and Industrial Risks (INERIS), Verneuil-en-Halatte, France.
- PériTox-INERIS Laboratory, UMR-I 01 Jules Verne University of Picardy, 80054, Amiens, France.
- Unité de Toxicologie Expérimentale, Parc Technologique ALATA, Institut National de l'Environnement Industriel et des Risques, BP no. 2, 60550, Verneuil-en-Halatte, France.
| |
Collapse
|
29
|
Kocaman A, Gül M, Yurt KK, Altun G, Zayman E, Kıvrak EG. Does omega-3 have a protective effect on the rat adrenal gland exposed to 900 MHz electromagnetic fields? J Microsc Ultrastruct 2017; 5:185-190. [PMID: 30023253 PMCID: PMC6025787 DOI: 10.1016/j.jmau.2017.08.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 08/25/2017] [Accepted: 08/30/2017] [Indexed: 11/26/2022] Open
Abstract
The aim of this study was to investigate the harmful effects of exposure to 900-megahertz (MHz) electromagnetic fields (EMF) and the protective effects of omega-3 (Omg-3) against EMF in the rat adrenal gland. Eighteen Wistar albino rats were randomly assigned into three groups, control (Cont), EMF, and EMF + Omg-3. The EMF and EMF + Omg-3 groups both consisted of six rats exposed to an EMF of 900 MHz for 60 min/day for 15 days. No procedure was applied to the six rats in the Cont group. At the end of the experiment, all rats were sacrificed, and the mean volumes of the cortex and medulla of the adrenal gland were estimated using a stereological counting technique. The stereological results showed that the mean volume of the adrenal gland increased significantly in the EMF-exposed groups compared to the Cont group. Additionally, the mean volume of the adrenal gland was significantly lower in the EMF + Omg-3 group compared to the EMF group. We suggest that Omg-3 therapy aimed at suppressing the effects of EMF may prove a safe alternative for animals, whether or not they are exposed to EMF.
Collapse
Affiliation(s)
- Adem Kocaman
- Department of Histology and Embryology, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| | - Mehmet Gül
- Department of Histology and Embryology, Faculty of Medicine, İnönü University, Malatya, Turkey
| | - Kıymet Kübra Yurt
- Department of Histology and Embryology, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| | - Gamze Altun
- Department of Histology and Embryology, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| | - Emrah Zayman
- Department of Histology and Embryology, Faculty of Medicine, İnönü University, Malatya, Turkey
| | - Elfide Gizem Kıvrak
- Department of Histology and Embryology, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| |
Collapse
|
30
|
Kivrak EG, Altunkaynak BZ, Alkan I, Yurt KK, Kocaman A, Onger ME. Effects of 900-MHz radiation on the hippocampus and cerebellum of adult rats and attenuation of such effects by folic acid and Boswellia sacra. J Microsc Ultrastruct 2017; 5:216-224. [PMID: 30023257 PMCID: PMC6025788 DOI: 10.1016/j.jmau.2017.09.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 08/31/2017] [Accepted: 09/11/2017] [Indexed: 02/07/2023] Open
Abstract
The radiation emitted from mobile phones has various deleterious effects on human health. This study was conducted to evaluate the effects of exposure to the 900-MHz radiation electromagnetic fields (EMF) emitted by mobile phones on Ammon's horn and the dentate gyrus (DG) in the hippocampus and cerebellum of male Wistar albino rats. We also investigated the neuroprotective effects of the antioxidants Boswellia sacra (BS) and folic acid (FA) against exposure to EMF. Twenty-four adult male rats were randomly divided into four groups of six animals each, an EMF group, an EMF + FA exposure group (EFA), an EMF + BS exposure group (EBS) and a control group (Cont). The EMF, EFA and EBS groups were exposed to 900-MHz EMF radiation inside a tube once daily over 21 days (60 min/day). The Cont group was not exposed to 900-MHz EMF. The results showed that EMF caused a significant decrease in total pyramidal and granular cell numbers in the hippocampus, and DG and in Purkinje cell numbers in the cerebellum in the EMF group compared to the other groups (p < 0.05). BS and FA attenuated the neurodegenerative effects of EMF in the hippocampus and cerebellum. Significant differences were also determined between the numbers of neurons in the EFA and EMF groups, and between the EBS and EMF groups (p < 0.05). However, there were no significant differences among Cont, EFA and EBS (p > 0.05). Our results may contribute to ongoing research into the effects of 900-MHz EMF exposure. Abbreviations: BS, Boswellia sacra; CA, cornu ammonis; CAT, catalase; CE, coefficient of error; CV, coefficient of variation; DG, dentate gyrus; DNA, deoxyribonucleic acid; EMF, electromagnetic field; EBS, the group that is exposed to EMF and received a single daily gavage of BS (500 mg/kg/day) during 21 days; EEG, electroencephalogram; EFA, the group that is exposed to EMF and received a single daily gavage of folic acid (50 mg/kg/day) during 21 days; FA, folic acid; gr, granular layer; H2O2, hydrogen peroxide; MHz, Megahertz; ml, molecular layer; RF, radiofrequency; ROS, reactive oxygen specimens; SEM, standard error of the mean.
Collapse
Affiliation(s)
- Elfide Gizem Kivrak
- Department of Histology and Embryology, Medical School, Ondokuz Mayıs University, Samsun, Turkey
| | - Berrin Zuhal Altunkaynak
- Department of Histology and Embryology, Medical School, Ondokuz Mayıs University, Samsun, Turkey
| | - Isinsu Alkan
- Department of Histology and Embryology, Medical School, Ondokuz Mayıs University, Samsun, Turkey
| | - Kiymet Kubra Yurt
- Department of Histology and Embryology, Medical School, Ondokuz Mayıs University, Samsun, Turkey
| | - Adem Kocaman
- Department of Histology and Embryology, Medical School, Ondokuz Mayıs University, Samsun, Turkey
| | - Mehmet Emin Onger
- Department of Histology and Embryology, Medical School, Ondokuz Mayıs University, Samsun, Turkey
| |
Collapse
|
31
|
Yurttas C, Schmitz C, Turgut M, Strekalova T, Steinbusch HW. The olfactory bulbectomized rat model is not an appropriate model for studying depression based on morphological/stereological studies of the hippocampus. Brain Res Bull 2017; 134:128-135. [DOI: 10.1016/j.brainresbull.2017.07.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 07/07/2017] [Accepted: 07/10/2017] [Indexed: 12/18/2022]
|
32
|
Ghatei N, Nabavi AS, Toosi MHB, Azimian H, Homayoun M, Targhi RG, Haghir H. Evaluation of bax, bcl-2, p21 and p53 genes expression variations on cerebellum of BALB/c mice before and after birth under mobile phone radiation exposure. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2017; 20:1037-1043. [PMID: 29085599 PMCID: PMC5651457 DOI: 10.22038/ijbms.2017.9273] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 01/12/2017] [Indexed: 12/13/2022]
Abstract
OBJECTIVES The increasing rate of over using cell phones has been considerable in youths and pregnant women. We examined the effect of mobile phones radiation on genes expression variation on cerebellum of BALB/c mice before and after of the birth. MATERIALS AND METHODS In this study, a mobile phone jammer, which is an instrument to prevent receiving signals between cellular phones and base transceiver stations (two frequencies 900 and 1800 MHz) for exposure was used and twelve pregnant mice (BALB/c) divided into two groups (n=6), first group irradiated in pregnancy period (19th day), the second group did not irradiate in pregnancy period. After childbirth, offspring were classified into four groups (n=4): Group1: control, Group 2: B1 (Irradiated after birth), Group 3: B2 (Irradiated in pregnancy period and after birth), Group 4: B3 (Irradiated in pregnancy period). When maturity was completed (8-10 weeks old), mice were dissected and cerebellum was isolated. The expression level of bax, bcl-2, p21 and p53 genes examined by real-time reverse transcription polymerase chain reaction (Real-Time RT- PCR). RESULTS The data showed that mobile phone radio waves were ineffective on the expression level of bcl-2 and p53 genes) P>0.05(. Also gene expression level of bax decreased and gene expression level of p21 increased comparing to the control group (P<0.05). CONCLUSION From the obtained data it could be concluded that the mobile phone radiations did not induce apoptosis in cells of the cerebellum and the injured cells can be repaired by cell cycle arrest.
Collapse
Affiliation(s)
- Najmeh Ghatei
- Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ariane Sadr Nabavi
- Department of Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Hosein Azimian
- Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mansour Homayoun
- Department of Anatomy and Cell Biology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reza Ghasemnezhad Targhi
- Department of Radiation Biology, School of Allied, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Haghir
- Department of Anatomy and Cell Biology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
33
|
Eghlidospour M, Ghanbari A, Mortazavi SMJ, Azari H. Effects of radiofrequency exposure emitted from a GSM mobile phone on proliferation, differentiation, and apoptosis of neural stem cells. Anat Cell Biol 2017; 50:115-123. [PMID: 28713615 PMCID: PMC5509895 DOI: 10.5115/acb.2017.50.2.115] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 12/13/2016] [Accepted: 03/18/2017] [Indexed: 11/27/2022] Open
Abstract
Due to the importance of neural stem cells (NSCs) in plasticity of the nervous system and treating neurodegenerative diseases, the main goal of this study was to evaluate the effects of radiofrequency radiation emitted from a GSM 900-MHz mobile phone with different exposure duration on proliferation, differentiation and apoptosis of adult murine NSCs in vitro. We used neurosphere assay to evaluate NSCs proliferation, and immunofluorescence assay of neural cell markers to examine NSCs differentiation. We also employed alamarBlue and caspase 3 apoptosis assays to assess harmful effects of mobile phone on NSCs. Our results showed that the number and size of resulting neurospheres and also the percentage of cells differentiated into neurons decreased significantly with increasing exposure duration to GSM 900-MHz radiofrequency (RF)-electromagnetic field (EMF). In contrast, exposure to GSM 900-MHz RF-EMF at different durations did not influence cell viability and apoptosis of NSCs and also their astrocytic differentiation. It is concluded that accumulating dose of GSM 900-MHz RF-EMF might have devastating effects on NSCs proliferation and neurogenesis requiring more causations in terms of using mobile devices.
Collapse
Affiliation(s)
- Mahsa Eghlidospour
- Neural Stem Cell and Regenerative Neuroscience Laboratory, Department of Anatomical Sciences, Shiraz School of Medicine, Shiraz Stem Cell Institute, Shiraz University of Medical Sciences, Shiraz, Iran.,Ionizing and Non-ionizing Radiation Protection Research Center (INIRPRC), Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Medical Physics and Medical Engineering, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Ghanbari
- Department of Anatomical Sciences, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Seyyed Mohammad Javad Mortazavi
- Ionizing and Non-ionizing Radiation Protection Research Center (INIRPRC), Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Medical Physics and Medical Engineering, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hassan Azari
- Neural Stem Cell and Regenerative Neuroscience Laboratory, Department of Anatomical Sciences, Shiraz School of Medicine, Shiraz Stem Cell Institute, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
34
|
Deniz ÖG, Kıvrak EG, Kaplan AA, Altunkaynak BZ. Effects of folic acid on rat kidney exposed to 900 MHz electromagnetic radiation. J Microsc Ultrastruct 2017; 5:198-205. [PMID: 30023255 PMCID: PMC6025785 DOI: 10.1016/j.jmau.2017.06.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Revised: 05/29/2017] [Accepted: 06/15/2017] [Indexed: 01/29/2023] Open
Abstract
Because of increased use of cell phones, the purpose of this study was to investigation of the oxidative damage caused by electromagnetic radiation (EMR) emitted by cell phones and histological and morphometrical determination of the possible protective role of folic acid (FA) in preventing the detrimental effects of EMR on the kidney. Twenty-four adult male Wistar albino rats were divided into control (Cont), EMR, EMR + FA and FA groups, each containing six rats. The EMR and EMR + FA groups were exposed to EMR for 60 min a day over a period of 21 days, while no EMR exposure was applied to the Cont and FA groups. The source of the EMR was an EMR device which emits a digital signal producing 900-MHz frequency radiation. The generator connected to a one-monopole antenna was used in this study and the rats were placed in the plexiglass restrainer at an equal distance from the monopole antenna. Following the experimental period, and after tissue processing, a physical disector-Cavalieri method combination was applied to the sections. The mean volume of the cortex, medulla, proximal and distal tubules increased significantly in the EMR groups compared to the Cont group (p < 0.01). Contrarily, the total number of glomeruli in the EMR group decreased compared to the Cont group (p < 0.01). The protective effects of FA was observed in the kidney (p < 0.05). In conclusion, the 900-MHz EMR leads to kidney damage. FA may exhibit a protective effect against the adverse effects of EMR exposure in terms of the total number of glomeruli.
Collapse
Affiliation(s)
- Ömür Gülsüm Deniz
- Department of Histology and Embryology, Medical Faculty, Ondokuz Mayıs University, Samsun, 55139, Turkey
| | - Elfide Gizem Kıvrak
- Department of Histology and Embryology, Medical Faculty, Ondokuz Mayıs University, Samsun, 55139, Turkey
| | - Arife Ahsen Kaplan
- Department of Histology and Embryology, Medical Faculty, Ondokuz Mayıs University, Samsun, 55139, Turkey
| | - Berrin Zuhal Altunkaynak
- Department of Histology and Embryology, Medical Faculty, Ondokuz Mayıs University, Samsun, 55139, Turkey
| |
Collapse
|
35
|
Aslan A, İkinci A, Baş O, Sönmez OF, Kaya H, Odacı E. Long-term exposure to a continuous 900 MHz electromagnetic field disrupts cerebellar morphology in young adult male rats. Biotech Histochem 2017; 92:324-330. [DOI: 10.1080/10520295.2017.1310295] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- A Aslan
- Department of Physiology, Faculty of Medicine, Ordu University, Ordu
| | - A İkinci
- Department of Histology and Embryology, Faculty of Medicine, Karadeniz Technical University, Trabzon
| | - O Baş
- Department of Anatomy, Faculty of Medicine, Ordu University, Ordu
| | - OF Sönmez
- Department of Neurosurgery, Tepecik Education and Research Hospital, İzmir
| | - H Kaya
- Department of Electrical and Electronic Engineering, Faculty of Engineering, Karadeniz Technical University, Trabzon, Turkey
| | - E Odacı
- Department of Histology and Embryology, Faculty of Medicine, Karadeniz Technical University, Trabzon
| |
Collapse
|
36
|
Chen B, Wang J, Qi H, Zhang J, Chen S, Wang X. The specific absorption rate of tissues in rats exposed to electromagnetic plane waves in the frequency range of 0.05-5 GHz and SARwb in free-moving rats. AUSTRALASIAN PHYSICAL & ENGINEERING SCIENCES IN MEDICINE 2017; 40:21-28. [PMID: 28220402 DOI: 10.1007/s13246-017-0522-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 01/05/2017] [Indexed: 11/27/2022]
Abstract
As electromagnetic exposure experiments can only be performed on small animals, usually rats, research on the characteristics of specific absorption rate (SAR) distribution in the rat has received increasing interest. A series of calculations, which simulated the SAR in a male rat anatomical model exposed to electromagnetic plane waves ranging from 0.05 to 5 GHz with different incidence and polarization, were conducted. The whole-body-averaged SAR (SARwb) and the tissue-averaged SAR (SARavg) in 20 major tissues were determined. Results revealed that incidence has great impact on SAR in the rat at higher frequencies owing to the skin effect and the effect on SARavg in tissues is much more apparent than that on SARwb; while polarization plays an important role under lower frequencies. Not only the incidence, but also the polarization in the rat keeps changing when the rat is in free movement. Thus, this article discussed a convenient way to obtain relatively accurate SARwb in a free-moving rat.
Collapse
Affiliation(s)
- Bingxin Chen
- Department of Physics, East China Normal University, Shanghai, 200241, China
| | - Jiamin Wang
- Department of Physics, East China Normal University, Shanghai, 200241, China
| | - Hongxin Qi
- Department of Physics, East China Normal University, Shanghai, 200241, China
| | - Jie Zhang
- Department of Physics, East China Normal University, Shanghai, 200241, China
| | - Shude Chen
- Department of Physics, East China Normal University, Shanghai, 200241, China.,State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200062, China
| | - Xianghui Wang
- Department of Physics, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
37
|
Starkey SJ. Inaccurate official assessment of radiofrequency safety by the Advisory Group on Non-ionising Radiation. REVIEWS ON ENVIRONMENTAL HEALTH 2016; 31:493-503. [PMID: 27902455 DOI: 10.1515/reveh-2016-0060] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 10/16/2016] [Indexed: 06/06/2023]
Abstract
The Advisory Group on Non-ionising Radiation (AGNIR) 2012 report forms the basis of official advice on the safety of radiofrequency (RF) electromagnetic fields in the United Kingdom and has been relied upon by health protection agencies around the world. This review describes incorrect and misleading statements from within the report, omissions and conflict of interest, which make it unsuitable for health risk assessment. The executive summary and overall conclusions did not accurately reflect the scientific evidence available. Independence is needed from the International Commission on Non-Ionizing Radiation Protection (ICNIRP), the group that set the exposure guidelines being assessed. This conflict of interest critically needs to be addressed for the forthcoming World Health Organisation (WHO) Environmental Health Criteria Monograph on Radiofrequency Fields. Decision makers, organisations and individuals require accurate information about the safety of RF electromagnetic signals if they are to be able to fulfil their safeguarding responsibilities and protect those for whom they have legal responsibility.
Collapse
|
38
|
Effects of pre- and postnatal exposure to 1880–1900 MHz DECT base radiation on development in the rat. Reprod Toxicol 2016; 65:248-262. [DOI: 10.1016/j.reprotox.2016.08.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Revised: 08/02/2016] [Accepted: 08/15/2016] [Indexed: 01/05/2023]
|
39
|
Kerimoğlu G, Aslan A, Baş O, Çolakoğlu S, Odacı E. Adverse effects in lumbar spinal cord morphology and tissue biochemistry in Sprague Dawley male rats following exposure to a continuous 1-h a day 900-MHz electromagnetic field throughout adolescence. J Chem Neuroanat 2016; 78:125-130. [PMID: 27650207 DOI: 10.1016/j.jchemneu.2016.09.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 09/07/2016] [Accepted: 09/15/2016] [Indexed: 01/25/2023]
Abstract
Cell phones, an indispensable element of daily life, are today used at almost addictive levels by adolescents. Adolescents are therefore becoming increasingly exposed to the effect of the electromagnetic field (EMF) emitted by cell phones. The purpose of this study was to investigate the effect of exposure to a 900-MHz EMF throughout adolescence on the lumbar spinal cord using histopathological, immunohistochemical and biochemical techniques. Twenty-four Sprague Dawley (28.3-43.9g) aged 21days were included in the study. These were divided equally into three groups - control (CG), sham (SG) and electromagnetic (ELMAG). No procedure was performed on the CG rats until the end of the study. SG and ELMAG rats were kept inside an EMF cage (EMFC) for 1h a day every day at the same time between postnatal days 22 and 60. During this time, ELMAG rats were exposed to the effect of a 900-MHz EMF, while the SG rats were kept in the EMFC without being exposed to EMF. At the end of the study, the lumbar regions of the spinal cords of all rats in all groups were extracted. Half of each extracted tissue was stored at -80°C for biochemical analysis, while the other half was used for histopathological and immunohistochemical analyses. In terms of histopathology, a lumbar spinal cord with normal morphology was observed in the other groups, while morphological irregularity in gray matter, increased vacuolization and infiltration of white matter into gray matter were pronounced in the ELMAG rats. The cytoplasm of some neurons in the gray matter was shrunken and stained dark, and vacuoles were observed in the cytoplasms. The apoptotic index of glia cells and neurons were significantly higher in ELMAG compared to the other groups. Biochemical analysis revealed a significantly increased MDA value in ELMAG compared to CG, while SOD and GSH levels decreased significantly. In conclusion, our study results suggest that continuous exposure to a 900-MHz EMF for 1h a day through all stages of adolescence can result in impairments at both morphological and biochemical levels in the lumbar region spinal cords of Sprague Dawley rats.
Collapse
Affiliation(s)
- Gökçen Kerimoğlu
- Department of Histology and Embryology, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Ali Aslan
- Department of Physiology, Faculty of Medicine, Ordu University, Ordu, Turkey
| | - Orhan Baş
- Department of Anatomy, Faculty of Medicine, Ordu University, Ordu, Turkey
| | - Serdar Çolakoğlu
- Department of Anatomy, Faculty of Medicine, Düzce University, Düzce, Turkey
| | - Ersan Odacı
- Department of Histology and Embryology, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey.
| |
Collapse
|
40
|
Maternal exposure to a continuous 900-MHz electromagnetic field provokes neuronal loss and pathological changes in cerebellum of 32-day-old female rat offspring. J Chem Neuroanat 2016; 75:105-10. [DOI: 10.1016/j.jchemneu.2015.09.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Revised: 09/08/2015] [Accepted: 09/09/2015] [Indexed: 01/27/2023]
|
41
|
Altunkaynak BZ, Altun G, Yahyazadeh A, Kaplan AA, Deniz OG, Türkmen AP, Önger ME, Kaplan S. Different methods for evaluating the effects of microwave radiation exposure on the nervous system. J Chem Neuroanat 2016; 75:62-9. [DOI: 10.1016/j.jchemneu.2015.11.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Revised: 11/16/2015] [Accepted: 11/16/2015] [Indexed: 01/13/2023]
|
42
|
Kerimoğlu G, Mercantepe T, Erol HS, Turgut A, Kaya H, Çolakoğlu S, Odacı E. Effects of long-term exposure to 900 megahertz electromagnetic field on heart morphology and biochemistry of male adolescent rats. Biotech Histochem 2016; 91:445-454. [PMID: 27715326 DOI: 10.1080/10520295.2016.1216165] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The pathological effects of exposure to an electromagnetic field (EMF) during adolescence may be greater than those in adulthood. We investigated the effects of exposure to 900 MHz EMF during adolescence on male adult rats. Twenty-four 21-day-old male rats were divided into three equal groups: control (Cont-Gr), sham (Shm-Gr) and EMF-exposed (EMF-Gr). EMF-Gr rats were placed in an EMF exposure cage (Plexiglas cage) for 1 h/day between postnatal days 21 and 59 and exposed to 900 MHz EMF. Shm-Gr rats were placed inside the Plexiglas cage under the same conditions and for the same duration, but were not exposed to EMF. All animals were sacrificed on postnatal day 60 and the hearts were extracted for microscopic and biochemical analyses. Biochemical analysis showed increased levels of malondialdehyde and superoxide dismutase, and reduced glutathione and catalase levels in EMF-Gr compared to Cont-Gr animals. Hematoxylin and eosin stained sections from EMF-Gr animals exhibited structural changes and capillary congestion in the myocardium. The percentage of apoptotic myocardial cells in EMF-Gr was higher than in either Shm-Gr or Cont-Gr animals. Transmission electron microscopy of myocardial cells of EMF-Gr animals showed altered structure of Z bands, decreased myofilaments and pronounced vacuolization. We found that exposure of male rats to 900 MHz EMF for 1 h/day during adolescence caused oxidative stress, which caused structural alteration of male adolescent rat heart tissue.
Collapse
Affiliation(s)
- G Kerimoğlu
- a Department of Histology and Embryology , Faculty of Medicine, Karadeniz Technical University , Trabzon , Turkey
| | - T Mercantepe
- b Department of Histology and Embryology , Faculty of Medicine, Recep Tayyip Erdoğan University , Rize , Turkey
| | - H S Erol
- c Department of Biochemistry , Faculty of Veterinary, Atatürk University , Erzurum , Turkey
| | - A Turgut
- c Department of Biochemistry , Faculty of Veterinary, Atatürk University , Erzurum , Turkey
| | - H Kaya
- d Department of Electrical and Electronic Engineering , Faculty of Engineering, Karadeniz Technical University , Trabzon , Turkey
| | - S Çolakoğlu
- e Department of Anatomy , Faculty of Medicine, Düzce University , Düzce , Turkey
| | - E Odacı
- a Department of Histology and Embryology , Faculty of Medicine, Karadeniz Technical University , Trabzon , Turkey
| |
Collapse
|
43
|
Yilmaz A, Tumkaya L, Akyildiz K, Kalkan Y, Bodur AF, Sargin F, Efe H, Uydu HA, Yazici ZA. Lasting hepatotoxic effects of prenatal mobile phone exposure. J Matern Fetal Neonatal Med 2016; 30:1355-1359. [DOI: 10.1080/14767058.2016.1214124] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
44
|
Mugunthan N, Shanmugasamy K, Anbalagan J, Rajanarayanan S, Meenachi S. Effects of Long Term Exposure of 900-1800 MHz Radiation Emitted from 2G Mobile Phone on Mice Hippocampus- A Histomorphometric Study. J Clin Diagn Res 2016; 10:AF01-6. [PMID: 27656427 DOI: 10.7860/jcdr/2016/21630.8368] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 07/06/2016] [Indexed: 12/15/2022]
Abstract
INTRODUCTION The advancement in the telecommunications technology with multi-functional added features in mobile phone, attracts more users of all age group. It is alarming to note that, the mobile phone use has increased amongst children and they are exposed to potentially harmful radiofrequency radiation in their lifetime. AIM To investigate the long term exposure of 900 to 1800 MHz radiations emitted from 2G mobile phone in mice hippocampus at histomorphometric level. MATERIALS AND METHODS With due approval from institutional animal ethics committee, 36 mice were exposed to 2G mobile phone radiation, 48 minutes per day for a period of 30-180 days. The control group was kept under similar conditions without 2G exposure. Mice were sacrificed and the brain was removed from the first month to six months period. Brain was removed from the cranial cavity and hippocampus region was dissected out carefully and processed for routine histological study. Random serial sections were analysed under microscope for histomorphometric changes. For statistical analysis, independent t-test was used for comparing control and 2G exposed groups. RESULTS The mean density of neurons in the hippocampus regions CA1, CA2 and DGDB from first to sixth month was significantly lower in the 2G exposed groups; however, in CA3 and DGVB, the 2G exposed mice showed significantly higher density of neurons. The mean nuclear diameter of neurons in the hippocampus region of CA1, CA2, CA3, DGDB and DGVB from first to sixth months showed lower nuclear diameter in 2G exposed mice. CONCLUSION The long term exposure to 900-1800 MHz frequency radiations emitted from 2G mobile phone could cause significantly reduced neuron density and decreased nuclear diameter in the hippocampus neurons of mice.
Collapse
Affiliation(s)
- Narayanaperumal Mugunthan
- Associate Professor, Department of Anatomy, Mahatma Gandhi Medical College and Research Institute , Puducherry, Tamil Nadu, India
| | - Kathirvelu Shanmugasamy
- Assistant Professor, Department of Pathology, Mahatma Gandhi Medical College and Research Institute , Puducherry, Tamil Nadu, India
| | - Jayaram Anbalagan
- Professor, Department of Anatomy, Mahatma Gandhi Medical College and Research Institute , Puducherry, Tamil Nadu, India
| | - Swamynathan Rajanarayanan
- Professor and Head, Department of Bio-technology, St. Michael College of Engineering and Technology , Kalayarkoil, Tamil Nadu, India
| | - Swamynathan Meenachi
- Directorate of Public Health (DPH), Deputy Director of Health Services , Paramakudi HUD, Tamil Nadu, India
| |
Collapse
|
45
|
Kerimoğlu G, Hancı H, Baş O, Aslan A, Erol HS, Turgut A, Kaya H, Çankaya S, Sönmez OF, Odacı E. Pernicious effects of long-term, continuous 900-MHz electromagnetic field throughout adolescence on hippocampus morphology, biochemistry and pyramidal neuron numbers in 60-day-old Sprague Dawley male rats. J Chem Neuroanat 2016; 77:169-175. [PMID: 27430379 DOI: 10.1016/j.jchemneu.2016.07.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Revised: 07/11/2016] [Accepted: 07/11/2016] [Indexed: 01/03/2023]
Abstract
The central nervous system (CNS) begins developing in the intrauterine period, a process that continues until adulthood. Contact with chemical substances, drugs or environmental agents such as electromagnetic field (EMF) during adolescence therefore has the potential to disturb the development of the morphological architecture of components of the CNS (such as the hippocampus). The hippocampus is essential to such diverse functions as memory acquisition and integration and spatial maneuvering. EMF can result in severe damage to both the morphology of the hippocampus and its principal functions during adolescence. Although children and adolescents undergo greater exposure to EMF than adults, the information currently available regarding the effects of exposure to EMF during this period is as yet insufficient. This study investigated the 60-day-old male rat hippocampus following exposure to 900 megahertz (MHz) EMF throughout the adolescent period using stereological, histopathological and biochemical analysis techniques. Eighteen male Sprague Dawley rats aged 21days were assigned into control, sham and EMF groups on a random basis. No procedure was performed on the control group rats. The EMF group (EMFGr) was exposed to a 900-MHz EMF for 1h daily from beginning to end of adolescence. The sham group rats were held in the EMF cage but were not exposed to EMF. All rats were sacrificed at 60days of age. Their brains were extracted and halved. The left hemispheres were set aside for biochemical analyses and the right hemispheres were subjected to stereological and histopathological evaluation. Histopathological examination revealed increased numbers of pyknotic neurons with black or dark blue cytoplasm on EMFGr slides stained with cresyl violet. Stereological analyses revealed fewer pyramidal neurons in EMFGr than in the other two groups. Biochemical analyses showed an increase in malondialdehyde and glutathione levels, but a decrease in catalase levels in EMFGr. Our results indicate that oxidative stress-related morphological damage and pyramidal neuron loss may be observed in the rat hippocampus following exposure to 900-MHz EMF throughout the adolescent period.
Collapse
Affiliation(s)
- Gökçen Kerimoğlu
- Department of Histology and Embryology, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Hatice Hancı
- Department of Histology and Embryology, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Orhan Baş
- Department of Anatomy, Faculty of Medicine, Ordu University, Ordu, Turkey
| | - Ali Aslan
- Department of Physiology, Faculty of Medicine, Ordu University, Ordu, Turkey
| | - Hüseyin Serkan Erol
- Department of Biochemistry, Faculty of Veterinary, Atatürk University, Erzurum, Turkey
| | - Alpgiray Turgut
- Department of Biochemistry, Faculty of Veterinary, Atatürk University, Erzurum, Turkey
| | - Haydar Kaya
- Department of Electrical and Electronic Engineering, Faculty of Engineering, Karadeniz Technical University, Trabzon, Turkey
| | - Soner Çankaya
- Department of Biostatistics and Medical Informatics, Faculty of Medicine, Ordu University, Ordu, Turkey
| | - Osman Fikret Sönmez
- Department of Neurosurgery, Tepecik Education and Research Hospital, İzmir, Turkey
| | - Ersan Odacı
- Department of Histology and Embryology, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey.
| |
Collapse
|
46
|
Türedi S, Hancı H, Çolakoğlu S, Kaya H, Odacı E. Disruption of the ovarian follicle reservoir of prepubertal rats following prenatal exposure to a continuous 900-MHz electromagnetic field. Int J Radiat Biol 2016; 92:329-37. [PMID: 27007703 DOI: 10.3109/09553002.2016.1152415] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The effects on human health of electromagnetic field (EMF) have begun to be seriously questioned with the entry into daily life of devices establishing EMF, such as cell phones, wireless fidelity, and masts. Recent studies have reported that exposure to EMF, particularly during pregnancy, affects the developing embryo/fetus. The aim of this study was therefore to examine the effects of exposure to continuous 900-Megahertz (MHz) EMF applied in the prenatal period on ovarian follicle development and oocyte differentiation. Six pregnant Sprague Dawley rats were divided equally into a non-exposed control group (CNGr) and a group (EMFGr) exposed to continuous 900-MHz EMF for 1 h daily, at the same time every day, on days 13-21 of pregnancy. New groups were established from pups obtained from both groups after birth. One group consisting of female pups from CNGr rats was adopted as newborn CNGr (New-CNGr, n = 6), and another group consisting of female pups from EMFGr rats was adopted as newborn EMFGr (New-EMFGr, n = 6). No procedure was performed on New-CNGr or New-EMFGr rats. All rat pups were sacrificed on the postnatal 34th day, and their ovarian tissues were removed. Follicle count, histological injury scoring and morphological assessment with apoptotic index criteria were performed with sections obtained following routine histological tissue preparation. Follicle count results revealed a statistically significant decrease in primordial and tertiary follicle numbers in New-EMFGr compared to New-CNGr (p < 0.05), while atretic follicle numbers and apoptotic index levels increased significantly (p < 0.05). Histopathological examination revealed severe follicle degeneration, vasocongestion, a low level of increased stromal fibrotic tissue and cytoplasmic vacuolization in granulosa cell in New-EMFGr. Prenatal exposure to continuous 900-MHz EMF for 1 h each day from days 13-21 led to a decrease in ovarian follicle reservoirs in female rat pups at the beginning of the prepubertal period.
Collapse
Affiliation(s)
- Sibel Türedi
- a Department of Histology and Embryology, Faculty of Medicine , Karadeniz Technical University , Trabzon
| | - Hatice Hancı
- a Department of Histology and Embryology, Faculty of Medicine , Karadeniz Technical University , Trabzon
| | - Serdar Çolakoğlu
- b Department of Anatomy, Faculty of Medicine , Düzce University , Düzce
| | - Haydar Kaya
- c Department of Electrical and Electronic Engineering, Faculty of Engineering , Karadeniz Technical University , Trabzon , Turkey
| | - Ersan Odacı
- a Department of Histology and Embryology, Faculty of Medicine , Karadeniz Technical University , Trabzon
| |
Collapse
|
47
|
İkinci A, Mercantepe T, Unal D, Erol HS, Şahin A, Aslan A, Baş O, Erdem H, Sönmez OF, Kaya H, Odacı E. Morphological and antioxidant impairments in the spinal cord of male offspring rats following exposure to a continuous 900MHz electromagnetic field during early and mid-adolescence. J Chem Neuroanat 2015; 75:99-104. [PMID: 26708410 DOI: 10.1016/j.jchemneu.2015.11.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 11/09/2015] [Accepted: 11/10/2015] [Indexed: 12/21/2022]
Abstract
The effects of devices emitting electromagnetic field (EMF) on human health have become the subject of intense research among scientists due to the rapid increase in their use. Children and adolescents are particularly attracted to the use of devices emitting EMF, such as mobile phones. The aim of this study was therefore to investigate changes in the spinal cords of male rat pups exposed to the effect of 900MHz EMF. The study began with 24 Sprague-Dawley male rats aged 3 weeks. Three groups containing equal numbers of rats were established-control group (CG), sham group (SG) and EMF group (EMFG). EMFG rats were placed inside an EMF cage every day between postnatal days (PD) 21 and 46 and exposed to the effect of 900MHz EMF for 1h. SG rats were kept in the EMF cage for 1h without being exposed to the effect of EMF. At the end of the study, the spinal cords in the upper thoracic region of all rats were removed. Tissues were collected for biochemistry, light microscopy (LM) and transmission electron microscopic (TEM) examination. Biochemistry results revealed significantly increased malondialdehyde and glutathione levels in EMFG compared to CG and SG, while SG and EMFG catalase and superoxide dismutase levels were significantly higher than those in CG. In EMFG, LM revealed atrophy in the spinal cord, vacuolization, myelin thickening and irregularities in the perikarya. TEM revealed marked loss of myelin sheath integrity and invagination into the axon and broad vacuoles in axoplasm. The study results show that biochemical alterations and pathological changes may occur in the spinal cords of male rats following exposure to 900MHz EMF for 1h a day on PD 21-46.
Collapse
Affiliation(s)
- Ayşe İkinci
- Department of Histology and Embryology, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Tolga Mercantepe
- Department of Histology and Embryology, Faculty of Medicine, Recep Tayyip Erdoğan University, Rize, Turkey
| | - Deniz Unal
- Department of Histology and Embryology, Faculty of Medicine, Atatürk University, Erzurum, Turkey
| | - Hüseyin Serkan Erol
- Department of Biochemistry, Faculty of Veterinary, Atatürk University, Erzurum, Turkey
| | - Arzu Şahin
- Department of Physiology, Faculty of Medicine, Ordu University, Ordu, Turkey
| | - Ali Aslan
- Department of Physiology, Faculty of Medicine, Ordu University, Ordu, Turkey
| | - Orhan Baş
- Department of Anatomy, Faculty of Medicine, Ordu University, Ordu, Turkey
| | - Havva Erdem
- Department of Pathology, Faculty of Medicine, Ordu University, Ordu, Turkey
| | - Osman Fikret Sönmez
- Department of Neurosurgery, Tepecik Education and Research Hospital, İzmir, Turkey
| | - Haydar Kaya
- Department of Electrical and Electronic Engineering, Faculty of Engineering, Karadeniz Technical University, Trabzon, Turkey
| | - Ersan Odacı
- Department of Histology and Embryology, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey.
| |
Collapse
|
48
|
Odacı E, Hancı H, Yuluğ E, Türedi S, Aliyazıcıoğlu Y, Kaya H, Çolakoğlu S. Effects of prenatal exposure to a 900 MHz electromagnetic field on 60-day-old rat testis and epididymal sperm quality. Biotech Histochem 2015; 91:9-19. [DOI: 10.3109/10520295.2015.1060356] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
49
|
Narayanan SN, Kumar RS, Karun KM, Nayak SB, Bhat PG. Possible cause for altered spatial cognition of prepubescent rats exposed to chronic radiofrequency electromagnetic radiation. Metab Brain Dis 2015; 30:1193-206. [PMID: 26033310 DOI: 10.1007/s11011-015-9689-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 05/22/2015] [Indexed: 12/11/2022]
Abstract
The effects of chronic and repeated radiofrequency electromagnetic radiation (RFEMR) exposure on spatial cognition and hippocampal architecture were investigated in prepubescent rats. Four weeks old male Wistar rats were exposed to RF-EMR (900 MHz; SAR-1.15 W/kg with peak power density of 146.60 μW/cm(2)) for 1 h/day, for 28 days. Followed by this, spatial cognition was evaluated by Morris water maze test. To evaluate the hippocampal morphology; H&E staining, cresyl violet staining, and Golgi-Cox staining were performed on hippocampal sections. CA3 pyramidal neuron morphology and surviving neuron count (in CA3 region) were studied using H&E and cresyl violet stained sections. Dendritic arborization pattern of CA3 pyramidal neuron was investigated by concentric circle method. Progressive learning abilities were found to be decreased in RF-EMR exposed rats. Memory retention test performed 24 h after the last training revealed minor spatial memory deficit in RF-EMR exposed group. However, RF-EMR exposed rats exhibited poor spatial memory retention when tested 48 h after the final trial. Hirano bodies and Granulovacuolar bodies were absent in the CA3 pyramidal neurons of different groups studied. Nevertheless, RF-EMR exposure affected the viable cell count in dorsal hippocampal CA3 region. RF-EMR exposure influenced dendritic arborization pattern of both apical and basal dendritic trees in RF-EMR exposed rats. Structural changes found in the hippocampus of RF-EMR exposed rats could be one of the possible reasons for altered cognition.
Collapse
Affiliation(s)
- Sareesh Naduvil Narayanan
- Department of Physiology, Melaka Manipal Medical College (Manipal Campus), Manipal University, Manipal, 576104, India,
| | | | | | | | | |
Collapse
|
50
|
Şahin A, Aslan A, Baş O, İkinci A, Özyılmaz C, Fikret Sönmez O, Çolakoğlu S, Odacı E. Deleterious impacts of a 900-MHz electromagnetic field on hippocampal pyramidal neurons of 8-week-old Sprague Dawley male rats. Brain Res 2015; 1624:232-238. [DOI: 10.1016/j.brainres.2015.07.042] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 07/22/2015] [Accepted: 07/24/2015] [Indexed: 01/02/2023]
|