1
|
Skalny AV, Aschner M, Santamaria A, Filippini T, Gritsenko VA, Tizabi Y, Zhang F, Guo X, Rocha JBT, Tinkov AA. The Role of Gut Microbiota in the Neuroprotective Effects of Selenium in Alzheimer's Disease. Mol Neurobiol 2025; 62:1675-1692. [PMID: 39012446 DOI: 10.1007/s12035-024-04343-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 07/02/2024] [Indexed: 07/17/2024]
Abstract
The objective of the present review was to provide a timely update on the molecular mechanisms underlying the beneficial role of Se in Alzheimer's disease pathogenesis, and discuss the potential role of gut microbiota modulation in this neuroprotective effect. The existing data demonstrate that selenoproteins P, M, S, R, as well as glutathione peroxidases and thioredoxin reductases are involved in regulation of Aβ formation and aggregation, tau phosphorylation and neurofibrillary tangles formation, as well as mitigate the neurotoxic effects of Aβ and phospho-tau. Correspondingly, supplementation with various forms of Se in cellular and animal models of AD was shown to reduce Aβ formation, tau phosphorylation, reverse the decline in brain antioxidant levels, inhibit neuronal oxidative stress and proinflammatory cytokine production, improve synaptic plasticity and neurogenesis, altogether resulting in improved cognitive functions. In addition, most recent findings demonstrate that these neuroprotective effects are associated with Se-induced modulation of gut microbiota. In animal models of AD, Se supplementation was shown to improve gut microbiota biodiversity with a trend to increased relative abundance of Lactobacillus, Bifidobacterium, and Desulfivibrio, while reducing that of Lachnospiracea_NK4A136, Rikenella, and Helicobacter. Moreover, the relative abundance of Se-affected taxa was significantly associated with Aβ accumulation, tau phosphorylation, neuronal oxidative stress, and neuroinflammation, indicative of the potential role of gut microbiota to mediate the neuroprotective effects of Se in AD. Hypothetically, modulation of gut microbiota along with Se supplementation may improve the efficiency of the latter in AD, although further detailed laboratory and clinical studies are required.
Collapse
Affiliation(s)
- Anatoly V Skalny
- Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, Sovetskaya Str. 14, Yaroslavl, 150000, Russia
- Laboratory of Molecular Dietetics, IM Sechenov First Moscow State Medical University (Sechenov University), Bolshaya Pirogovskaya St., 2-4, Moscow, 119146, Russia
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Abel Santamaria
- Facultad de Ciencias, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
- Laboratorio de Nanotecnología y Nanomedicina, Departamento de Atención a la Salud, Universidad Autónoma Metropolitana-Xochimilco, 04960, Mexico City, Mexico
| | - Tommaso Filippini
- Environmental, Genetic and Nutritional Epidemiology Research Center (CREAGEN), Department of Biomedical, Metabolic and Neural Sciences, Medical School, University of Modena and Reggio Emilia, Modena, Italy
- School of Public Health, University of California Berkeley, Berkeley, CA, USA
| | - Viktor A Gritsenko
- Institute of Cellular and Intracellular Symbiosis, Russian Academy of Sciences, Orenburg, 460000, Russia
| | - Yousef Tizabi
- Department of Pharmacology, Howard University College of Medicine, Washington, DC, 20059, USA
| | - Feng Zhang
- Key Laboratory of Trace Elements and Endemic Diseases, Health Science Center, School of Public Health, National Health and Family Planning Commission, Xi'an Jiaotong University, Xi'an 710061, China
| | - Xiong Guo
- Key Laboratory of Trace Elements and Endemic Diseases, Health Science Center, School of Public Health, National Health and Family Planning Commission, Xi'an Jiaotong University, Xi'an 710061, China
| | - Joao B T Rocha
- Departamento de Bioquímica E Biologia Molecular, CCNE, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Alexey A Tinkov
- Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, Sovetskaya Str. 14, Yaroslavl, 150000, Russia.
- Laboratory of Molecular Dietetics, IM Sechenov First Moscow State Medical University (Sechenov University), Bolshaya Pirogovskaya St., 2-4, Moscow, 119146, Russia.
| |
Collapse
|
2
|
Vahid ZF, Eskandani M, Dadashi H, Vandghanooni S, Rashidi MR. Recent advances in potential enzymes and their therapeutic inhibitors for the treatment of Alzheimer's disease. Heliyon 2024; 10:e40756. [PMID: 39717593 PMCID: PMC11664286 DOI: 10.1016/j.heliyon.2024.e40756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 11/23/2024] [Accepted: 11/26/2024] [Indexed: 12/25/2024] Open
Abstract
Alzheimer's disease (AD), a chronic neurodegenerative disease, is clinically characterized by loss of memory and learning ability among other neurological deficits. Amyloid plaques, hyperphosphorylated tau protein, and neurofibrillary tangles involve in AD etiology. Meanwhile, enzymes and their inhibitors have become the focus of research in AD treatment. In this review, the molecular mechanisms involved in the pathogenesis of AD were overviewed and various enzymes such as acetylcholinesterase (AChE), butyrylcholinesterase (BuChE), β-secretase, γ-secretase, monoamine oxidase (MAO), and receptor of advanced glycation end products (RAGE) were highlighted as potential targets for AD treatment. Several hybrid molecules with essential substructures derived from various chemotypes have demonstrated desired pharmacological activity. It is envisioned that the development of new drugs that inhibit enzymes involved in AD is a future trend in the management of the disease.
Collapse
Affiliation(s)
| | - Morteza Eskandani
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Dadashi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Somayeh Vandghanooni
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad-Reza Rashidi
- Medicinal Chemistry Department, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
3
|
de la Monte SM, Tong M. Dysregulated mTOR networks in experimental sporadic Alzheimer's disease. Front Cell Neurosci 2024; 18:1432359. [PMID: 39386180 PMCID: PMC11461251 DOI: 10.3389/fncel.2024.1432359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 08/29/2024] [Indexed: 10/12/2024] Open
Abstract
Background Beyond the signature amyloid-beta plaques and neurofibrillary tangles, Alzheimer's disease (AD) has been shown to exhibit dysregulated metabolic signaling through insulin and insulin-like growth factor (IGF) networks that crosstalk with the mechanistic target of rapamycin (mTOR). Its broad impact on brain structure and function suggests that mTOR is likely an important therapeutic target for AD. Objective This study characterizes temporal lobe (TL) mTOR signaling abnormalities in a rat model of sporadic AD neurodegeneration. Methods Long Evans rats were given intracerebroventricular injections of streptozotocin (ic-STZ) or saline (control), and 4 weeks later, they were administered neurobehavioral tests followed by terminal harvesting of the TLs for histopathological study and measurement of AD biomarkers, neuroinflammatory/oxidative stress markers, and total and phosphorylated insulin/IGF-1-Akt-mTOR pathway signaling molecules. Results Rats treated with ic-STZ exhibited significantly impaired performance on Rotarod (RR) and Morris Water Maze (MWM) tests, brain atrophy, TL and hippocampal neuronal and white matter degeneration, and elevated TL pTau, AβPP, Aβ, AChE, 4-HNE, and GAPDH and reduced ubiquitin, IL-2, IL-6, and IFN-γ immunoreactivities. In addition, ic-STZ reduced TL pY1135/1136-IGF-1R, Akt, PTEN, pS380-PTEN, pS2448-mTOR, p70S6K, pT412-p70S6K, p/T-pT412-p70S6K, p/T-Rictor, and p/T-Raptor. Conclusion Experimental ic-STZ-induced sporadic AD-type neurodegeneration with neurobehavioral dysfunctions associated with inhibition of mTOR signaling networks linked to energy metabolism, plasticity, and white matter integrity.
Collapse
Affiliation(s)
- Suzanne M. de la Monte
- Departments of Medicine, Pathology and Laboratory Medicine, Neurology, and Neurosurgery, Rhode Island Hospital, Women and Infants Hospital, The Alpert Medical School at Brown University, Providence, RI, United States
| | - Ming Tong
- Department of Medicine, Rhode Island Hospital, The Alpert Medical School at Brown University, Providence, RI, United States
| |
Collapse
|
4
|
Gonçalves LDS, Rusch G, Alves AG, Krüger LD, Paim MP, Martins CC, da Motta KP, Neto JSS, Luchese C, Wilhelm EA, Brüning CA, Bortolatto CF. Acute 2-phenyl-3-(phenylselanyl)benzofuran treatment reverses the neurobehavioral alterations induced by sleep deprivation in mice. Biochem Pharmacol 2024; 226:116339. [PMID: 38848781 DOI: 10.1016/j.bcp.2024.116339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 05/05/2024] [Accepted: 06/04/2024] [Indexed: 06/09/2024]
Abstract
Sleep is a fundamental state for maintaining the organism homeostasis. Disruptions in sleep patterns predispose to the appearance of memory impairments and mental disorders, including depression. Recent pre-clinical studies have highlighted the antidepressant-like properties of the synthetic compound 2-phenyl-3-(phenylselanyl)benzofuran (SeBZF1). To further investigate the neuromodulatory effects of SeBZF1, this study aimed to assess its therapeutic efficacy in ameliorating neurobehavioral impairments induced by sleep deprivation (SD) in mice. For this purpose, a method known as multiple platforms over water was used to induce rapid eye movement (REM) SD. Two hours after acute SD (24 h), male Swiss mice received a single treatment of SeBZF1 (5 mg/kg, intragastric route) or fluoxetine (a positive control, 20 mg/kg, intraperitoneal route). Subsequently, behavioral tests were conducted to assess spontaneous motor function (open-field test), depressive-like behavior (tail suspension test), and memory deficits (Y-maze test). Brain structures were utilized to evaluate oxidative stress markers, monoamine oxidase (MAO) and acetylcholinesterase (AChE) activities. Our findings revealed that SD animals displayed depressive-like behavior and memory impairments, which were reverted by SeBZF1 and fluoxetine treatments. SeBZF1 also reverted the increase in lipoperoxidation levels and glutathione peroxidase activity in the pre-frontal cortex in mice exposed to SD. Besides, the increase in hippocampal AChE activity induced by SD was overturned by SeBZF1. Lastly, cortical MAO-B activity was reestablished by SeBZF1 in mice that underwent SD. Based on the main findings of this study, it can be inferred that the compound SeBZF1 reverses the neurobehavioral alterations induced by sleep deprivation in male Swiss mice.
Collapse
Affiliation(s)
- Luciane da Silva Gonçalves
- Programa de Pós-graduação em Bioquímica e Bioprospecção, Laboratório de Bioquímica e Neurofarmacologia Molecular (LABIONEM), Universidade Federal de Pelotas (UFPel), CEP 96010-900, Pelotas, RS, Brasil
| | - Gabriela Rusch
- Programa de Pós-graduação em Bioquímica e Bioprospecção, Laboratório de Bioquímica e Neurofarmacologia Molecular (LABIONEM), Universidade Federal de Pelotas (UFPel), CEP 96010-900, Pelotas, RS, Brasil
| | - Amália Gonçalves Alves
- Programa de Pós-graduação em Bioquímica e Bioprospecção, Laboratório de Bioquímica e Neurofarmacologia Molecular (LABIONEM), Universidade Federal de Pelotas (UFPel), CEP 96010-900, Pelotas, RS, Brasil
| | - Letícia Devantier Krüger
- Programa de Pós-graduação em Bioquímica e Bioprospecção, Laboratório de Bioquímica e Neurofarmacologia Molecular (LABIONEM), Universidade Federal de Pelotas (UFPel), CEP 96010-900, Pelotas, RS, Brasil
| | - Mariana Parron Paim
- Programa de Pós-graduação em Bioquímica e Bioprospecção, Laboratório de Bioquímica e Neurofarmacologia Molecular (LABIONEM), Universidade Federal de Pelotas (UFPel), CEP 96010-900, Pelotas, RS, Brasil
| | - Carolina Cristóvão Martins
- Laboratório de Farmacologia Bioquímica (LaFarBio), Centro de Ciências Químicas, Farmacêuticas e de Alimentos (CCQFA), Universidade Federal de Pelotas (UFPel), CEP 96010-900, Pelotas, RS, Brasil
| | - Ketlyn Pereira da Motta
- Laboratório de Farmacologia Bioquímica (LaFarBio), Centro de Ciências Químicas, Farmacêuticas e de Alimentos (CCQFA), Universidade Federal de Pelotas (UFPel), CEP 96010-900, Pelotas, RS, Brasil
| | | | - Cristiane Luchese
- Laboratório de Farmacologia Bioquímica (LaFarBio), Centro de Ciências Químicas, Farmacêuticas e de Alimentos (CCQFA), Universidade Federal de Pelotas (UFPel), CEP 96010-900, Pelotas, RS, Brasil
| | - Ethel Antunes Wilhelm
- Laboratório de Farmacologia Bioquímica (LaFarBio), Centro de Ciências Químicas, Farmacêuticas e de Alimentos (CCQFA), Universidade Federal de Pelotas (UFPel), CEP 96010-900, Pelotas, RS, Brasil
| | - César Augusto Brüning
- Programa de Pós-graduação em Bioquímica e Bioprospecção, Laboratório de Bioquímica e Neurofarmacologia Molecular (LABIONEM), Universidade Federal de Pelotas (UFPel), CEP 96010-900, Pelotas, RS, Brasil.
| | - Cristiani Folharini Bortolatto
- Programa de Pós-graduação em Bioquímica e Bioprospecção, Laboratório de Bioquímica e Neurofarmacologia Molecular (LABIONEM), Universidade Federal de Pelotas (UFPel), CEP 96010-900, Pelotas, RS, Brasil.
| |
Collapse
|
5
|
Pourhadi M, Zali H, Ghasemi R, Faizi M, Mojab F, Soufi Zomorrod M. Restoring Synaptic Function: How Intranasal Delivery of 3D-Cultured hUSSC Exosomes Improve Learning and Memory Deficits in Alzheimer's Disease. Mol Neurobiol 2024; 61:3724-3741. [PMID: 38010560 DOI: 10.1007/s12035-023-03733-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 10/20/2023] [Indexed: 11/29/2023]
Abstract
Memory problems are often the first signs of cognitive impairment related to Alzheimer's disease (AD), and stem cells and stem cell-derived exosomes (EXOs) have been studied for their therapeutic potential to improve the disease signs. While many studies have shown the anti-inflammatory and immunomodulatory effects of stem cells and exosomes on improving memory in different AD models, there is still insufficient data to determine how they modulate neural plasticity to enhance spatial memory and learning ability. Therefore, we conducted a study to investigate the effects of exosomes derived from 3D-cultured human Unrestricted Somatic Stem Cells (hUSSCs) on spatial memory and neuroplasticity markers in a sporadic rat model of AD. Using male Wistar rats induced by intracerebral ventricle injection of streptozotocin, we demonstrated that intranasal administration of hUSSC-derived exosomes could decrease Aβ accumulation and improve learning and memory in the Morris water maze test. We also observed an increase in the expression of pre-synaptic and post-synaptic molecules involved in neuronal plasticity, including NMDAR1, integrin β1, synaptophysin, pPKCα, and GAP-43, in the hippocampus. Our findings suggest that intranasal administration of exosomes can ameliorate spatial learning and memory deficits in rats, at least in part, by increasing the expression of neuroplasticity proteins. These results may encourage researchers to further investigate the molecular pathways involved in memory improvement after stem cell and exosome therapy, with the goal of increasing the efficacy and safety of exosome-based treatments for AD.
Collapse
Affiliation(s)
- Masoumeh Pourhadi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hakimeh Zali
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Rasoul Ghasemi
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mehrdad Faizi
- Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Faraz Mojab
- Department of Pharmacognosy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mina Soufi Zomorrod
- Department of Hematology and Cell Therapy, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
6
|
Dubey H, Ray A, Dubey A, Gulati K. S-Nitrosoglutathione Attenuates Oxidative Stress and Improves Retention Memory Dysfunctions in Intra-Cerebroventricular-Streptozotocin Rat Model of Sporadic Alzheimer's Disease via Activation of BDNF and Nuclear Factor Erythroid 2-Related Factor-2 Antioxidant Signaling Pathway. Neuropsychobiology 2024; 83:101-113. [PMID: 38744261 DOI: 10.1159/000538348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 03/05/2024] [Indexed: 05/16/2024]
Abstract
INTRODUCTION The brain-derived neurotrophic factor (BDNF) and transcription nuclear factor erythroid 2-related factor-2 (NRF-2) play an important role in Alzheimer's disease (AD). However, the interactive involvement of BDNF and NRF-2 in respect to antioxidant mechanisms in different parts of the AD brain is still unclear. Considering the above condition, used S-nitrosoglutathione (GSNO) to examine whether it modulates the BDNF and NRF-2 levels to activate signaling pathway to promote antioxidant levels in AD brains. METHOD AD was induced by intracerebroventricular infusion of streptozotocin (ICV-STZ, 3 mg/kg) in Wistar rats. The effect of GSNO was analyzed by evaluating the retention of memory in months 1, 2, and 3. After the behavior study, rats were sacrificed and accessed the amyloid beta (Aβ)-40, Aβ42, glutathione (GSH), BDNF, and NRF-2 levels in the hippocampus, cortex, and amygdala tissue. RESULTS Pretreatment with GSNO (50 µg/kg/intraperitoneal/day) restored the BDNF, and NRF-2 levels toward normalcy as compared with ICV-STZ + saline-treated animals. Also, GSNO treatment reversed the oxidative stress and increased the GSH levels toward normal levels. Further, reduced Aβ levels and neuronal loss in different brain regions. As a result, GSNO treatment improved the cognitive deficits in ICV-STZ-treated rats. CONCLUSION The results showed that endogenous nitric oxide donor GSNO improved the cognitive deficits and ICV-STZ-induced AD pathological conditions, possibly via attenuating the oxidative stress. Hence, the above finding supported that GSNO treatment may activate BDNF and NRF-2 antioxidant signaling pathways in the AD brain to normalize oxidative stress, which is the main causative factor for ICV-STZ-induced AD pathogenesis.
Collapse
Affiliation(s)
- Harikesh Dubey
- Departments of Pharmacology, Vallabhbhai Patel Chest Institute, University of Delhi, New Delhi, India
- The Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan, USA
| | - Arunabha Ray
- Departments of Pharmacology, Vallabhbhai Patel Chest Institute, University of Delhi, New Delhi, India
- Departments of Pharmacology, Hamdard Institute of Medical Sciences and Research (HIMSR), Hamdard University, New Delhi, India
| | - Anamika Dubey
- Departments of Pharmacology, Vallabhbhai Patel Chest Institute, University of Delhi, New Delhi, India
| | - Kavita Gulati
- Departments of Pharmacology, Vallabhbhai Patel Chest Institute, University of Delhi, New Delhi, India
| |
Collapse
|
7
|
Borikar SP, Sonawane DS, Tapre DN, Jain SP. Exploring the neuropharmacological potential of empagliflozin on nootropic and scopolamine-induced amnesic model of Alzheimer's like conditions in rats. Int J Neurosci 2024:1-13. [PMID: 38626288 DOI: 10.1080/00207454.2024.2342973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 04/09/2024] [Indexed: 04/18/2024]
Abstract
BACKGROUND Alzheimer's disease (AD) is one of the most challenging and prevalent neurodegenerative disorder globally with a rising prevalence, characterized by progressive cognitive decline, memory loss, and behavioural changes. Current research aims to determine the nootropic and anti-amnesic effect of Empagliflozin (EMPA) against scopolamine-induced amnesia in rats, by modulating the cholinergic and N-Methyl D-Aspartate (NMDA) receptors. METHODS Rats were treated once daily with an EMPA (5 and 10 mg/kg) and donepezil (2.5 mg/kg) for successive 26 days. During the final 13 days of treatment, a daily injection of scopolamine (1 mg/kg) was administered to induce cognitive deficits. RESULTS EMPA was found to be significantly reduce escape latency, increase time spent in the target quadrant, and enhanced the number of target zone crossings in the Morris water maze (MWM) test, indicating improved spatial memory. Moreover, EMPA increased the recognition index and the number of spontaneous alternations in the novel object recognition (NOR) and Y-maze tests, respectively, suggesting enhanced memory. DISCUSSION Interestingly doses of EMPA (5 mg/kg, 10 mg/kg) exhibited memory-enhancing effects even in the absence of scopolamine-induced impairment. Biochemical analysis revealed that EMPA elevated the levels of glutathione (GSH), a potent antioxidant, while decreasing lipid peroxidation (LPO) activity and increasing catalase (CAT) levels, indicating its antioxidative properties. Interestingly molecular docking studies revealed that EMPA fit perfectly in the active sites of M1 muscarinic acetylcholine (mACh) and NMDA receptors. These results indicated that the nootropic and antiamnesic effect of EMPA is possibly mediated via M1 and NMDA receptors and might be a remedy for AD.
Collapse
Affiliation(s)
- Sachin P Borikar
- Department of Pharmacology, Rajarshi Shahu College of Pharmacy, Buldana, Maharashtra, India
| | - Dipak S Sonawane
- Department of Pharmacology, Rajarshi Shahu College of Pharmacy, Buldana, Maharashtra, India
| | - Deepali N Tapre
- Department of Pharmaceutical Chemistry, Rajarshi Shahu College of Pharmacy, Buldana, Maharashtra, India
| | - Shirish P Jain
- Department of Pharmacology, Rajarshi Shahu College of Pharmacy, Buldana, Maharashtra, India
| |
Collapse
|
8
|
Dubey R, Sathiyanarayanan L, Sankaran S, Arulmozhi S. Nootropic effect of Indian Royal Jelly against okadaic acid induced rat model of Alzheimer's disease: Inhibition of neuroinflammation and acetylcholineesterase. J Tradit Complement Med 2024; 14:300-311. [PMID: 38707922 PMCID: PMC11068996 DOI: 10.1016/j.jtcme.2023.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 10/21/2023] [Accepted: 11/11/2023] [Indexed: 05/07/2024] Open
Abstract
Background Royal jelly is an anti-inflammatory, antioxidant, and neuroprotective bee product. There are several sources for royal jelly and one of them is Indian Royal Jelly (IRJ). However, the neuroprotective actions of IRJ and the underlying molecular mechanisms involved are not well known. Objective To evaluate the neuroprotective effect of IRJ in the okadaic acid (OKA)-induced Alzheimer's disease (AD) model in rats. Methods In male Wistar rats, OKA was intracerebroventricularly (ICV) administered, and from day 7, they were treated orally with IRJ or memantine for 21 days. Spatial and recognition learning and memory were evaluated from days 27-34; employing the Morris water maze (MWM) and the novel object recognition tests (NORT), respectively. In vitro biochemical measurements were taken of the cholinergic system and oxidative stress markers. In silico docking was used to find the role of tau protein kinase and phosphatase in the pharmacological action. Results In OKA-induced rats, IRJ decreased the escape latency and path length in MWM and increased the exploration time for novel objects and the discrimination index in NORT. ICV-OKA rats had higher free radicals and cytokines that caused inflammation and their level of free radical scavengers was back to normal with IRJ treatment. IRJ increased the level of acetylcholine and inhibited acetylcholinesterase. Moreover, the in silico docking study revealed the strong binding affinity of 10-hydroxy-2-decenoic acid (10-HDA), a bioactive constituent of IR, to the tau protein kinases and phosphatases. Conclusion IRJ may serve as a nootropic agent in the treatment of dementia, and owing to its capacity to prevent oxidative stress and neuroinflammation, and increase cholinergic tone; it has the potential to be explored as a novel strategy for the treatment of dementia and AD. More studies may be needed to develop 10-HDA as a novel drug entity for AD.
Collapse
Affiliation(s)
- Rahul Dubey
- Department of Pharmaceutical Chemistry, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be University), Pune, Maharashtra, India
- Department of Pharmacy, Government Polytechnic, Ratnagiri, Maharashtra, India
| | - L. Sathiyanarayanan
- Department of Pharmaceutical Chemistry, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be University), Pune, Maharashtra, India
| | - Sandeep Sankaran
- Department of Quality Assurance Techniques, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be University), Pune, Maharashtra, India
| | - S. Arulmozhi
- Department of Pharmacology, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be University), Pune, Maharashtra, India
| |
Collapse
|
9
|
Kadian M, Saini N, Khera A, Kumar A. Neuroprotective mechanism of trans,trans-Farnesol in an ICV-STZ-induced rat model of Alzheimer's pathology. Inflammopharmacology 2024; 32:1545-1573. [PMID: 38308793 DOI: 10.1007/s10787-023-01413-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 12/13/2023] [Indexed: 02/05/2024]
Abstract
BACKGROUND Alzheimer's disease (AD) is a prominent cause of dementia, resulting in neurodegeneration and memory impairment. This condition imposes a considerable public health burden on both patients and their families due to the patients' functional impairments as well as the psychological and financial constraints. It has been well demonstrated that its aetiology involves proteinopathy, mitochondriopathies, and enhanced reactive oxygen species (ROS) generation, which are some of the key features of AD brains that further result in oxidative stress, excitotoxicity, autophagy, and mitochondrial dysfunction. OBJECTIVE The current investigation was created with the aim of elucidating the neurological defence mechanism of trans,trans-Farnesol (TF) against intracerebroventricular-streptozotocin (ICV-STZ)-induced Alzheimer-like symptoms and related pathologies in rodents. MATERIALS AND METHODS The current investigation involved male SD rats receiving TF (25-100 mg/kg, per oral) consecutively for 21 days in ICV-STZ-treated animals. An in silico study was carried out to explore the possible interaction between TF and NADH dehydrogenase and succinate dehydrogenase. Further, various behavioural (Morris water maze and novel object recognition test), biochemical (oxidants and anti-oxidant markers), activities of mitochondrial enzyme complexes and acetylcholinesterase (AChE), pro-inflammatory (tumor necrosis factor-alpha; TNF-α) levels, and histopathological studies were evaluated in specific brain regions. RESULTS Rats administered ICV-STZ followed by treatment with TF (25, 50, and 100 mg/kg) for 21 days had significantly better mental performance (reduced escape latency to access platform, extended time spent in target quadrant, and improved differential index) in the Morris water maze test and new object recognition test models when compared to control (ICV-STZ)-treated groups. Further, TF treatment significantly restored redox proportion, anti-oxidant levels, regained mitochondrial capacities, attenuated altered AChE action, levels of TNF-α, and histopathological alterations in certain brain regions in comparison with control. In in silico analysis, TF caused greater interaction with NADH dehydrogenase and succinate dehydrogenase. CONCLUSION The current work demonstrates the neuroprotective ability of TF in an experimental model with AD-like pathologies. The study further suggests that the neuroprotective impacts of TF may be related to its effects on TNF-α levels, oxidative stress pathways, and mitochondrial complex capabilities.
Collapse
Affiliation(s)
- Monika Kadian
- Pharmacology Division, University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Study (UGC-CAS), Panjab University, Chandigarh, 160014, India
| | - Neetu Saini
- Pharmacology Division, University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Study (UGC-CAS), Panjab University, Chandigarh, 160014, India
| | - Alka Khera
- Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Anil Kumar
- Pharmacology Division, University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Study (UGC-CAS), Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
10
|
Du B, Chen K, Wang W, Lei P. Targeting Metals in Alzheimer's Disease: An Update. J Alzheimers Dis 2024; 101:S141-S154. [PMID: 39422951 DOI: 10.3233/jad-240140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
One pathological feature of Alzheimer's disease (AD) is the dysregulated metal ions, e.g., zinc, copper, and iron in the affected brain regions. The dysregulation of metal homeostasis may cause neurotoxicity and directly addressing these dysregulated metals through metal chelation or mitigating the downstream neurotoxicity stands as a pivotal strategy for AD therapy. This review aims to provide an up-to-date comprehensive overview of the application of metal chelators and drugs targeting metal-related neurotoxicity, such as antioxidants (ferroptotic inhibitors), in the context of AD treatment. It encompasses an exploration of their pharmacological effects, clinical research progress, and potential underlying mechanisms.
Collapse
Affiliation(s)
- Bin Du
- Department of Neurology and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Kang Chen
- Department of Neurology and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Weiwei Wang
- Department of Neurology and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Peng Lei
- Department of Neurology and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
11
|
Sood P, Singh V, Shri R. Morus Alba Fruit Extract and its Fractions Ameliorate Streptozotocin Induced Cognitive Deficit in Mice via Modulating Oxidative and Cholinergic Systems. Neurochem Res 2024; 49:52-65. [PMID: 37597050 DOI: 10.1007/s11064-023-04009-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/21/2023]
Abstract
Increased oxidative stress and acetylcholinesterase (AChE) activity are key pathological characters contributing to the memory disorders. Thus, drugs targeting both oxidative stress and AChE are being explored for the management of cognitive dysfunction. Morus alba fruits (commonly consumed for its high nutritious value) are known to have antioxidant and AChE inhibitory effects. However, the role of Morus alba fruits in the management of memory disorders has not reported yet. This investigation was conducted to assess the antioxidant and AChE inhibitory potential of Morus alba fruit extracts in-vitro and to identify the components responsible for such effects. Further, the obtained bioactive component was studied for possible memory improvement effects against streptozotocin (STZ) induced dementia. To isolate the bioactive component in-vitro DPPH and AChE assays guided fractionation was performed. Memory functions in mice were determined using Morris Water Maze test while brain biochemical parameters were measured to understand the mechanism of action. In-vitro assays revealed strong AChE and DPPH inhibitory potential of methanol extract (ME), therefore, it was further fractionated. Among various fractions obtained, ethyl-acetate fraction (EAF) was found to possess marked AChE and DPPH inhibitory activities. On subsequent fractionation of EAF, bioactivity of obtained sub-fractions was found to be inferior to EAF. Further, both ME and EAF improved STZ (intracerebroventricular) induced cognitive dysfunction in animals by restoring endogenous antioxidant status (superoxide dismutase and reduced glutathione) and reducing thiobarbituric acid reactive species and nitric oxide levels along with brain AChE and myeloperoxidase activity. TLC densitometric studies showed appreciable levels of phenolic acids and quercetin in both EAF and ME. It can be concluded that Morus alba fruit extract has the ability to modulate cholinergic and oxidative system due to presence of phenolic and flavonoid compounds and hence, could aid in the management of memory disorders.
Collapse
Affiliation(s)
- Parul Sood
- Chitkara School of Pharmacy, Chitkara University, Solan, Himachal Pradesh, India
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, India
| | - Varinder Singh
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, Punjab, India.
| | - Richa Shri
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, India.
| |
Collapse
|
12
|
Perluigi M, Di Domenico F, Butterfield DA. Oxidative damage in neurodegeneration: roles in the pathogenesis and progression of Alzheimer disease. Physiol Rev 2024; 104:103-197. [PMID: 37843394 PMCID: PMC11281823 DOI: 10.1152/physrev.00030.2022] [Citation(s) in RCA: 39] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 03/30/2023] [Accepted: 05/24/2023] [Indexed: 10/17/2023] Open
Abstract
Alzheimer disease (AD) is associated with multiple etiologies and pathological mechanisms, among which oxidative stress (OS) appears as a major determinant. Intriguingly, OS arises in various pathways regulating brain functions, and it seems to link different hypotheses and mechanisms of AD neuropathology with high fidelity. The brain is particularly vulnerable to oxidative damage, mainly because of its unique lipid composition, resulting in an amplified cascade of redox reactions that target several cellular components/functions ultimately leading to neurodegeneration. The present review highlights the "OS hypothesis of AD," including amyloid beta-peptide-associated mechanisms, the role of lipid and protein oxidation unraveled by redox proteomics, and the antioxidant strategies that have been investigated to modulate the progression of AD. Collected studies from our groups and others have contributed to unraveling the close relationships between perturbation of redox homeostasis in the brain and AD neuropathology by elucidating redox-regulated events potentially involved in both the pathogenesis and progression of AD. However, the complexity of AD pathological mechanisms requires an in-depth understanding of several major intracellular pathways affecting redox homeostasis and relevant for brain functions. This understanding is crucial to developing pharmacological strategies targeting OS-mediated toxicity that may potentially contribute to slow AD progression as well as improve the quality of life of persons with this severe dementing disorder.
Collapse
Affiliation(s)
- Marzia Perluigi
- Department of Biochemical Sciences "A. Rossi Fanelli," Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - Fabio Di Domenico
- Department of Biochemical Sciences "A. Rossi Fanelli," Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - D Allan Butterfield
- Department of Chemistry and Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, United States
| |
Collapse
|
13
|
Hosseininia M, Rostami F, Delphi L, Ghasemzadeh Z, Kouhkan F, Rezayof A. Memory impairment was ameliorated by corticolimbic microinjections of arachidonylcyclopropylamide (ACPA) and miRNA-regulated lentiviral particles in a streptozotocin-induced Alzheimer's rat model. Exp Neurol 2023; 370:114560. [PMID: 37783412 DOI: 10.1016/j.expneurol.2023.114560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 09/16/2023] [Accepted: 09/29/2023] [Indexed: 10/04/2023]
Abstract
The present study aimed to investigate the effect of corticolimbic cannabinoid CB1 receptors activity on memory impairment in the intracerebroventricular (ICV)-streptozotocin (STZ) animal model of Alzheimer's like-disease. This study also assessed whether the corticolimbic overexpression of miRNA-137 or -let-7a could increase the endocannabinoids by inhibiting the monoglyceride lipase (MAGL) to ameliorate STZ response. The results showed that ICV microinjection of STZ (3 mg/kg/10 μl) impaired passive avoidance memory retrieval. The chronic microinjection of arachidonylcyclopropylamide (ACPA; 10 ng/0.5 μl), a selective cannabinoid CB1 receptor agonist, into the hippocampal CA1 region, the central amygdala (CeA) or the medial prefrontal cortex (mPFC) ameliorated the amnesic effect of ICV-STZ. Intra-CA1 or -CeA microinjection of ACPA alone did not affect memory retrieval, while its microinjection into the mPFC impaired memory formation. Based on bioinformatics analysis and verification of the MAGL gene, miRNA-137 and -let-7a were chosen to target the expression levels of MAGL in the corticolimbic regions. The chronic corticolimbic microinjection of lentiviral particles containing miRNA-137 or -let-7a ameliorated ICV-STZ-induced memory impairment. The high transfection efficiency was determined for each virus using comparing fluorescent and conventional vision. Corticolimbic overexpression of miRNA-137 or -let-7a decreased the MAGL gene expression that encodes the MAGL enzyme to increase the endocannabinoids. Thus, among the molecular mechanisms and signaling pathways involved in the pathophysiology of Alzheimer's disease (AD), it is worth mentioning the role of endocannabinoids in the corticolimbic regions. CB1 receptor agonists, miRNA-137 or -let-7a, may be potential therapeutic targets against cognitive decline in AD.
Collapse
Affiliation(s)
- Mohammad Hosseininia
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Fatemeh Rostami
- Stem Cell Technology Research Center, P.O. Box: 15856-36473, 15856-36473 Tehran, Iran
| | - Ladan Delphi
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Zahra Ghasemzadeh
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Fatemeh Kouhkan
- Stem Cell Technology Research Center, P.O. Box: 15856-36473, 15856-36473 Tehran, Iran.
| | - Ameneh Rezayof
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran.
| |
Collapse
|
14
|
Lee DY, Im SC, Kang NY, Kim K. Analysis of Effect of Intensity of Aerobic Exercise on Cognitive and Motor Functions and Neurotrophic Factor Expression Patterns in an Alzheimer's Disease Rat Model. J Pers Med 2023; 13:1622. [PMID: 38003937 PMCID: PMC10672300 DOI: 10.3390/jpm13111622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/13/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023] Open
Abstract
The effect of aerobic exercise at different intensities on Alzheimer's disease (AD) still remains unclear. We investigated the effect of aerobic exercise at different intensities on cognitive and motor functions and neurotrophic factor expression. Thirty-two AD-induced rats were randomly assigned to control (CG), low-intensity (Group I), medium-intensity (Group II), and high-intensity (Group III) exercise groups. Each group, except for the CG, performed aerobic exercise for 20 min a day five times a week. After performing aerobic exercise for 4 weeks, their cognitive and motor functions and neurotrophic factor expression patterns were analyzed and compared between the groups. All variables of cognitive and motor functions and neurotrophic factor expression were significantly improved in Groups I, II, and III compared to those in the CG (p < 0.05). Among the neurotrophic factors, brain-derived neurotrophic factor (BDNF) expression was significantly improved in Group III compared to that in Groups I and II (p < 0.05). In the intra-group comparison of cognitive and motor functions, no significant difference was observed in CG, but the aerobic exercise groups showed improvements. Only Group III showed a significant improvement in the time it took to find eight food items accurately (p < 0.05). Aerobic exercise improved the cognitive and motor functions and neurotrophic factor expression patterns in the AD-induced rat model, with high-intensity aerobic exercise having greater effects on cognitive function and BDNF expression.
Collapse
Affiliation(s)
| | | | | | - Kyoung Kim
- Department of Physical Therapy, College of Rehabilitation Science, Daegu University, Gyeongsan 38453, Republic of Korea; (D.-Y.L.); (S.-C.I.); (N.-Y.K.)
| |
Collapse
|
15
|
Zhou W, Tong D, Tian D, Yu Y, Huang L, Zhang W, Yu Y, Lu L, Zhang X, Pan W, Shen J, Shi W, Liu G. Exposure to Polystyrene Nanoplastics Led to Learning and Memory Deficits in Zebrafish by Inducing Oxidative Damage and Aggravating Brain Aging. Adv Healthc Mater 2023; 12:e2301799. [PMID: 37611966 DOI: 10.1002/adhm.202301799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/16/2023] [Indexed: 08/25/2023]
Abstract
Nanoplastics (NPs) may pass through the blood-brain barrier, giving rise to serious concerns about their potential toxicity to the brain. In this study, the effects of NPs exposure on learning and memory, the primary cognitive functions of the brain, are assessed in zebrafish with classic T-maze exploration tasks. Additionally, to reveal potential affecting mechanisms, the impacts of NPs exposure on brain aging, oxidative damage, energy provision, and the cell cycle are evaluated. The results demonstrate that NP-exposed zebrafish takes significantly longer for their first entry and spends markedly less time in the reward zone in the T-maze task, indicating the occurrence of learning and memory deficits. Moreover, higher levels of aging markers (β-galactosidase and lipofuscin) are detected in the brains of NP-exposed fish. Along with the accumulation of reactive free radicals, NP-exposed zebrafish suffer significant levels of brain oxidative damage. Furthermore, lower levels of Adenosine triphosphate (ATP) and cyclin-dependent kinase 2 and higher levels of p53 are observed in the brains of NP-exposed zebrafish, suggesting that NPs exposure also results in a shortage of energy supply and an arrestment of the cell cycle. These findings suggest that NPs exposure may pose a severe threat to brain health, which deserves closer attention.
Collapse
Affiliation(s)
- Weishang Zhou
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Difei Tong
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Dandan Tian
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Yingying Yu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Lin Huang
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Weixia Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Yihan Yu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Lingzheng Lu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Xunyi Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Wangqi Pan
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Jiawei Shen
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Wei Shi
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Guangxu Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| |
Collapse
|
16
|
Alves SS, de Oliveira JAC, Lazarini-Lopes W, Servilha-Menezes G, Grigório-de-Sant'Ana M, Del Vecchio F, Mazzei RF, Sousa Almeida S, da Silva Junior RMP, Garcia-Cairasco N. Audiogenic Seizures in the Streptozotocin-Induced Rat Alzheimer's Disease Model. J Alzheimers Dis 2023:JAD230153. [PMID: 37393501 DOI: 10.3233/jad-230153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is a neurodegenerative and progressive disorder with no cure and constant failures in clinical trials. The main AD hallmarks are amyloid-β (Aβ) plaques, neurofibrillary tangles, and neurodegeneration. However, many other events have been implicated in AD pathogenesis. Epilepsy is a common comorbidity of AD and there is important evidence indicating a bidirectional link between these two disorders. Some studies suggest that disturbed insulin signaling might play an important role in this connection. OBJECTIVE To understand the effects of neuronal insulin resistance in the AD-epilepsy link. METHODS We submitted the streptozotocin (STZ) induced rat AD Model (icv-STZ AD) to an acute acoustic stimulus (AS), a known trigger of seizures. We also assessed animals' performance in the memory test, the Morris water maze and the neuronal activity (c-Fos protein) induced by a single audiogenic seizure in regions that express high levels of insulin receptors. RESULTS We identified significant memory impairment and seizures in 71.43% of all icv-STZ/AS rats, in contrast to 22.22% of the vehicle group. After seizures, icv-STZ/AS rats presented higher number of c-Fos immunopositive cells in hippocampal, cortical, and hypothalamic regions. CONCLUSION STZ may facilitate seizure generation and propagation by impairment of neuronal function, especially in regions that express high levels of insulin receptors. The data presented here indicate that the icv-STZ AD model might have implications not only for AD, but also for epilepsy. Finally, impaired insulin signaling might be one of the mechanisms by which AD presents a bidirectional connection to epilepsy.
Collapse
Affiliation(s)
- Suélen Santos Alves
- Department of Neurosciences and Behavioral Sciences, Ribeirão Preto Medical School - University of São Paulo (FMRP-USP), São Paulo, Brazil
| | | | - Willian Lazarini-Lopes
- Department of Pharmacology, Ribeirão Preto Medical School - University of São Paulo (FMRP-USP), São Paulo, Brazil
| | - Gabriel Servilha-Menezes
- Department of Physiology, Ribeirão Preto Medical School - University of São Paulo (FMRP-USP), São Paulo, Brazil
| | | | - Flavio Del Vecchio
- Department of Physiology, Ribeirão Preto Medical School - University of São Paulo (FMRP-USP), São Paulo, Brazil
| | - Rodrigo Focosi Mazzei
- Department of Psychology, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto - University of São Paulo (FFCLRP-USP), São Paulo, Brazil
| | - Sebastião Sousa Almeida
- Department of Psychology, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto - University of São Paulo (FFCLRP-USP), São Paulo, Brazil
| | | | - Norberto Garcia-Cairasco
- Department of Neurosciences and Behavioral Sciences, Ribeirão Preto Medical School - University of São Paulo (FMRP-USP), São Paulo, Brazil
- Department of Physiology, Ribeirão Preto Medical School - University of São Paulo (FMRP-USP), São Paulo, Brazil
| |
Collapse
|
17
|
Ramírez-Acosta S, Huertas-Abril PV, Selma-Royo M, Prieto-Álamo MJ, Collado MC, Abril N, García-Barrera T. The role of selenium in shaping mice brain metabolome and selenoproteome through the gut-brain axis by combining metabolomics, metallomics, gene expression and amplicon sequencing. J Nutr Biochem 2023; 117:109323. [PMID: 36958417 DOI: 10.1016/j.jnutbio.2023.109323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 02/17/2023] [Accepted: 03/16/2023] [Indexed: 03/25/2023]
Abstract
Selenium (Se) is a trace element crucial for human health. Recently, the impact of Se supplementation on gut microbiota has been pointed out as well as its influence on the expression of certain selenoproteins and gut metabolites. This study aims to elucidate the link between Se supplementation, brain selenoproteins and brain metabolome as well as the possible connection with the gut-brain axis. To this end, an in vivo study with 40 BALB/c mice was carried out. The study included conventional (n=20) and mice model with microbiota depleted by antibiotics (n=20) under a regular or Se supplemented diet. Brain selenoproteome was determined by a transcriptomic/gene expression profile, while brain metabolome and gut microbiota profiles were accomplished by untargeted metabolomics and amplicon sequencing, respectively. The total content of Se in brain was also determined. The selenoproteins genes Dio and Gpx isoenzymes, SelenoH, SelenoI, SelenoT, SelenoV and SelenoW and 31 metabolites were significantly altered in the brain after Se supplementation in conventional mice, while 11 selenoproteins and 26 metabolites were altered in microbiota depleted mice. The main altered brain metabolites were related to glyoxylate and dicarboxylate metabolism, amino acid metabolism, and gut microbiota that have been previously related with the gut-brain axis (e.g., members of Lachnospiraceae and Ruminococcaceae families). Moreover, specific associations were determined between brain selenoproteome and metabolome, which correlated with the same bacteria, suggesting an intertwined mechanism. Our results demonstrated the effect of Se on brain metabolome through specific selenoproteins gene expression and gut microbiota.
Collapse
Affiliation(s)
- Sara Ramírez-Acosta
- Research Center of Natural Resources, Health and the Environment (RENSMA). Department of Chemistry, Faculty of Experimental Sciences, University of Huelva, Fuerzas Armadas Ave., 21007, Huelva, Spain
| | - Paula V Huertas-Abril
- Department of Biochemistry and Molecular Biology, University of Córdoba, Campus de Rabanales, Edificio Severo Ochoa, E-14071, Córdoba, Spain
| | - Marta Selma-Royo
- Institute of Agrochemistry and Food Technology (IATA-CSIC), Department of Biotechnology, Agustin Escardino 7. 46980 Paterna, Valencia, Spain
| | - Maria J Prieto-Álamo
- Department of Biochemistry and Molecular Biology, University of Córdoba, Campus de Rabanales, Edificio Severo Ochoa, E-14071, Córdoba, Spain
| | - M Carmen Collado
- Institute of Agrochemistry and Food Technology (IATA-CSIC), Department of Biotechnology, Agustin Escardino 7. 46980 Paterna, Valencia, Spain
| | - Nieves Abril
- Department of Biochemistry and Molecular Biology, University of Córdoba, Campus de Rabanales, Edificio Severo Ochoa, E-14071, Córdoba, Spain
| | - Tamara García-Barrera
- Research Center of Natural Resources, Health and the Environment (RENSMA). Department of Chemistry, Faculty of Experimental Sciences, University of Huelva, Fuerzas Armadas Ave., 21007, Huelva, Spain.
| |
Collapse
|
18
|
Zhang ZH, Peng JY, Chen YB, Wang C, Chen C, Song GL. Different Effects and Mechanisms of Selenium Compounds in Improving Pathology in Alzheimer’s Disease. Antioxidants (Basel) 2023; 12:antiox12030702. [PMID: 36978950 PMCID: PMC10045564 DOI: 10.3390/antiox12030702] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 03/16/2023] Open
Abstract
Owing to the strong antioxidant capacity of selenium (Se) in vivo, a variety of Se compounds have been shown to have great potential for improving the main pathologies and cognitive impairment in Alzheimer’s disease (AD) models. However, the differences in the anti-AD effects and mechanisms of different Se compounds are still unclear. Theoretically, the absorption and metabolism of different forms of Se in the body vary, which directly determines the diversification of downstream regulatory pathways. In this study, low doses of Se-methylselenocysteine (SMC), selenomethionine (SeM), or sodium selenate (SeNa) were administered to triple transgenic AD (3× Tg-AD) mice for short time periods. AD pathology, activities of selenoenzymes, and metabolic profiles in the brain were studied to explore the similarities and differences in the anti-AD effects and mechanisms of the three Se compounds. We found that all of these Se compounds significantly increased Se levels and antioxidant capacity, regulated amino acid metabolism, and ameliorated synaptic deficits, thus improving the cognitive capacity of AD mice. Importantly, SMC preferentially increased the expression and activity of thioredoxin reductase and reduced tau phosphorylation by inhibiting glycogen synthase kinase-3 beta (GSK-3β) activity. Glutathione peroxidase 1 (GPx1), the selenoenzyme most affected by SeM, decreased amyloid beta production and improved mitochondrial function. SeNa improved methionine sulfoxide reductase B1 (MsrB1) expression, reflected in AD pathology as promoting the expression of synaptic proteins and restoring synaptic deficits. Herein, we reveal the differences and mechanisms by which different Se compounds improve multiple pathologies of AD and provide novel insights into the targeted administration of Se-containing drugs in the treatment of AD.
Collapse
Affiliation(s)
- Zhong-Hao Zhang
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
- Shenzhen Bay Laboratory, Shenzhen 518118, China
| | - Jia-Ying Peng
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Yu-Bin Chen
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Chao Wang
- Chemical Analysis & Physical Testing Institute, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Chen Chen
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Guo-Li Song
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
- Shenzhen Bay Laboratory, Shenzhen 518118, China
- Shenzhen-Hong Kong Institute of Brain Science—Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
- Correspondence:
| |
Collapse
|
19
|
Varesi A, Campagnoli LIM, Carrara A, Pola I, Floris E, Ricevuti G, Chirumbolo S, Pascale A. Non-Enzymatic Antioxidants against Alzheimer's Disease: Prevention, Diagnosis and Therapy. Antioxidants (Basel) 2023; 12:180. [PMID: 36671042 PMCID: PMC9855271 DOI: 10.3390/antiox12010180] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/06/2023] [Accepted: 01/08/2023] [Indexed: 01/13/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by progressive memory loss and cognitive decline. Although substantial research has been conducted to elucidate the complex pathophysiology of AD, the therapeutic approach still has limited efficacy in clinical practice. Oxidative stress (OS) has been established as an early driver of several age-related diseases, including neurodegeneration. In AD, increased levels of reactive oxygen species mediate neuronal lipid, protein, and nucleic acid peroxidation, mitochondrial dysfunction, synaptic damage, and inflammation. Thus, the identification of novel antioxidant molecules capable of detecting, preventing, and counteracting AD onset and progression is of the utmost importance. However, although several studies have been published, comprehensive and up-to-date overviews of the principal anti-AD agents harboring antioxidant properties remain scarce. In this narrative review, we summarize the role of vitamins, minerals, flavonoids, non-flavonoids, mitochondria-targeting molecules, organosulfur compounds, and carotenoids as non-enzymatic antioxidants with AD diagnostic, preventative, and therapeutic potential, thereby offering insights into the relationship between OS and neurodegeneration.
Collapse
Affiliation(s)
- Angelica Varesi
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy
| | | | - Adelaide Carrara
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy
| | - Ilaria Pola
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy
| | - Elena Floris
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy
| | - Giovanni Ricevuti
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy
| | - Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37129 Verona, Italy
| | - Alessia Pascale
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
20
|
Mani R, Sha Sulthana A, Muthusamy G, Elangovan N. Progress in the development of naturally derived active metabolites-based drugs: Potential therapeutics for Alzheimer's disease. Biotechnol Appl Biochem 2022; 69:2713-2732. [PMID: 35067971 DOI: 10.1002/bab.2317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 01/03/2022] [Indexed: 12/27/2022]
Abstract
Alzheimer's disease (AD) is an extensive age-associated neurodegenerative disorder. In spite of wide-ranging progress in understanding the AD pathology for the past 50 years, clinical trials based on the hypothesis of amyloid-beta (Aβ) have reserved worsening particularly at late-stage human trials. Consequently, very few old drugs are presently used for AD with inadequate clinical consequences and various side effects. We focus on widespread pharmacological and beneficial principles for existing as well as future drugs. Multitargeting approaches by means of general antioxidant and anti-inflammatory mechanisms allied with particular receptor and/or enzyme-mediated actions in neuroprotection and neurodegeneration. The plant kingdom comprises a vast range of species with an incredible diversity of bioactive metabolites with diverse chemical scaffolds. In recent times, an increasing body of facts recommended the use of phytochemicals to decelerate AD's onset and progression. The definitive goal of AD investigation is to avert the onset of neurodegeneration, thereby allowing successful aging devoid of cognitive decline. At this point, we discussed the neurological protective role of natural products and naturally derived therapeutic agents for AD from various natural polyphenolic compounds and medicinal plants. In conclusion, medicinal plants act as a chief source of different bioactive constituents.
Collapse
Affiliation(s)
- Renuka Mani
- Department of Biotechnology, School of Bioscience, Periyar University, Salem, Tamil Nadu, India
| | - Ahmed Sha Sulthana
- Department of Biotechnology, School of Bioscience, Periyar University, Salem, Tamil Nadu, India
| | - Ganesan Muthusamy
- Department of Biochemistry, School of Bioscience, Periyar University, Salem, Tamil Nadu, India
| | - Namasivayam Elangovan
- Department of Biotechnology, School of Bioscience, Periyar University, Salem, Tamil Nadu, India
| |
Collapse
|
21
|
Shang X, Geng L, Zhao Z, Luo L, Shi X, Zhang Q, Du R, Cong Y, Xu W. Transcriptomics reveals the mechanism of selenium-enriched Lactobacillus plantarum alleviating brain oxidative stress under cadmium stress in Luciobarbus capito. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 242:113890. [PMID: 35863216 DOI: 10.1016/j.ecoenv.2022.113890] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
Cadmium (Cd) is one of toxic metal in environment and is thought to affect nervous system. There were an increasing number of studies on selenium (Se)-enriched probiotics which were believed to produce bioactive nanoselenium. The antagonism of Se on heavy metals can significantly affect biological toxicity of heavy metals. This study aimed to elucidate possible mechanism of brain injury in Luciobarbus capito after Cd exposure and the mitigation of Se-enriched probiotics through transcriptome analysis. The results revealed 465 differentially expressed genes in the Cd and the control brains (Cd vs C), including 320 genes with upregulated expression and 145 genes with downregulated expression. In addition, we found that there were 4117 differentially expressed genes in the Se-enriched L. plantarum plus Cd and the control brains (S1L1-Cd vs C), including 2552 genes with upregulated expression and 1565 genes with downregulated expression. There were 147 differentially expressed genes in the Se-enriched L. plantarum plus Cd and the control brains (S1L1-Cd vs Cd), including 40 genes with upregulated expression and 107 genes with downregulated expression. Moreover, GO enrichment analysis indicated that the differentially expressed genes were involved in biological processes cellular component, and molecular function. KEGG enrichment analysis indicated that MAPK signaling pathway, calcium signaling pathway, and PI3K-Akt signaling pathway were significantly enriched. Subsequently, qRT-PCR was performed, and we selected 15 related differentially expressed genes for verification. The qRT-PCR results revealed the same trend as the RNA-Seq results. In conclusion, this study elucidated relieving effect of Se-enriched probiotics on Cd exposure-induced brain oxidative stress. This study provided a theoretical basis for further research on genes related to Cd poisoning and the amelioration of Se-enriched probiotics on Cd poisoning.
Collapse
Affiliation(s)
- Xinchi Shang
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Rd 43 Songfa, Daoli District, Harbin 150070, China; Key Laboratory of Cold Water Fish Germplasm Resources and Multiplication and Cultivation of Heilongjiang Province, Harbin 150070, Heilongjiang, China
| | - Longwu Geng
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Rd 43 Songfa, Daoli District, Harbin 150070, China; Key Laboratory of Cold Water Fish Germplasm Resources and Multiplication and Cultivation of Heilongjiang Province, Harbin 150070, Heilongjiang, China
| | - Zhigang Zhao
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Rd 43 Songfa, Daoli District, Harbin 150070, China; Key Laboratory of Cold Water Fish Germplasm Resources and Multiplication and Cultivation of Heilongjiang Province, Harbin 150070, Heilongjiang, China
| | - Liang Luo
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Rd 43 Songfa, Daoli District, Harbin 150070, China; Key Laboratory of Cold Water Fish Germplasm Resources and Multiplication and Cultivation of Heilongjiang Province, Harbin 150070, Heilongjiang, China
| | - Xiaodan Shi
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Rd 43 Songfa, Daoli District, Harbin 150070, China; National and Local Joint Engineering Laboratory for Freshwater Fish Breeding, Harbin, China
| | - Qing Zhang
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Rd 43 Songfa, Daoli District, Harbin 150070, China; Key Laboratory of Cold Water Fish Germplasm Resources and Multiplication and Cultivation of Heilongjiang Province, Harbin 150070, Heilongjiang, China
| | - Rujun Du
- Fisheries Technology Extension Station of Heilongjiang Province, Daqing 166299, China
| | - Yanfeng Cong
- Fisheries Technology Extension Station of Heilongjiang Province, Daqing 166299, China
| | - Wei Xu
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Rd 43 Songfa, Daoli District, Harbin 150070, China; Key Laboratory of Cold Water Fish Germplasm Resources and Multiplication and Cultivation of Heilongjiang Province, Harbin 150070, Heilongjiang, China.
| |
Collapse
|
22
|
Zhang Y, Gao H, Zheng W, Xu H. Current understanding of the interactions between metal ions and Apolipoprotein E in Alzheimer's disease. Neurobiol Dis 2022; 172:105824. [PMID: 35878744 DOI: 10.1016/j.nbd.2022.105824] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 07/05/2022] [Accepted: 07/19/2022] [Indexed: 11/15/2022] Open
Abstract
Alzheimer's disease (AD), the most common type of dementia in the elderly, is a chronic and progressive neurodegenerative disorder with no effective disease-modifying treatments to date. Studies have shown that an imbalance in brain metal ions, such as zinc, copper, and iron, is closely related to the onset and progression of AD. Many efforts have been made to understand metal-related mechanisms and therapeutic strategies for AD. Emerging evidence suggests that interactions of brain metal ions and apolipoprotein E (ApoE), which is the strongest genetic risk factor for late-onset AD, may be one of the mechanisms for neurodegeneration. Here, we summarize the key points regarding how metal ions and ApoE contribute to the pathogenesis of AD. We further describe the interactions between metal ions and ApoE in the brain and propose that their interactions play an important role in neuropathological alterations and cognitive decline in AD.
Collapse
Affiliation(s)
- Yanhui Zhang
- Department of Tissue Engineering, China Medical University, Shenyang, China
| | - Huiling Gao
- Institute of Neuroscience, College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Wei Zheng
- Department of Histology and Embryology, China Medical University, Shenyang, China
| | - He Xu
- Department of Anatomy, Histology and Embryology, School of Medicine, Shenzhen University, Shenzhen, China.
| |
Collapse
|
23
|
Effects of Selen on the Antidepressant-like Activity of Agents Affecting the Adenosinergic Neurotransmission. Metabolites 2022; 12:metabo12070586. [PMID: 35888708 PMCID: PMC9316035 DOI: 10.3390/metabo12070586] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/18/2022] [Accepted: 06/20/2022] [Indexed: 02/04/2023] Open
Abstract
The main goal of this study was to determine the antidepressant-like potential of the co-administration of sodium selenite (Se) and the selective adenosine A1 and A2A antagonists DPCPX and istradefylline (IST), respectively, in mice despair tests. Biochemical studies were performed to elucidate the action mechanisms of the investigated treatment strategies. The results confirmed that, when administered by itself, Se exerts an antidepressant-like effect in the FST and TST and that this activity is dose-dependent. Further experiments demonstrated that Se (0.25 mg/kg) significantly enhanced the activity of mice in both tests when co-administered with DPCPX (1 mg/kg) and IST (0.5 mg/kg) at doses which would be ineffective if administered individually. Our research revealed that neither DPCPX, IST, nor Se or combinations of the tested substances induced significant changes in the brain-derived neurotrophic factor (BDNF) levels in mice serum vs. the NaCl-treated group. However, we observed a decrease in the mRNA level of antioxidant defense enzymes. Molecular studies also showed changes in the expression of the Slc6a15, Comt, and Adora1 genes, particularly after exposure to the combination of Se and DPCPX, which indicates a beneficial effect and may help to explain the key mechanism of the antidepressant effect. The combination of Se with substances attenuating adenosine neurotransmission may become a new therapeutic strategy for patients with depression.
Collapse
|
24
|
Rehman Z, Farooq T, Javaid S, Ashraf W, Fawad Rasool M, Samad N, Tariq M, Muhammad Muneeb Anjum S, Sivandzade F, Alotaibi F, Alqahtani F, Imran I. Combination of levetiracetam with sodium selenite prevents pentylenetetrazole-induced kindling and behavioral comorbidities in rats. Saudi Pharm J 2022; 30:494-507. [PMID: 35693436 PMCID: PMC9177457 DOI: 10.1016/j.jsps.2022.03.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 03/05/2022] [Indexed: 02/06/2023] Open
Affiliation(s)
- Zohabia Rehman
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Talha Farooq
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Sana Javaid
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan
- Department of Pharmacy, The Women University, Multan 60000, Pakistan
| | - Waseem Ashraf
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Muhammad Fawad Rasool
- Department of Pharmacy Practice, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Noreen Samad
- Department of Biochemistry, Faculty of Sciences, Bahauddin Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Maryam Tariq
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan
| | | | - Farzane Sivandzade
- Department of Foundation Medical Studies, Oakland University William Beaumont School of Medicine, Rochester, MI, USA
| | - Faisal Alotaibi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Faleh Alqahtani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
- Corresponding authors at: Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia. (F. Alqahtani). Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University 60800, Multan, Pakistan. (I. Imran)..
| | - Imran Imran
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan
- Corresponding authors at: Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia. (F. Alqahtani). Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University 60800, Multan, Pakistan. (I. Imran)..
| |
Collapse
|
25
|
Massadeh AM, Alzoubi KH, Milhem AM, Rababa'h AM, Khabour OF. Evaluating the effect of selenium on spatial memory impairment induced by sleep deprivation. Physiol Behav 2022; 244:113669. [PMID: 34871651 DOI: 10.1016/j.physbeh.2021.113669] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/19/2021] [Accepted: 12/01/2021] [Indexed: 01/09/2023]
Abstract
Sleep deprivation (SD) impairs memory due to disturbing oxidative stress parameters. Selenium is a main component of several antioxidant enzymes and provides a neuroprotective effect. The present study aimed to investigate the potential neuroprotective effect of chronic selenium administration on cognitive impairments induced by chronic SD. Adult male Wister rats were randomly assigned into five groups (n = 12/group). The SD was induced in rats using modified multiple platform model. Selenium (6 µg/kg of animal's body weight) was administered to rats via oral gavage for 6 weeks. The spatial learning and memory were assessed using the radial arm water maze (RAWM). Moreover, we measured the levels of reduced glutathione (GSH), oxidized glutathione (GSSG) and GSH/GSSG, catalase, glutathione peroxidase (GPx), superoxide dismutase (SOD), thiobarbituric acid reactive substances (TBARS) and brain derived neurotrophic factor (BDNF) in the hippocampus. The results indicate that short- and long-term memory were impaired by chronic sleep deprivation (P < 0.05), while selenium administration prevented this effect. Moreover, selenium normalized antioxidants activities which were reduced by SD such as: catalase (P < 0.05), and SOD (P < 0.05), and significantly enhanced the ratio of GSH/GSSG in sleep-deprived rats (P < 0.05), without significant alteration of BDNF (P > 0.05), GSH (P > 0.05), or TBARS levels (P > 0.05). In conclusion, chronic SD induced memory impairment, and chronic treatment with selenium prevented this impairment by normalizing antioxidant enzymes activities in the hippocampus.
Collapse
Affiliation(s)
- Adnan M Massadeh
- Department of Medicinal Chemistry and Pharmacognosy , Faculty of Pharmacy, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110 Jordan.
| | - Karem H Alzoubi
- Department of Pharmacy Practice and Pharmacotherapeutics, University of Sharjah, Sharjah, UAE; Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110 Jordan
| | - Amal M Milhem
- Department of Medicinal Chemistry and Pharmacognosy , Faculty of Pharmacy, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110 Jordan
| | - Abeer M Rababa'h
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110 Jordan
| | - Omar F Khabour
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110 Jordan
| |
Collapse
|
26
|
Walia V, Kaushik D, Mittal V, Kumar K, Verma R, Parashar J, Akter R, Rahman MH, Bhatia S, Al-Harrasi A, Karthika C, Bhattacharya T, Chopra H, Ashraf GM. Delineation of Neuroprotective Effects and Possible Benefits of AntioxidantsTherapy for the Treatment of Alzheimer's Diseases by Targeting Mitochondrial-Derived Reactive Oxygen Species: Bench to Bedside. Mol Neurobiol 2021; 59:657-680. [PMID: 34751889 DOI: 10.1007/s12035-021-02617-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 10/19/2021] [Indexed: 12/25/2022]
Abstract
Alzheimer's disease (AD) is considered the sixth leading cause of death in elderly patients and is characterized by progressive neuronal degeneration and impairment in memory, language, etc. AD is characterized by the deposition of senile plaque, accumulation of fibrils, and neurofibrillary tangles (NFTs) which are responsible for neuronal degeneration. Amyloid-β (Aβ) plays a key role in the process of neuronal degeneration in the case of AD. It has been reported that Aβ is responsible for the production of reactive oxygen species (ROS), depletion of endogenous antioxidants, increase in intracellular Ca2+ which further increases mitochondria dysfunctions, oxidative stress, release of pro-apoptotic factors, neuronal apoptosis, etc. Thus, oxidative stress plays a key role in the pathogenesis of AD. Antioxidants are compounds that have the ability to counteract the oxidative damage conferred by ROS. Therefore, the antioxidant therapy may provide benefits and halt the progress of AD to advance stages by counteracting neuronal degeneration. However, despite the beneficial effects imposed by the antioxidants, the findings from the clinical studies suggested inconsistent results which might be due to poor study design, selection of the wrong antioxidant, inability of the molecule to cross the blood-brain barrier (BBB), treatment in the advanced state of disease, etc. The present review insights into the neuroprotective effects and limitations of the antioxidant therapy for the treatment of AD by targeting mitochondrial-derived ROS. This particular article will certainly help the researchers to search new avenues for the treatment of AD by utilizing mitochondrial-derived ROS-targeted antioxidant therapies.
Collapse
Affiliation(s)
- Vaibhav Walia
- SGT College of Pharmacy, SGT University, Gurugram, Haryana, India
| | - Deepak Kaushik
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, India
| | - Vineet Mittal
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, India
| | - Kuldeep Kumar
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, India
- University Institute of Pharmaceutical Sciences (UIPS), Chandigarh University, Gharuan, Mohali, Punjab, India
| | - Ravinder Verma
- Department of Pharmacy, School of Medical and Allied Sciences, G.D. Goenka University, Gurugram, 122103, India
| | - Jatin Parashar
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, India
| | - Rokeya Akter
- Department of Pharmacy, Jagannath University, Sadarghat, Dhaka, 1100, Bangladesh
| | - Md Habibur Rahman
- Department of Pharmacy, Southeast University, Banani, Dhaka, 1213, Bangladesh.
| | - Saurabh Bhatia
- School of Health Science University of Petroleum and Energy Studies, Dehrandun, Uttarkhand, 248007, India
- Natural & Medical Sciences Research Center, University of Nizwa, 616 Birkat Al Mouz, P.O. Box 33, Nizwa, Oman
| | - Ahmed Al-Harrasi
- Natural & Medical Sciences Research Center, University of Nizwa, 616 Birkat Al Mouz, P.O. Box 33, Nizwa, Oman
| | - Chenmala Karthika
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, The Nilgiris, Ooty, 643001, Tamil Nadu, India
| | - Tanima Bhattacharya
- College of Chemistry & Chemical Engineering, Hubei University, Wuhan, 430062, China
| | - Hitesh Chopra
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India
| | - Ghulam Md Ashraf
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
27
|
Ali AA, Khalil MG, Abd El-Latif DM, Okda T, Abdelaziz AI, Abu-Elfotuh K, Kamal MM, Wahid A. The influence of vinpocetine alone or in combination with Epigallocatechin-3-gallate, Coenzyme COQ10, Vitamin E and Selenium as a potential neuroprotective combination against aluminium-induced Alzheimer's disease in Wistar Albino Rats. Arch Gerontol Geriatr 2021; 98:104557. [PMID: 34706318 DOI: 10.1016/j.archger.2021.104557] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 10/09/2021] [Accepted: 10/10/2021] [Indexed: 12/31/2022]
Abstract
Alzheimer's disease (AD) is one of such diseases that represent the most prominent cause of dementia in elderly people. To explore the possible neuroprotective effect as well as mechanism of action of Vinpocetine either alone or in combination with EGCG, CoQ10, or VE & Se in ameliorating aluminum chloride-induced AD in rats. Rats were received AlCl3 (70 mg/kg) intraperitoneal daily dose for 30 days along with EGCG (10 mg/kg, I.P), CoQ10 (200 mg/kg, P.O), VE (100 mg/kg, P.O) & Se (1 mg/kg, P.O) as well as Vinpocetine (20 mg/kg, P.O) either alone or in combination. Results revealed that the combination of Vinpocetine with EGCG showed the best neuroprotection. This protection in the brain was indicated by the significant decrease in Aβ and ACHE. The same pattern of results were shown in the levels of monoamines and BDNF. In addition, the combination of Vinpocetine with EGCG showed more pronounced anti-inflammatory (TNF-α, IL-1β) and antioxidant (MDA, SOD, TAC) effects in comparison to other combinations. These results were confirmed using histopathological examinations as well as DNA fragmentation assays. Vinpocetine with EGCG showed pronounced protection on neurons against AD induced by AlCl3 in rats.
Collapse
Affiliation(s)
- Azza A Ali
- Department of Pharmacology and Toxicology; Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Mona G Khalil
- Department of Biochemistry, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Doaa M Abd El-Latif
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Modern University for Technology and Information, Cairo, Egypt
| | - Tarek Okda
- Department of Biochemistry, Faculty of pharmacy, Damanhour University, Egypt
| | - Aya I Abdelaziz
- Medical Research Center, Faculty of pharmacy, Heliopolis University, Egypt
| | - Karema Abu-Elfotuh
- Department of Pharmacology and Toxicology; Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Mona M Kamal
- Department of Pharmacology and Toxicology; Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Ahmed Wahid
- Department of Pharmaceutical Biochemistry, Faculty of pharmacy, Alexandria University, Egypt.
| |
Collapse
|
28
|
Zhang ZH, Chen C, Jia SZ, Cao XC, Liu M, Tian J, Hoffmann PR, Xu HX, Ni JZ, Song GL. Selenium Restores Synaptic Deficits by Modulating NMDA Receptors and Selenoprotein K in an Alzheimer's Disease Model. Antioxid Redox Signal 2021; 35:863-884. [PMID: 32475153 DOI: 10.1089/ars.2019.7990] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Aims: Strong evidence has implicated synaptic failure as a direct contributor to cognitive decline in Alzheimer's disease (AD), and selenium (Se) supplementation has demonstrated potential for AD treatment. However, the exact roles of Se and related selenoproteins in mitigating synaptic deficits remain unclear. Results: Our data show that selenomethionine (Se-Met), as the major organic form of Se in vivo, structurally restored synapses, dendrites, and spines, leading to improved synaptic plasticity and cognitive function in triple transgenic AD (3 × Tg-AD) mice. Furthermore, we found that Se-Met ameliorated synaptic deficits by inhibiting extrasynaptic N-methyl-d-aspartate acid receptors (NMDARs) and stimulating synaptic NMDARs, thereby modulating calcium ion (Ca2+) influx. We observed that a decrease in selenoprotein K (SELENOK) levels was closely related to AD, and a similar disequilibrium was found between synaptic and extrasynaptic NMDARs in SELENOK knockout mice and AD mice. Se-Met treatment upregulated SELENOK levels and restored the balance between synaptic and extrasynaptic NMDAR expression in AD mice. Innovation: These findings establish a key signaling pathway linking SELENOK and NMDARs with synaptic plasticity regulated by Se-Met, and thereby provide insight into mechanisms by which Se compounds mediate synaptic deficits in AD. Conclusion: Our study demonstrates that Se-Met restores synaptic deficits through modulating Ca2+ influx mediated by synaptic and extrasynaptic NMDARs in 3 × Tg-AD mice, and suggests a potentially functional interaction between SELENOK and NMDARs. Antioxid. Redox Signal. 35, 863-884.
Collapse
Affiliation(s)
- Zhong-Hao Zhang
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China.,Shenzhen Bay Laboratory, Shenzhen, China.,Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| | - Chen Chen
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Shi-Zheng Jia
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Xian-Chun Cao
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Min Liu
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Jing Tian
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Peter R Hoffmann
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA
| | - Hua-Xi Xu
- Neuroscience Initiative, Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Jia-Zuan Ni
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Guo-Li Song
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China.,Shenzhen Bay Laboratory, Shenzhen, China.,Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
| |
Collapse
|
29
|
Juszczyk G, Mikulska J, Kasperek K, Pietrzak D, Mrozek W, Herbet M. Chronic Stress and Oxidative Stress as Common Factors of the Pathogenesis of Depression and Alzheimer's Disease: The Role of Antioxidants in Prevention and Treatment. Antioxidants (Basel) 2021; 10:antiox10091439. [PMID: 34573069 PMCID: PMC8470444 DOI: 10.3390/antiox10091439] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/01/2021] [Accepted: 09/06/2021] [Indexed: 12/12/2022] Open
Abstract
There is a growing body of scientific research showing the link between depression and dementia in Alzheimer’s disease (AD). The chronic stress contributes to the formation of oxidative stress in the parts of the brain involved in the development of depression and AD. The scientific literature reports the significant role of antioxidants, which are highly effective in treating these diseases. In this review, we have summarized the relationship between chronic stress, oxidative stress, and the changes in the brain they cause occurring in the brain. Among all the compounds showing antioxidant properties, the most promising results in AD treatment were observed for Vitamin E, coenzyme Q10 (CoQ10), melatonin, polyphenols, curcumin, and selenium. In case of depression treatment, the greatest potential was observed in curcumin, zinc, selenium, vitamin E, and saffron.
Collapse
|
30
|
Ahmed HA, Ismael S, Mirzahosseini G, Ishrat T. Verapamil Prevents Development of Cognitive Impairment in an Aged Mouse Model of Sporadic Alzheimer's Disease. Mol Neurobiol 2021; 58:3374-3387. [PMID: 33704677 DOI: 10.1007/s12035-021-02350-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 03/04/2021] [Indexed: 12/20/2022]
Abstract
Currently, dementia is the only leading cause of death that is still on the rise, with total costs already exceeding those of cancer and heart disease and projected to increase even further in the coming years. Unfortunately, there are no satisfactory treatments and attempts to develop novel, more effective treatments have been extremely costly, albeit unsuccessful thus far. This has led us to investigate the use of established drugs, licensed for other therapeutic indications, for their potential application in cognitive disorders. This strategy, referred to as "drug repositioning," has been successful in many other areas including cancer and cardiovascular diseases. To our knowledge, this is the first study to investigate the effects of long-term treatment with verapamil, a calcium channel blocker commonly prescribed for various cardiovascular conditions and recently applied for prevention of cluster headaches, on the development of cognitive impairment in aged animals. Verapamil was studied at a low dose (1mg/kg/d) in a mouse model of sporadic Alzheimer's disease (sAD). Oral treatment with verapamil or vehicle was started, 24 h post-intracerebroventricular (ICV) streptozotocin/(STZ), in 12-month-old animals and continued for 3 months. Cognitive function was assessed using established tests for spatial learning, short-term/working memory, and long-term/reference memory. Our findings demonstrate that long-term low-dose verapamil effectively prevents development of ICV/STZ-induced cognitive impairment. It mitigates the astrogliosis and synaptic toxicity otherwise induced by ICV/STZ in the hippocampus of aged animals. These findings indicate that long-term, low-dose verapamil may delay progression of sAD in susceptible subjects of advanced age.
Collapse
Affiliation(s)
- Heba A Ahmed
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Saifudeen Ismael
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Golnoush Mirzahosseini
- Pharmaceutical Sciences, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Tauheed Ishrat
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA.
- Pharmaceutical Sciences, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA.
- Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN, 38163, USA.
- College of Medicine, Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, 875 Monroe Avenue, Wittenborg Bldg, Room-231, Memphis, TN, 38163, USA.
| |
Collapse
|
31
|
Díaz M, Mesa-Herrera F, Marín R. DHA and Its Elaborated Modulation of Antioxidant Defenses of the Brain: Implications in Aging and AD Neurodegeneration. Antioxidants (Basel) 2021; 10:antiox10060907. [PMID: 34205196 PMCID: PMC8228037 DOI: 10.3390/antiox10060907] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 02/06/2023] Open
Abstract
DHA (docosahexaenoic acid) is perhaps the most pleiotropic molecule in nerve cell biology. This long-chain highly unsaturated fatty acid has evolved to accomplish essential functions ranging from structural components allowing fast events in nerve cell membrane physiology to regulation of neurogenesis and synaptic function. Strikingly, the plethora of DHA effects has to take place within the hostile pro-oxidant environment of the brain parenchyma, which might suggest a molecular suicide. In order to circumvent this paradox, different molecular strategies have evolved during the evolution of brain cells to preserve DHA and to minimize the deleterious effects of its oxidation. In this context, DHA has emerged as a member of the “indirect antioxidants” family, the redox effects of which are not due to direct redox interactions with reactive species, but to modulation of gene expression within thioredoxin and glutathione antioxidant systems and related pathways. Weakening or deregulation of these self-protecting defenses orchestrated by DHA is associated with normal aging but also, more worryingly, with the development of neurodegenerative diseases. In the present review, we elaborate on the essential functions of DHA in the brain, including its role as indirect antioxidant, the selenium connection for proper antioxidant function and their changes during normal aging and in Alzheimer’s disease.
Collapse
Affiliation(s)
- Mario Díaz
- Laboratory of Membrane Physiology and Biophysics, Department of Animal Biology, School of Biology, Universidad de La Laguna, 38206 Tenerife, Spain;
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSP), Universidad de La Laguna, 38206 Tenerife, Spain
- Unidad Asociada ULL-CSIC “Fisiología y Biofísica de la Membrana Celular en Enfermedades Neurodegenerativas y Tumorales”, 38206 Tenerife, Spain;
- Correspondence:
| | - Fátima Mesa-Herrera
- Laboratory of Membrane Physiology and Biophysics, Department of Animal Biology, School of Biology, Universidad de La Laguna, 38206 Tenerife, Spain;
| | - Raquel Marín
- Unidad Asociada ULL-CSIC “Fisiología y Biofísica de la Membrana Celular en Enfermedades Neurodegenerativas y Tumorales”, 38206 Tenerife, Spain;
- Laboratory of Cellular Neurobiology, Department of Basic Medical Sciences, School of Medicine, Universidad de La Laguna, 38206 Tenerife, Spain
| |
Collapse
|
32
|
Nazir S, Anwar F, Saleem U, Ahmad B, Raza Z, Sanawar M, Rehman AU, Ismail T. Drotaverine Inhibitor of PDE4: Reverses the Streptozotocin Induced Alzheimer's Disease in Mice. Neurochem Res 2021; 46:1814-1829. [PMID: 33877499 DOI: 10.1007/s11064-021-03327-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 03/24/2021] [Accepted: 04/09/2021] [Indexed: 11/26/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease associated with decline in memory and cognitive impairments. Phosphodiesterase IV (PDE4) protein, an intracellular cAMP levels regulator, when inhibited act as potent neuroprotective agents by virtue of ceasing the activity of Pro-inflammatory mediators. The complexity of AD etiology has ever since compelled the researchers to discover multifunctional compounds to combat the AD and neurodegeneration. The aim of this study was to probe into role of drotaverine a PDE4 inhibitor in the management of AD. Albino mice were divided into seven groups (n = 10). Group 1 control group received carboxy methyl cellulose (CMC 1 mL/kg), group II diseased group treated with streptozotocin (STZ 3 mg/kg) by intracerebroventricular (ICV) route, group III administered standard drug Piracetam 200 mg/kg and groups IV-VII were given drotaverine (10, 20, 40, and 80 mg/kg i/p respectively). Groups II-VII were given STZ (3 mg/kg, ICV) on 1st and 3rd day of treatment to induce AD. All the groups were given their respective treatments for 23 days. Improvement in learning and memory was evaluated by using behavioral tests like open field test, elevated plus maze test, Morris water maze test and passive avoidance test. Furthermore, brain levels of biochemical markers of oxidative stress, neurotransmitters, β-amyloid and tau protein were also measured. Drotaverine showed statistically significant dose dependent improvement in behavioral and biochemical markers of AD: the maximum response was achieved at a dose level of 80 mg/kg. The Study concluded that drotaverine ameliorates cognitive impairment and as well as exhibited modulated the brain levels of neurotransmitters.
Collapse
Affiliation(s)
- Samra Nazir
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore Campus, Lahore, 54000, Pakistan
| | - Fareeha Anwar
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore Campus, Lahore, 54000, Pakistan.
| | - Uzma Saleem
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Bashir Ahmad
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore Campus, Lahore, 54000, Pakistan
| | - Zohaib Raza
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore Campus, Lahore, 54000, Pakistan
| | - Maham Sanawar
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore Campus, Lahore, 54000, Pakistan
| | - Artta Ur Rehman
- Department of Pharmacy, Faculty of Natural Sciences, Forman Christian College, Lahore, Pakistan
| | - Tariq Ismail
- Department of Pharmacy, COMSAT University, Abottabad, Pakistan
| |
Collapse
|
33
|
Du X, Shi Q, Zhao Y, Xie Y, Li X, Liu Q, Iqbal J, Zhang H, Liu X, Shen L. Se-Methylselenocysteine (SMC) Improves Cognitive Deficits by Attenuating Synaptic and Metabolic Abnormalities in Alzheimer's Mice Model: A Proteomic Study. ACS Chem Neurosci 2021; 12:1112-1132. [PMID: 33689275 DOI: 10.1021/acschemneuro.0c00549] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Se-methylselenocysteine (SMC) is a major selenocompound in selenium (Se) enriched plants and has been found to ameliorate neuropathology and cognitive deficits in triple-transgenic mice model of Alzheimer's disease (3 × Tg-AD mice). To explore the underlying molecular mechanisms, the present study is designed to elucidate the protein changes in the cortex of SMC-treated 3 × Tg-AD mice. After SMC supplementation, proteomic analysis revealed that 181, 271, and 41 proteins were identified as differentially expressed proteins (DEPs) between 3 × Tg-AD mice vs wild type (AD/WT group), SMC-treated AD mice vs AD (AD + SMC/AD), and AD + SMC/WT group, respectively. Among these, 138 proteins in the diseased group were reversed by SMC treatment. The DEPs in AD/WT group and AD + SMC/AD group were mainly related to metabolism, synapses, and antioxidant proteins, while their levels were decreased in AD mice but up-regulated after treating with SMC. In addition, we found reduced ATP levels and destroyed synaptic structures in the AD mice brains, which were significantly ameliorated upon SMC treatment. Our study suggests that energy metabolism disorders, abnormal amino acid metabolism, synaptic dysfunction, and oxidative stress may be the key pathogenic phenomena of AD. SMC reversed the expression of proteins associated with them, which might be the main mechanism of its intervention in AD.
Collapse
Affiliation(s)
- Xiubo Du
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, P. R. China
| | - Qingqing Shi
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, P. R. China
| | - Yuxi Zhao
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, P. R. China
| | - Yongli Xie
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, P. R. China
| | - Xuexia Li
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, P. R. China
| | - Qiong Liu
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, P. R. China
| | - Javed Iqbal
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, P. R. China
| | - Huajie Zhang
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, P. R. China
- Shenzhen Bay Laboratory, Shenzhen 518055, P.R. China
| | - Xukun Liu
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, P. R. China
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, P. R. China
| | - Liming Shen
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, P. R. China
| |
Collapse
|
34
|
Zhang ZH, Song GL. Roles of Selenoproteins in Brain Function and the Potential Mechanism of Selenium in Alzheimer's Disease. Front Neurosci 2021; 15:646518. [PMID: 33762907 PMCID: PMC7982578 DOI: 10.3389/fnins.2021.646518] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 02/16/2021] [Indexed: 12/13/2022] Open
Abstract
Selenium (Se) and its compounds have been reported to have great potential in the prevention and treatment of Alzheimer's disease (AD). However, little is known about the functional mechanism of Se in these processes, limiting its further clinical application. Se exerts its biological functions mainly through selenoproteins, which play vital roles in maintaining optimal brain function. Therefore, selenoproteins, especially brain function-associated selenoproteins, may be involved in the pathogenesis of AD. Here, we analyze the expression and distribution of 25 selenoproteins in the brain and summarize the relationships between selenoproteins and brain function by reviewing recent literature and information contained in relevant databases to identify selenoproteins (GPX4, SELENOP, SELENOK, SELENOT, GPX1, SELENOM, SELENOS, and SELENOW) that are highly expressed specifically in AD-related brain regions and closely associated with brain function. Finally, the potential functions of these selenoproteins in AD are discussed, for example, the function of GPX4 in ferroptosis and the effects of the endoplasmic reticulum (ER)-resident protein SELENOK on Ca2+ homeostasis and receptor-mediated synaptic functions. This review discusses selenoproteins that are closely associated with brain function and the relevant pathways of their involvement in AD pathology to provide new directions for research on the mechanism of Se in AD.
Collapse
Affiliation(s)
- Zhong-Hao Zhang
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China.,Shenzhen Bay Laboratory, Shenzhen, China
| | - Guo-Li Song
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China.,Shenzhen Bay Laboratory, Shenzhen, China.,Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
| |
Collapse
|
35
|
Ghosh R, Sil S, Gupta P, Ghosh T. Optimization of intracerebroventricular streptozotocin dose for the induction of neuroinflammation and memory impairments in rats. Metab Brain Dis 2020; 35:1279-1286. [PMID: 32696190 DOI: 10.1007/s11011-020-00588-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 06/12/2020] [Indexed: 10/23/2022]
Abstract
Intracerebroventricular (ICV) injection of streptozotocin (STZ) is a well established procedure to induce neuroinflammation leading to dementia in experimental animals. However, the optimal dose of STZ has not been determined. In the present study, rats were ICV injected with 1.5, 3 and 6 mg of STZ per kg of body weight. After 21 days, neuroinflammatory markers i.e. TNF-α, IL-1β, ROS and nitrite were quantified in the hippocampus. Memory function was assessed by the radial arm maze test after 9, 12, 15, 18, 21 days following STZ injection. STZ treatment significantly increased neuroinflammatory markers and decreased memory functions in a dose dependent manner showing optimum effects at the dose of 3 mg/kg.
Collapse
Affiliation(s)
- Rupsa Ghosh
- Neurophysiology Laboratory, Department of Physiology, University College of Science and Technology, University of Calcutta, 92, Acharya Prafulla Chandra Road, West Bengal, 700 009, Kolkata, India
| | - Susmita Sil
- Neurophysiology Laboratory, Department of Physiology, University College of Science and Technology, University of Calcutta, 92, Acharya Prafulla Chandra Road, West Bengal, 700 009, Kolkata, India
- Department of Pharmacology and Experimental, Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Pritha Gupta
- Neurophysiology Laboratory, Department of Physiology, University College of Science and Technology, University of Calcutta, 92, Acharya Prafulla Chandra Road, West Bengal, 700 009, Kolkata, India
| | - Tusharkanti Ghosh
- Neurophysiology Laboratory, Department of Physiology, University College of Science and Technology, University of Calcutta, 92, Acharya Prafulla Chandra Road, West Bengal, 700 009, Kolkata, India.
| |
Collapse
|
36
|
Lei P, Ayton S, Bush AI. The essential elements of Alzheimer's disease. J Biol Chem 2020; 296:100105. [PMID: 33219130 PMCID: PMC7948403 DOI: 10.1074/jbc.rev120.008207] [Citation(s) in RCA: 153] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 02/05/2023] Open
Abstract
Treatments for Alzheimer’s disease (AD) directed against the prominent amyloid plaque neuropathology are yet to be proved effective despite many phase 3 clinical trials. There are several other neurochemical abnormalities that occur in the AD brain that warrant renewed emphasis as potential therapeutic targets for this disease. Among those are the elementomic signatures of iron, copper, zinc, and selenium. Here, we review these essential elements of AD for their broad potential to contribute to Alzheimer’s pathophysiology, and we also highlight more recent attempts to translate these findings into therapeutics. A reinspection of large bodies of discovery in the AD field, such as this, may inspire new thinking about pathogenesis and therapeutic targets.
Collapse
Affiliation(s)
- Peng Lei
- Department of Neurology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, P.R. China; Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia.
| | - Scott Ayton
- Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia
| | - Ashley I Bush
- Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia.
| |
Collapse
|
37
|
Lee D, Jo MG, Kim SY, Chung CG, Lee SB. Dietary Antioxidants and the Mitochondrial Quality Control: Their Potential Roles in Parkinson's Disease Treatment. Antioxidants (Basel) 2020; 9:antiox9111056. [PMID: 33126703 PMCID: PMC7692176 DOI: 10.3390/antiox9111056] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 10/26/2020] [Indexed: 12/13/2022] Open
Abstract
Advances in medicine and dietary standards over recent decades have remarkably increased human life expectancy. Unfortunately, the chance of developing age-related diseases, including neurodegenerative diseases (NDDs), increases with increased life expectancy. High metabolic demands of neurons are met by mitochondria, damage of which is thought to contribute to the development of many NDDs including Parkinson’s disease (PD). Mitochondrial damage is closely associated with the abnormal production of reactive oxygen species (ROS), which are widely known to be toxic in various cellular environments, including NDD contexts. Thus, ways to prevent or slow mitochondrial dysfunction are needed for the treatment of these NDDs. In this review, we first detail how ROS are associated with mitochondrial dysfunction and review the cellular mechanisms, such as the mitochondrial quality control (MQC) system, by which neurons defend against both abnormal production of ROS and the subsequent accumulation of damaged mitochondria. We next highlight previous studies that link mitochondrial dysfunction with PD and how dietary antioxidants might provide reinforcement of the MQC system. Finally, we discuss how aging plays a role in mitochondrial dysfunction and PD before considering how healthy aging through proper diet and exercise may be salutary.
Collapse
Affiliation(s)
- Davin Lee
- Department of Brain & Cognitive Sciences, DGIST, Daegu 42988, Korea; (D.L.); (M.G.J.); (S.Y.K.)
- Protein Dynamics-Based Proteotoxicity Control Laboratory, Basic Research Lab, DGIST, Daegu 42988, Korea
| | - Min Gu Jo
- Department of Brain & Cognitive Sciences, DGIST, Daegu 42988, Korea; (D.L.); (M.G.J.); (S.Y.K.)
- Protein Dynamics-Based Proteotoxicity Control Laboratory, Basic Research Lab, DGIST, Daegu 42988, Korea
| | - Seung Yeon Kim
- Department of Brain & Cognitive Sciences, DGIST, Daegu 42988, Korea; (D.L.); (M.G.J.); (S.Y.K.)
- Protein Dynamics-Based Proteotoxicity Control Laboratory, Basic Research Lab, DGIST, Daegu 42988, Korea
| | - Chang Geon Chung
- Department of Brain & Cognitive Sciences, DGIST, Daegu 42988, Korea; (D.L.); (M.G.J.); (S.Y.K.)
- Protein Dynamics-Based Proteotoxicity Control Laboratory, Basic Research Lab, DGIST, Daegu 42988, Korea
- Correspondence: (C.G.C.); (S.B.L.)
| | - Sung Bae Lee
- Department of Brain & Cognitive Sciences, DGIST, Daegu 42988, Korea; (D.L.); (M.G.J.); (S.Y.K.)
- Protein Dynamics-Based Proteotoxicity Control Laboratory, Basic Research Lab, DGIST, Daegu 42988, Korea
- Correspondence: (C.G.C.); (S.B.L.)
| |
Collapse
|
38
|
Lee KH, Cha M, Lee BH. Neuroprotective Effect of Antioxidants in the Brain. Int J Mol Sci 2020; 21:ijms21197152. [PMID: 32998277 PMCID: PMC7582347 DOI: 10.3390/ijms21197152] [Citation(s) in RCA: 217] [Impact Index Per Article: 43.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/18/2020] [Accepted: 09/23/2020] [Indexed: 12/29/2022] Open
Abstract
The brain is vulnerable to excessive oxidative insults because of its abundant lipid content, high energy requirements, and weak antioxidant capacity. Reactive oxygen species (ROS) increase susceptibility to neuronal damage and functional deficits, via oxidative changes in the brain in neurodegenerative diseases. Overabundance and abnormal levels of ROS and/or overload of metals are regulated by cellular defense mechanisms, intracellular signaling, and physiological functions of antioxidants in the brain. Single and/or complex antioxidant compounds targeting oxidative stress, redox metals, and neuronal cell death have been evaluated in multiple preclinical and clinical trials as a complementary therapeutic strategy for combating oxidative stress associated with neurodegenerative diseases. Herein, we present a general analysis and overview of various antioxidants and suggest potential courses of antioxidant treatments for the neuroprotection of the brain from oxidative injury. This review focuses on enzymatic and non-enzymatic antioxidant mechanisms in the brain and examines the relative advantages and methodological concerns when assessing antioxidant compounds for the treatment of neurodegenerative disorders.
Collapse
Affiliation(s)
- Kyung Hee Lee
- Department of Dental Hygiene, Division of Health Science, Dongseo University, Busan 47011, Korea;
| | - Myeounghoon Cha
- Department of Physiology, Yonsei University College of Medicine, Seoul 03722, Korea;
| | - Bae Hwan Lee
- Department of Physiology, Yonsei University College of Medicine, Seoul 03722, Korea;
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea
- Correspondence: ; Tel.: +82-2-2228-1711
| |
Collapse
|
39
|
☆Protective effects of ginseng on memory and learning and prevention of hippocampal oxidative damage in streptozotocin-induced Alzheimer's in a rat model. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.npbr.2020.08.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
40
|
Manzoor S, Hoda N. A comprehensive review of monoamine oxidase inhibitors as Anti-Alzheimer's disease agents: A review. Eur J Med Chem 2020; 206:112787. [PMID: 32942081 DOI: 10.1016/j.ejmech.2020.112787] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 07/22/2020] [Accepted: 08/25/2020] [Indexed: 02/07/2023]
Abstract
Monoamine oxidases (MAO-A and MAO-B) are mammalian flavoenzyme, which catalyze the oxidative deamination of several neurotransmitters like norepinephrine, dopamine, tyramine, serotonin, and some other amines. The oxidative deamination produces several harmful side products like ammonia, peroxides, and aldehydes during the biochemical reaction. The concentration of biochemical neurotransmitter alteration in the brain by MAO is directly related with several neurological disorders like Alzheimer's disease and Parkinson's disease (PD). Activated MAO also contributes to the amyloid beta (Aβ) aggregation by two successive cleft β-secretase and γ-secretase of amyloid precursor protein (APP). Additionally, activated MAO is also involved in aggregation of neurofibrillary tangles and cognitive destruction through the cholinergic neuronal damage and disorder of the cholinergic system. MAO inhibition has general anti-Alzheimer's disease effect as a consequence of oxidative stress reduction prompted by MAO enzymes. In this review, we outlined and addressed recent understanding on MAO enzymes such as their structure, physiological function, catalytic mechanism, and possible therapeutic goals in AD. In addition, it also highlights the current development and discovery of potential MAO inhibitors (MAOIs) from various chemical scaffolds.
Collapse
Affiliation(s)
- Shoaib Manzoor
- Drug Design and Synthesis Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi, 110025, India
| | - Nasimul Hoda
- Drug Design and Synthesis Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi, 110025, India.
| |
Collapse
|
41
|
Hosseini-Sharifabad A, Rabbani M, Seyed-Yousefi Y, Safavi M. Magnesium Increases the Protective Effect of Citicoline on Aluminum Chloride-induced Cognitive Impairment. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE 2020; 18:241-248. [PMID: 32329305 PMCID: PMC7242111 DOI: 10.9758/cpn.2020.18.2.241] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 09/04/2019] [Accepted: 09/07/2019] [Indexed: 11/18/2022]
Abstract
Objective Alzheimer's disease is a popular neurodegenerative disorder which is growing in the elderly people. Exposure to environmental pollutant like aluminum could trigger or accelerate its involved mechanisms like tau phosphorylation. The current study will evaluate the effect of alone or co-administration of Citicoline or/and magnesium on the aluminum chloride induced memory impairment. Methods Male albino mice were randomly divided into different groups (n = 7). Memory impairment was induced via orally administration of 300 mg/kg Aluminum Chloride for 28 days. Based on respective group, animals received 100, 250, 500 mg/kg of Citicoline or 50, 100, 150 mg/kg of Magnesium sulfate (MgSO4), intraperitoneally. In co-administration, 50 mg/kg of MgSO4 injected concomitantly with 100, 250, or 500 mg/kg of Citicoline. Rivastigmine (2 mg/kg intraperitoneally) was used as a positive control. Memory was evaluated using the Object Recognition Task (ORT) and Passive Avoidance Test (PAT). Results The studied doses of Citicoline or MgSO4 when administered individually showed significant increase in the discrimination index in ORT and latency time in the PAT compared to the Aluminium chloride (AlCl3) treated group. Concomitant injection of 50 mg/kg MgSO4 with the different doses of Citicoline strongly increased the above indices values in comparison to each alone. Conclusion The findings show, individual administration of Citicoline or MgSO4 inverted the AlCl3-induced memory impairment in a dose independent manner. The addition of MgSO4 to the Citicoline showed a synergistic effect in the PAT and likely additive effect in the ORT.
Collapse
Affiliation(s)
- Ali Hosseini-Sharifabad
- Department of Pharmacology and Toxicology and Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Mohammad Rabbani
- Department of Pharmacology and Toxicology and Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Yasaman Seyed-Yousefi
- Department of Pharmacology and Toxicology and Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Maryam Safavi
- Department of Pharmacology and Toxicology and Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| |
Collapse
|
42
|
Bampi SR, Casaril AM, Fronza MG, Domingues M, Vieira B, Begnini KR, Seixas FK, Collares TV, Lenardão EJ, Savegnago L. The selenocompound 1-methyl-3-(phenylselanyl)-1H-indole attenuates depression-like behavior, oxidative stress, and neuroinflammation in streptozotocin-treated mice. Brain Res Bull 2020; 161:158-165. [PMID: 32470357 DOI: 10.1016/j.brainresbull.2020.05.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 04/08/2020] [Accepted: 05/15/2020] [Indexed: 12/22/2022]
Abstract
Major depressive disorder (MDD) is a chronic mental illness affecting a wide range of people worldwide. The pathophysiology of MDD is not completely elucidated, but it is believed that oxidative stress and neuroinflammation are involved. In light with this, the aim of the present study was to investigate whether a single administration of the antioxidant 1-methyl-3-(phenylselanyl)-1H-indole (MFSeI) was able to reverse the streptozotocin-induced depression-like behavior, oxidative stress, and neuroinflammation in mice. MFSeI (10 mg/kg) was administered intragastrically (i.g.) 24 h after the intracerebroventricular injection of STZ (0.2 mg/4 μL/per mouse). Thirty minutes after MFSeI administration, behavioral tests and neurochemical analyses were performed. Fluoxetine (10 mg/kg, i.g.) was used as a positive control. MFSeI and fluoxetine were able to reverse the STZ-induced depression-like behavior, as evidenced by decreased immobility time in the forced swimming test and increased grooming time in the splash test. Mechanistically, MFSeI reversed the increased levels of reactive species and lipid peroxidation in the prefrontal cortices and hippocampi of STZ-treated mice. Additionally, neuroinflammation (i.e. expression of NF-κB, IL-1β, and TNF-α) and the reduced mRNA levels of BDNF in the and hippocampi of depressed mice were reversed by treatment with MFSeI. Fluoxetine did not improve the STZ-induced alterations at the levels of reactive species, NF-κB and BDNF in the prefrontal cortices neither the levels of TNF-α in both brain regions. Together, these data suggest that the MFSeI may be a promising compound with antidepressant-like action, reducing oxidative stress and modulating inflammatory pathways in the brain of depressed mice.
Collapse
Affiliation(s)
- Suely Ribeiro Bampi
- Postgraduate Program in Biotechnology, Neurobiotechnology Research Group, Center of Biotechnology, Federal University of Pelotas, RS, Brazil
| | - Angela Maria Casaril
- Postgraduate Program in Biotechnology, Neurobiotechnology Research Group, Center of Biotechnology, Federal University of Pelotas, RS, Brazil
| | - Mariana G Fronza
- Postgraduate Program in Biotechnology, Neurobiotechnology Research Group, Center of Biotechnology, Federal University of Pelotas, RS, Brazil
| | - Micaela Domingues
- Postgraduate Program in Biotechnology, Neurobiotechnology Research Group, Center of Biotechnology, Federal University of Pelotas, RS, Brazil
| | - Beatriz Vieira
- Postgraduate Program in Chemistry, Laboratory of Clean Organic Synthesis, Center of Chemical, Pharmaceutical and Food Sciences, Federal University of Pelotas, RS, Brazil
| | - Karine Rech Begnini
- Postgraduate Program in Biotechnology, Molecular and Cellular Oncology Research Group, Center of Biotechnology, Federal University of Pelotas, RS, Brazil
| | - Fabiana K Seixas
- Postgraduate Program in Biotechnology, Molecular and Cellular Oncology Research Group, Center of Biotechnology, Federal University of Pelotas, RS, Brazil
| | - Tiago Veiras Collares
- Postgraduate Program in Biotechnology, Molecular and Cellular Oncology Research Group, Center of Biotechnology, Federal University of Pelotas, RS, Brazil
| | - Eder João Lenardão
- Postgraduate Program in Chemistry, Laboratory of Clean Organic Synthesis, Center of Chemical, Pharmaceutical and Food Sciences, Federal University of Pelotas, RS, Brazil
| | - Lucielli Savegnago
- Postgraduate Program in Biotechnology, Neurobiotechnology Research Group, Center of Biotechnology, Federal University of Pelotas, RS, Brazil.
| |
Collapse
|
43
|
Li C, Liu W, Li X, Zhang Z, Qi H, Liu S, Yan N, Xing Y, Hölscher C, Wang Z. The novel GLP-1/GIP analogue DA5-CH reduces tau phosphorylation and normalizes theta rhythm in the icv. STZ rat model of AD. Brain Behav 2020; 10:e01505. [PMID: 31960630 PMCID: PMC7066337 DOI: 10.1002/brb3.1505] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 10/28/2019] [Accepted: 11/22/2019] [Indexed: 01/03/2023] Open
Abstract
INTRODUCTION Alzheimer's disease (AD) is the most common progressive neurodegenerative disease for which there is no cure. Recent studies have shown a close link between type 2 diabetes and AD, which suggested that drugs for type 2 diabetes may be effective for AD. GLP-1 and GIP are incretin hormones that can ameliorate diabetes. METHODS In the present study, we tested the novel dual GLP-1/GIP receptor agonist DA5-CH in the icv. streptozotocin (STZ)-induced insulin desensitization model of AD in rats to explore the protective effects of DA5-CH. RESULTS The results show that DA5-CH could reverse the STZ-induced working memory impairments in a Y-maze tests, and spatial memory impairments in the water maze task, and decrease the levels of phosphorylated tauS396 protein in the hippocampus. In EEG recordings, STZ treatment diminished the power of the theta band frequency. DA5-CH was able to increase the energy of theta band activity in the hippocampal CA1 region. The drug also increased the expression of synapse-related proteins in the hippocampus. After DA5-CH treatment, mitochondrial stress was alleviated as shown by the improved ratio of Bax/Bcl-2 in the hippocampus. Growth factor signaling was also normalized as shown by the increased level of the transcription factor P-CREBS133 . In addition, we were able to show that DA5-CH can cross the blood-brain barrier at an increased rate compared with other dual GLP-1/GIP or single GLP-1 receptor agonists. CONCLUSION Therefore, our results demonstrate that DA5-CH has neuroprotective effects in the STZ-induced animal model and that DA5-CH has potential to treat neurodegenerative disorders such as AD.
Collapse
Affiliation(s)
- Cheng Li
- Department of Physiology and NeurobiologySchool of MedicineZhengzhou UniversityZhengzhouHenanPR China
| | - Weizhen Liu
- Department of Physiology and NeurobiologySchool of MedicineZhengzhou UniversityZhengzhouHenanPR China
| | - Xiaohui Li
- Department of Physiology and NeurobiologySchool of MedicineZhengzhou UniversityZhengzhouHenanPR China
| | - Zijuan Zhang
- Department of Physiology and NeurobiologySchool of MedicineZhengzhou UniversityZhengzhouHenanPR China
| | - Huaxin Qi
- Department of Physiology and NeurobiologySchool of MedicineZhengzhou UniversityZhengzhouHenanPR China
| | - Shijin Liu
- Department of Physiology and NeurobiologySchool of MedicineZhengzhou UniversityZhengzhouHenanPR China
| | - Ningning Yan
- Department of Physiology and NeurobiologySchool of MedicineZhengzhou UniversityZhengzhouHenanPR China
| | - Ying Xing
- Department of Physiology and NeurobiologySchool of MedicineZhengzhou UniversityZhengzhouHenanPR China
| | - Christian Hölscher
- Research and Experimental CenterHenan University of Chinese MedicineZhengzhouHenanPR China
| | - Zhiju Wang
- Department of Physiology and NeurobiologySchool of MedicineZhengzhou UniversityZhengzhouHenanPR China
| |
Collapse
|
44
|
Guardia de Souza e Silva T, do Val de Paulo MEF, da Silva JRM, da Silva Alves A, Britto LRG, Xavier GF, Lopes Sandoval MR. Oral treatment with royal jelly improves memory and presents neuroprotective effects on icv-STZ rat model of sporadic Alzheimer's disease. Heliyon 2020; 6:e03281. [PMID: 32055729 PMCID: PMC7005440 DOI: 10.1016/j.heliyon.2020.e03281] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 02/12/2019] [Accepted: 01/08/2020] [Indexed: 02/07/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by progressive decline in cognitive function. Intracerebroventricular injection of streptozotocin (icv-STZ) has been used as an experimental model of Sporadic AD (SAD) in rodents and represents a promising tool for etiopathogenic analysis and evaluation of new therapeutic proposals for AD. The icv-STZ model shows many aspects of SAD abnormalities, resulting in decreased brain glucose and energy metabolism, cognitive impairment, oxidative stress, neuronal loss, and amyloid angiopathy. Royal jelly (RJ), a substance produced by worker honeybees of the Apis mellifera species, has been popularly used for more than 30 years in areas related to health eating and natural medicine. Researches indicate that RJ has a several pharmacological activities, including neuroprotective and improvement of cognitive function. The objective of this study was to investigate the effects of oral treatment with royal jelly during 2 weeks in Wistar rats submitted to icv-STZ on a working memory and neuroprotection, as evaluated by neurogenesis, neurodegeneration and oxidative stress. In this study, icv-STZ injection induced deleterious effects in the hippocampus, associated with cognitive impairments, and developed marked neurodegeneration, besides the reduction of neurogenesis and increased oxidative stress. On the other hand, RJ long-term oral administration induced beneficial effects in animals injured by icv-STZ injection, increasing retention time for working spatial memory, reducing neurodegeneration and oxidative stress level and increasing the proliferation of new neurons in the hippocampus. Thus, RJ promotes beneficial effects on cognitive functions and exhibits a neuroprotective action in the STZ experimental model of SAD.
Collapse
Affiliation(s)
| | | | | | - Adilson da Silva Alves
- Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 2415, São Paulo, Brazil
| | - Luiz Roberto G. Britto
- Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 2415, São Paulo, Brazil
| | - Gilberto Fernando Xavier
- Institute of Biosciences, University of São Paulo, Rua do Matão, Travessa 14, 101, São Paulo, Brazil
| | - Maria Regina Lopes Sandoval
- Laboratory of Pharmacology, Butantan Institute, Avenida Vital Brasil, 1500, cep 05503-900, São Paulo, Brazil
| |
Collapse
|
45
|
Martini F, Régis Leite M, Gonçalves Rosa S, Pregardier Klann I, Wayne Nogueira C. Strength exercise suppresses STZ-induced spatial memory impairment and modulates BDNF/ERK-CAMKII/CREB signalling pathway in the hippocampus of mice. Cell Biochem Funct 2020; 38:213-221. [PMID: 31978253 DOI: 10.1002/cbf.3470] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 09/11/2019] [Accepted: 10/28/2019] [Indexed: 12/22/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder that has generated scientific interest because of its prevalence in the population. Studies indicate that physical exercise promotes neuroplasticity and improves cognitive function in animal models and in human beings. The aim of the present study was to investigate the effects of strength exercise on the hippocampal protein contents and memory performance in mice subjected to a model of sporadic AD induced by streptozotocin (STZ). Swiss mice received two injections of STZ (3 mg/kg, intracerebroventricular). After 21 days, they began physical training using a ladde. Mice performed this protocol for 4 weeks. After the last exercise training session, mice performed the Morris Water Maze test. The samples of hippocampus were excised and used to determine protein contents of brain-derived neurotrophic factor (BDNF), extracellular signal-regulated kinase-Ca2+ (ERK), calmodulin-dependent protein kinase (CAMKII) and cAMP-response element-binding protein (CREB) signalling pathway. Strength exercise was effective against the decrease in the time spent and distance travelled in the target quadrant by STZ-injected mice. Strength exercise was also effective against the reduction of mature BDNF, tropomyosin receptor kinase B and neuronal nuclear antigen (NeuN) hippocampal protein levels in STZ mice. The decrease in the hippocampal ratio of pERK/ERK, pCAMKII/CAMKII and pCREB/CREB induced by STZ was reversed by strength exercise. Strength exercise decreased Bax/Bcl2 ratio in the hippocampus of STZ-injected mice. The present study demonstrates that strength exercise modulated the hippocampal BDNF/ERK-CAMKII/CREB signalling pathway and suppressed STZ-induced spatial memory impairment in mice.
Collapse
Affiliation(s)
- Franciele Martini
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Marlon Régis Leite
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Suzan Gonçalves Rosa
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Isabella Pregardier Klann
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Cristina Wayne Nogueira
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| |
Collapse
|
46
|
Akhtar A, Dhaliwal J, Saroj P, Uniyal A, Bishnoi M, Sah SP. Chromium picolinate attenuates cognitive deficit in ICV-STZ rat paradigm of sporadic Alzheimer's-like dementia via targeting neuroinflammatory and IRS-1/PI3K/AKT/GSK-3β pathway. Inflammopharmacology 2020; 28:385-400. [PMID: 31898080 DOI: 10.1007/s10787-019-00681-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 12/16/2019] [Indexed: 02/05/2023]
Abstract
Alzheimer's disease (AD) is prevalent in old age people and is one of the most common brain diseases. Brain insulin resistance, neuroinflammation, oxidative stress, and mitochondrial and cholinergic dysfunction are key features of the disease. In our study, streptozotocin (STZ) in a dose of 3 mg/kg was injected in male Wistar rats bilaterally through the intracerebroventricular (ICV) route on stereotaxic apparatus. Chromium picolinate (CrPic) was tested at doses of 1 mg/kg, 2 mg/kg, and 4 mg/kg, while rivastigmine (2 mg/kg) was used as reference standard drug. Cognitive dysfunction induced by STZ was assessed by behavioral tests like Morris water maze and novel object recognition test. Treatment with CrPic revealed attenuation of cognitive deficit. This was confirmed by behavioral tests, biochemical estimations of antioxidant enzymes, oxidative stress, nitrosative stress, and cholinergic and mitochondrial activity. CrPic did not change AchE activity significantly. STZ-induced neuroinflammation evident by increased TNF-α, IL-6, and CRP levels was also significantly decreased by CrPic. Dysfunctional insulin signaling after ICV-STZ was demonstrated by reduced IRS-1, PI3K, AKT, BDNF gene expression, and increased GSK-3β, NF-κB gene expression with the help of qRT-PCR. CrPic treatment produced an improvement in insulin signaling revealed by increased gene expression of IRS-1, PI3-K, AKT, BDNF, and decreased gene expression of GSK-3β and NF-κB. It was concluded that CrPic reversed AD pathology revealed by improved memory, reduced oxidative stress, neuroinflammation, mitochondrial dysfunction, and upregulated insulin signaling.
Collapse
Affiliation(s)
- Ansab Akhtar
- Pharmacology Division, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India
| | - Jatinder Dhaliwal
- Pharmacology Division, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India
| | - Priyanka Saroj
- Pharmacology Division, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India
| | - Ankit Uniyal
- Pharmacology Division, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India
| | - Mahendra Bishnoi
- National Agri-Food Biotechnology Institute (NABI), Sector-81, SAS Nagar, Mohali, Punjab, 140306, India
| | - Sangeeta Pilkhwal Sah
- Pharmacology Division, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
47
|
Yin S, Ran Q, Yang J, Zhao Y, Li C. Nootropic effect of neferine on aluminium chloride-induced Alzheimer's disease in experimental models. J Biochem Mol Toxicol 2019; 34:e22429. [PMID: 31860774 DOI: 10.1002/jbt.22429] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 11/05/2019] [Accepted: 11/19/2019] [Indexed: 01/23/2023]
Abstract
Alzheimer's disease (AD) is an age-associated neurodegenerative disease, which is developed by oxidative stress and acetylcholine contraction in the synaptic cleft of the neurons. This leads to dementia, memory loss, and decrease in learning ability and orientation. In this research work, we aimed to explore the neuroprotective effect of neferine on AlCl3 -induced AD in rats. The results of our study revealed that the increased reactive oxygen species (ROS) and nitric oxide in the hippocampus leads to the development of AD in the rats. The oral treatment of neferine done the following occurrences such as; it potentially inhibited the ROS formation and acts as a scavenging molecule by preventing the neurodegeneration. It also improved the memory and learning ability to complete the maze activity in the AD rats and significantly increased the antioxidants superoxide dismutase, catalase, and reduced glutathione in neferine treated AD rats. It aggressively declined the activity of acetylcholine esterase and Na+ K+ ATPase in the neurodegenerative rat models. The gene expression pattern of neuroinflammatory cytokines such as tumor necrosis factor α (TNF-α), interleukin-6 (IL-6), and interleukin-1β (IL-1β) were decreased in the neferine-treated rats. The neuroinflammatory proteins such as inducible nitric oxide (iNOS), cyclooxygenase-2 (COX-2), and nuclear factor kappa β (Nf-κβ) were decreased and Nf-κβ inhibitor IKBα was increased in the neferine-treated AD rats. Finally, the histology study proved that the neferine treatment possibly prevents neurodegeneration in the hippocampus tissue of the AD models. Hence, these all findings concluded that the neferine could be a potential neuropreventive as well as neurodegenerative therapeutic compound in neurological and cognitive dysfunction.
Collapse
Affiliation(s)
- Shuaizeng Yin
- Department of Encephalopathy, Chongqing Traditional Chinese Medicine Hospital, Chongqing, China
| | - Qin Ran
- Department of Encephalopathy, Chongqing Traditional Chinese Medicine Hospital, Chongqing, China
| | - Jin Yang
- Department of Encephalopathy, Chongqing Traditional Chinese Medicine Hospital, Chongqing, China
| | - Yuhua Zhao
- Department of Encephalopathy, Chongqing Traditional Chinese Medicine Hospital, Chongqing, China
| | - Chenyu Li
- Department of Encephalopathy, Chongqing Traditional Chinese Medicine Hospital, Chongqing, China
| |
Collapse
|
48
|
Sharma SK, Bansal MP, Sandhir R. Altered dietary selenium influences brain iron content and behavioural outcomes. Behav Brain Res 2019; 372:112011. [PMID: 31212061 DOI: 10.1016/j.bbr.2019.112011] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/31/2019] [Accepted: 06/03/2019] [Indexed: 02/07/2023]
Abstract
Selenium (Se) is an essential micronutrient that provides antioxidant defence through selenoproteins, but at high concentrations, deleterious effects have been reported. The present study examines the antioxidant response in brain regions and behavioural functions in mice under various dietary Se paradigms; Se-deficient, Se-adequate and Se-excess. Se levels were found to be reduced in the cortex and hippocampus of Se-deficient animals, whereas no change was observed in animals on Se-excess diet. In the hippocampus, iron (Fe) levels increased in animals on Se-deficient and Se-excess diets. Moreover, in Se-deficient animals, Fe levels increased in cortex also. Interestingly, Se content in the hair positively correlated with the dietary Se intake. Total and Se-dependent glutathione peroxidase activity decreased in the cortex, hippocampus and cerebellum of animals on Se-deficient diet. On the other hand, the activity of these enzymes decreased in the cortex of animals on Se-excess diet. Further, lipid peroxidation increased in the cortex of animals on Se-deficient diet and in the hippocampus of animals on Se-excess diet. Cognitive functions assessed by Morris water maze and Y-maze tests revealed deficits in Se-deficient state. However, in Se-excess state cognitive deficits were observed only in Y-maze test. These findings suggest that long-term dietary variation in Se influences oxidative stress that impacts cognitive functions. Therefore, it is suggested that maintenance of Se status during postnatal development may be crucial for mental health.
Collapse
Affiliation(s)
- Sunil Kumar Sharma
- Department of Biochemistry, Basic Medical Sciences Block-II, Panjab University, Sector-25, Chandigarh 160014, India
| | - Mohinder Pal Bansal
- Department of Biophysics, Basic Medical Sciences Block-II, Panjab University, Sector-25, Chandigarh 160014, India
| | - Rajat Sandhir
- Department of Biochemistry, Basic Medical Sciences Block-II, Panjab University, Sector-25, Chandigarh 160014, India.
| |
Collapse
|
49
|
Bampi SR, Casaril AM, Sabedra Sousa FS, Pesarico AP, Vieira B, Lenardão EJ, Savegnago L. Repeated administration of a selenium-containing indolyl compound attenuates behavioural alterations by streptozotocin through modulation of oxidative stress in mice. Pharmacol Biochem Behav 2019; 183:46-55. [PMID: 31207269 DOI: 10.1016/j.pbb.2019.06.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 06/13/2019] [Accepted: 06/13/2019] [Indexed: 01/29/2023]
Abstract
Although the pathophysiology of major depression disorder (MDD) is still poorly understood, mounting evidence suggests that the brains of depressed patients are under oxidative stress, leading to depressive symptoms that may include anxiety and cognitive impairment. This study aimed to investigate if the seleno-organic compound 1-methyl-3-(phenylselanyl)-1H-indole (MFSeI) reverses the depression- and anxiogenic-like behaviour, cognitive impairment and oxidative stress induced by the intra-cerebroventricular injection of streptozotocin (STZ; 0.2 mg/4 μl/per mouse) in Swiss male mice. Twenty-four hours after the STZ injection, mice were treated with MFSeI (10 mg/kg, intra-gastrically), or vehicle solution, once daily for seven days. The behavioural tests were performed 30 min after the final MFSeI administration, followed by euthanasia and collection of the cerebral cortex and hippocampus. Administration of MFSeI reversed the depression- and anxiogenic-like behaviour and cognitive impairment induced by STZ, in mice. Neurochemical analyses demonstrated that MFSeI reversed the STZ-increased levels of reactive species, nitrite, lipid peroxidation and acetylcholinesterase activity in the cerebral cortex and hippocampus of mice. Moreover, a single administration of MFSeI (300 mg/kg, intra-gastrically) did not cause acute toxicity in Swiss male mice. Altogether, our data suggest that MFSeI exhibits antidepressant- and anxiolytic-like effects and improves the cognition of STZ-treated mice, without any toxicity.
Collapse
Affiliation(s)
- Suely Ribeiro Bampi
- Postgraduate Program in Biotechnology, Neurobiotechnology Research Group, Center of Biotechnology, Federal University of Pelotas, RS, Brazil
| | - Angela Maria Casaril
- Postgraduate Program in Biotechnology, Neurobiotechnology Research Group, Center of Biotechnology, Federal University of Pelotas, RS, Brazil
| | - Fernanda S Sabedra Sousa
- Postgraduate Program in Biotechnology, Neurobiotechnology Research Group, Center of Biotechnology, Federal University of Pelotas, RS, Brazil
| | - Ana Paula Pesarico
- Postgraduate Program in Biotechnology, Neurobiotechnology Research Group, Center of Biotechnology, Federal University of Pelotas, RS, Brazil
| | - Beatriz Vieira
- Postgraduate Program in Chemistry, Laboratory of Clean Organic Synthesis, Center of Chemical, Pharmaceutical and Food Sciences, Federal University of Pelotas, RS, Brazil
| | - Eder João Lenardão
- Postgraduate Program in Chemistry, Laboratory of Clean Organic Synthesis, Center of Chemical, Pharmaceutical and Food Sciences, Federal University of Pelotas, RS, Brazil
| | - Lucielli Savegnago
- Postgraduate Program in Biotechnology, Neurobiotechnology Research Group, Center of Biotechnology, Federal University of Pelotas, RS, Brazil.
| |
Collapse
|
50
|
Abstract
It is estimated that by the year 2050 there will be more than 1.5 billion people globally over the age of 65 years. Aging is associated with changes to a number of different cellular processes which are driven by a variety of factors that contribute to the characteristic decline in function that is seen across multiple physiological domains/tissues in the elderly (including the brain). Importantly, aging is also the primary risk factor for the development of neurodegenerative disorders such as Alzheimer’s disease. As such, there is an urgent need to provide a greater understanding of both the pathogenesis and treatment of these devastating neurodegenerative disorders. One of the key cellular processes that becomes dysregulated with age and participates both directly and indirectly in age-related dysfunction, is metal homeostasis and the neurochemistry of metalloproteins, the basic science of which has been extensively reviewed in the past. In this review, we will focus on the human clinical intervention trials that have been conducted over approximately the last four decades that have attempted to establish the efficacy of targeting metal ions in the treatment of AD.
Collapse
Affiliation(s)
- Paul A Adlard
- The Florey Institute of Neuroscience and Mental Health, Kenneth Myer Building, The University of Melbourne, Parkville, VIC, Australia
| | - Ashley I Bush
- The Florey Institute of Neuroscience and Mental Health, Kenneth Myer Building, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|