1
|
Paes LCF, Lima DB, Silva DMAD, Valentin JT, Aquino PEAD, García-Jareño AB, Orzaéz M, Fonteles MMDF, Martins AMC. Exploring the neuroprotective potential of antimicrobial peptides from Dinoponera quadriceps venom against pentylenetetrazole-induced seizures in vivo. Toxicon 2024; 237:107538. [PMID: 38030096 DOI: 10.1016/j.toxicon.2023.107538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 12/01/2023]
Abstract
Epilepsy affects around 50 million people worldwide and 30% of patients have difficulty controlling the disease. The search for substances that can fill the existing gaps in the treatment of epilepsy is of great importance. Arthropod venoms are promising sources for this purpose due to the presence of small peptides that modulate the activity of ion channels and neuron receptors. The aim of this study was to investigate dinoponeratoxins from the Dinoponera quadriceps ant venom (M-PONTX-Dq3a, M-PONTX-Dq3b and M-PONTX-Dq3c) as potential anticonvulsants. We evaluated them in a seizure model induced by pentylenetetrazole (PTZ) in male swiss mice. Interestingly, intraperitoneal treatment with each peptide increased the time until the first seizure and the percentage of survival, with M-PONTX-Dq3b showing the best results. M-PONTX-Dq3a was discarded due to the appearance of some signs of toxicity with the increase in malondialdehyde (MDA) levels in the striatum. Both, M-PONTX-Dq3b and M-PONTX-Dq3c decreased iNOS and TNF-α in the hippocampus. Notably, M-PONTX-Dq3c treatment decreased the levels of MDA and nitrite in the cortex and hippocampus. Our results indicate that, M-PONTX-Dq3b and M-PONTX-Dq3c have anticonvulsant activity and exhibit anti-inflammatory effects in epilepsy, offering new perspectives for biopharmaceutical development.
Collapse
Affiliation(s)
- Livia Correia Fernandes Paes
- Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Universidade Federal Do Ceará, Fortaleza, 60430372, Ceará, Brazil
| | - Dânya Bandeira Lima
- Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Universidade Federal Do Ceará, Fortaleza, 60430372, Ceará, Brazil.
| | - Daniel Moreira Alves da Silva
- Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Universidade Federal Do Ceará, Fortaleza, 60430372, Ceará, Brazil
| | - José Tiago Valentin
- Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Universidade Federal Do Ceará, Fortaleza, 60430372, Ceará, Brazil
| | | | - Alicia Belén García-Jareño
- Targeted Therapies on Cancer and Inflammation Lab and Peptide Synthesis Platform, Centro de Investigación Príncipe Felipe, Valencia, 46012, Spain
| | - Mar Orzaéz
- Targeted Therapies on Cancer and Inflammation Lab and Peptide Synthesis Platform, Centro de Investigación Príncipe Felipe, Valencia, 46012, Spain
| | - Marta Maria de França Fonteles
- Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Universidade Federal Do Ceará, Fortaleza, 60430372, Ceará, Brazil; Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, 60430-275, Ceará, Brazil
| | - Alice Maria Costa Martins
- Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Universidade Federal Do Ceará, Fortaleza, 60430372, Ceará, Brazil; Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, 60430-275, Ceará, Brazil.
| |
Collapse
|
2
|
Embry L, Bingen K, Conklin HM, Hardy S, Jacola LM, Marchak JG, Paltin I, Pelletier W, Devine KA. Children's Oncology Group's 2023 blueprint for research: Behavioral science. Pediatr Blood Cancer 2023; 70 Suppl 6:e30557. [PMID: 37430416 PMCID: PMC10528542 DOI: 10.1002/pbc.30557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/12/2023]
Abstract
As survival rates for childhood cancer have improved, there has been increasing focus on identifying and addressing adverse impacts of cancer and its treatment on children and their families during treatment and into survivorship. The Behavioral Science Committee (BSC) of the Children's Oncology Group (COG), comprised of psychologists, neuropsychologists, social workers, nurses, physicians, and clinical research associates, aims to improve the lives of children with cancer and their families through research and dissemination of empirically supported knowledge. Key achievements of the BSC include enhanced interprofessional collaboration through integration of liaisons into other key committees within COG, successful measurement of critical neurocognitive outcomes through standardized neurocognitive assessment strategies, contributions to evidence-based guidelines, and optimization of patient-reported outcome measurement. The collection of neurocognitive and behavioral data continues to be an essential function of the BSC, in the context of therapeutic trials that are modifying treatments to maximize event-free survival, minimize adverse outcomes, and optimize quality of life. In addition, through hypothesis-driven research and multidisciplinary collaborations, the BSC will also begin to prioritize initiatives to expand the systematic collection of predictive factors (e.g., social determinants of health) and psychosocial outcomes, with overarching goals of addressing health inequities in cancer care and outcomes, and promoting evidence-based interventions to improve outcomes for all children, adolescents, and young adults with cancer.
Collapse
Affiliation(s)
- Leanne Embry
- Department of Pediatrics, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Kristin Bingen
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Heather M Conklin
- Department of Psychology and Biobehavioral Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Steven Hardy
- Division of Oncology, Children's National Hospital and Departments of Pediatrics and Psychiatry & Behavioral Sciences, George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA
| | - Lisa M Jacola
- Department of Psychology and Biobehavioral Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Jordan Gilleland Marchak
- Emory University School of Medicine and Aflac Cancer and Blood Disorders Center at Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Iris Paltin
- Division of Oncology, The Children's Hospital of Philadelphia Department of Child and Adolescent Psychiatry and Behavioral Sciences, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Wendy Pelletier
- Department of Oncology, Division of Psychosocial Oncology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Katie A Devine
- Department of Pediatrics, Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, USA
| |
Collapse
|
3
|
Xie Y, Yang Y, Yuan T. Brain Damage in the Preterm Infant: Clinical Aspects and Recent Progress in the Prevention and Treatment. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2023; 22:27-40. [PMID: 35209835 DOI: 10.2174/1871527321666220223092905] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 01/16/2022] [Accepted: 01/16/2022] [Indexed: 12/16/2022]
Abstract
Although the prevalence of brain injury and related neurodevelopmental disabilities resulting from preterm birth are major public health concerns, there are no definite neuroprotective strategies to prevent or reduce brain injury. The pattern of brain injury seen in preterm infants has evolved into more subtle lesions that are still essential to diagnose regarding neurodevelopmental outcomes. There is no specific effective method for the treatment of premature infant brain injury, and the focus of clinical treatment is still on prevention. Prevention of this injury requires insight into the pathogenesis, but many gaps exist in our understanding of how neonatal treatment procedures and medications impact cerebral hemodynamics and preterm brain injury. Many studies provide evidence about the prevention of premature infant brain injury, which is related to some drugs (such as erythropoietin, melatonin, mesenchymal stem cells, etc.). However, there are still some controversies about the quality of research and the effectiveness of therapy. This review aims to recapitulate the results of preclinical studies and provide an update on the latest developments around etiological pathways, prevention, and treatment.
Collapse
Affiliation(s)
- Yixuan Xie
- Department of Neonatology, Children\'s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310052, Zhejiang, P.R. China
| | - Yue Yang
- Department of Neonatology, Children\'s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310052, Zhejiang, P.R. China
| | - Tianming Yuan
- Department of Neonatology, Children\'s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310052, Zhejiang, P.R. China
| |
Collapse
|
4
|
Pedroza-García KA, Calderón-Vallejo D, Quintanar JL. Neonatal Hypoxic-Ischemic Encephalopathy: Perspectives of Neuroprotective and Neuroregenerative Treatments. Neuropediatrics 2022; 53:402-417. [PMID: 36030792 DOI: 10.1055/s-0042-1755235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Hypoxic-ischemic encephalopathy (HIE) is a serious condition that could have deleterious neurological outcomes, such as cerebral palsy, neuromotor disability, developmental disability, epilepsy, and sensitive or cognitive problems, and increase the risk of death in severe cases. Once HIE occurs, molecular cascades are triggered favoring the oxidative stress, excitotoxicity, and inflammation damage that promote cell death via apoptosis or necrosis. Currently, the therapeutic hypothermia is the standard of care in HIE; however, it has a small window of action and only can be used in children of more than 36 gestational weeks; for this reason, it is very important to develop new therapies to prevent the progression of the hypoxic-ischemic injury or to develop neuroregenerative therapies in severe HIE cases. The objective of this revision is to describe the emerging treatments for HIE, either preventing cell death for oxidative stress, excitotoxicity, or exacerbated inflammation, as well as describing a new therapeutic approach for neuroregeneration, such as mesenchymal stem cells, brain-derived neurotrophic factor, and gonadotropin realizing hormone agonists.
Collapse
Affiliation(s)
- Karina A Pedroza-García
- Departamento de Fisiología y Farmacología, Laboratorio de Neurofisiología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, México
| | - Denisse Calderón-Vallejo
- Departamento de Fisiología y Farmacología, Laboratorio de Neurofisiología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, México.,Departamento de Morfología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, México
| | - J Luis Quintanar
- Departamento de Fisiología y Farmacología, Laboratorio de Neurofisiología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, México
| |
Collapse
|
5
|
Landucci E, Pellegrini-Giampietro DE, Facchinetti F. Experimental Models for Testing the Efficacy of Pharmacological Treatments for Neonatal Hypoxic-Ischemic Encephalopathy. Biomedicines 2022; 10:937. [PMID: 35625674 PMCID: PMC9138693 DOI: 10.3390/biomedicines10050937] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/13/2022] [Accepted: 04/15/2022] [Indexed: 02/04/2023] Open
Abstract
Representing an important cause of long-term disability, term neonatal hypoxic-ischemic encephalopathy (HIE) urgently needs further research aimed at repurposing existing drug as well as developing new therapeutics. Since various experimental in vitro and in vivo models of HIE have been developed with distinct characteristics, it becomes important to select the appropriate preclinical screening cascade for testing the efficacy of novel pharmacological treatments. As therapeutic hypothermia is already a routine therapy for neonatal encephalopathy, it is essential that hypothermia be administered to the experimental model selected to allow translational testing of novel or repurposed drugs on top of the standard of care. Moreover, a translational approach requires that therapeutic interventions must be initiated after the induction of the insult, and the time window for intervention should be evaluated to translate to real world clinical practice. Hippocampal organotypic slice cultures, in particular, are an invaluable intermediate between simpler cell lines and in vivo models, as they largely maintain structural complexity of the original tissue and can be subjected to transient oxygen-glucose deprivation (OGD) and subsequent reoxygenation to simulate ischemic neuronal injury and reperfusion. Progressing to in vivo models, generally, rodent (mouse and rat) models could offer more flexibility and be more cost-effective for testing the efficacy of pharmacological agents with a dose-response approach. Large animal models, including piglets, sheep, and non-human primates, may be utilized as a third step for more focused and accurate translational studies, including also pharmacokinetic and safety pharmacology assessments. Thus, a preclinical proof of concept of efficacy of an emerging pharmacological treatment should be obtained firstly in vitro, including organotypic models, and, subsequently, in at least two different animal models, also in combination with hypothermia, before initiating clinical trials.
Collapse
Affiliation(s)
- Elisa Landucci
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, 50139 Florence, Italy;
| | | | - Fabrizio Facchinetti
- Department of Experimental Pharmacology and Translational Science, Corporate Pre-Clinical R&D, Chiesi Farmaceutici S.p.A., 43122 Parma, Italy;
| |
Collapse
|
6
|
Lyu H, Sun DM, Ng CP, Chen JF, He YZ, Lam SY, Zheng ZY, Askarifirouzjaei H, Wang CC, Young W, Poon WS. A new Hypoxic Ischemic Encephalopathy model in neonatal rats. Heliyon 2021; 7:e08646. [PMID: 35024484 PMCID: PMC8723992 DOI: 10.1016/j.heliyon.2021.e08646] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/29/2021] [Accepted: 12/16/2021] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Hypoxic-Ischemic Encephalopathy (HIE) occurs when an infant's brain does not receive adequate blood and oxygen supply, resulting in ischemic and hypoxic brain damage during delivery. Currently, supportive care and hypothermia have been the standard treatment for HIE. However, there are still a 20% mortality and most of the survivors are associated with significant neurodevelopmental disability. HIE animal model was first established by Vannucci et al., in 1981, and has been used extensively to explore the mechanisms of brain damage and its potential treatment. The Vannucci model involves the unilateral common carotid artery occlusion followed by 90 min hypoxia (8% oxygen). The purpose of this study is to define and validate a modified HIE model which mimics closely that of the human neonatal HIE. METHOD The classic Vannucci HIE model occludes one common carotid artery followed by 90 min hypoxia. In the new model, common carotid arteries were occluded bilaterally followed by breathing 8% oxygen in a hypoxic chamber for 90, 60 and 30 min, followed by the release of the common carotid artery ligatures, mimicking a reperfusion. RESULT We studied 110 neonatal rats in detail, following the modified in comparison with the classical Vannucci models. The classical Vannucci model has a consistent surgical mortality of 18% and the new modified models have a 20%-46%. While mortality depended on the duration of hypoxia, fifty-two animals survived for behavioral assessments and standard histology. The modified HIE model with 60 min of transient carotid occlusion is associated with a moderate brain damage, and has a 30% surgical mortality. This modified experimental model is regarded closer to the human situation than the classical Vannucci model.
Collapse
Affiliation(s)
- Hao Lyu
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
- Department of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, The Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, 3002# Sungang Road, Futian District, Shenzhen 518035, China
| | - Dong Ming Sun
- W. M. Keck Center for Collaborative Neuroscience, Rutgers, State University of New Jersey, Piscataway, NJ, USA
| | - Chi Ping Ng
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Jun Fan Chen
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Yu Zhong He
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Sin Yu Lam
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Zhi Yuan Zheng
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Hadi Askarifirouzjaei
- W. M. Keck Center for Collaborative Neuroscience, Rutgers, State University of New Jersey, Piscataway, NJ, USA
| | - Chi Chiu Wang
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong, China
| | - Wise Young
- W. M. Keck Center for Collaborative Neuroscience, Rutgers, State University of New Jersey, Piscataway, NJ, USA
| | - Wai Sang Poon
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
7
|
Abrahamson EE, Poloyac SM, Dixon CE, Dekosky ST, Ikonomovic MD. Acute and chronic effects of single dose memantine after controlled cortical impact injury in adult rats. Restor Neurol Neurosci 2020; 37:245-263. [PMID: 31177251 DOI: 10.3233/rnn-190909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Altered glutamatergic neurotransmission after traumatic brain injury (TBI) contributes to excitotoxic cell damage and death. Prevention or suppression of such changes is a desirable goal for treatment of TBI. Memantine (3,5-dimethyl-1-adamantanamine), an uncompetitive NMDA receptor antagonist with voltage-dependent open channel blocking kinetics, was reported to be neuroprotective in preclinical models of excitotoxicity, brain ischemia, and in TBI when administered prophylactically, immediately, or within minutes after injury. METHODS The current study examined effects of memantine administered by single intraperitoneal injection to adult male rats at a more clinically relevant delay of one hour after moderate-severe controlled cortical impact (CCI) injury or sham surgery. Histopathology was assessed on days 1, 7, 21, and 90, vestibulomotor function (beam balance and beam walk) was assessed on days 1-5 and 71-75, and spatial memory (Morris water maze test, MWM) was assessed on days 14-21 and 83-90 after CCI injury or sham surgery. RESULTS When administered at 10 mg/kg, but not 2.5 or 5 mg/kg, memantine preserved cortical tissue and reduced neuronal degeneration 1 day after injury, and attenuated loss of synaptophysin immunoreactivity in the hippocampus 7 days after injury. No effects of 10 mg/kg memantine were observed on histopathology at 21 and 90 days after CCI injury or sham surgery, or on vestibulomotor function and spatial memory acquisition assessed during any of the testing periods. However, 10 mg/kg memantine resulted in trends for improved search strategy in the MWM memory retention probe trial. CONCLUSIONS Administration of memantine at a clinically-relevant delay after moderate-severe CCI injury has beneficial effects on acute outcomes, while more significant improvement on subacute and chronic outcomes may require repeated drug administration or its combination with another therapy.
Collapse
Affiliation(s)
- Eric E Abrahamson
- Geriatric Research Education and Clinical Center, VA Pittsburgh Healthcare System, University of Pittsburgh, Pittsburgh PA, USA.,Department of Neurology, University of Pittsburgh, Pittsburgh PA, USA
| | - Samuel M Poloyac
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh PA, USA
| | - C Edward Dixon
- Geriatric Research Education and Clinical Center, VA Pittsburgh Healthcare System, University of Pittsburgh, Pittsburgh PA, USA.,Department of Neurosurgery, University of Pittsburgh, Pittsburgh PA, USA
| | - Steven T Dekosky
- Department of Neurology and McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Milos D Ikonomovic
- Geriatric Research Education and Clinical Center, VA Pittsburgh Healthcare System, University of Pittsburgh, Pittsburgh PA, USA.,Department of Neurology, University of Pittsburgh, Pittsburgh PA, USA.,Department of Psychiatry, University of Pittsburgh, Pittsburgh PA, USA
| |
Collapse
|
8
|
Hirfanoglu I, Turkyilmaz C, Turkyilmaz Z, Onal E, Soylemezoglu F, Karabulut R, Atalay Y. Neuroprotective effect of L-arginine in a neonatal rat model of hypoxic-ischemia. Int J Neurosci 2019; 129:1139-1144. [DOI: 10.1080/00207454.2019.1636794] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Ibrahim Hirfanoglu
- Department of Pediatrics, Neonatology, School of Medicine, Gazi University, Ankara, Turkey
| | - Canan Turkyilmaz
- Department of Pediatrics, Neonatology, School of Medicine, Gazi University, Ankara, Turkey
| | - Zafer Turkyilmaz
- Department of Pediatric Surgery, School of Medicine, Gazi University, Ankara, Turkey
| | - Esra Onal
- Department of Pediatrics, Neonatology, School of Medicine, Gazi University, Ankara, Turkey
| | - Figen Soylemezoglu
- Department of Pathology, School of Medicine, Hacettepe University, Ankara, Turkey
| | - Ramazan Karabulut
- Department of Pediatric Surgery, School of Medicine, Gazi University, Ankara, Turkey
| | - Yildiz Atalay
- Department of Pediatrics, Neonatology, School of Medicine, Gazi University, Ankara, Turkey
| |
Collapse
|
9
|
Seyedsaadat SM, F. Kallmes D. Memantine for the treatment of ischemic stroke: experimental benefits and clinical lack of studies. Rev Neurosci 2019; 30:203-220. [DOI: 10.1515/revneuro-2018-0025] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 04/19/2018] [Indexed: 01/19/2023]
Abstract
AbstractStroke is an important cause of mortality and disability worldwide. Immediately after stroke onset, the ischemic cascade initiates and deleteriously affects neural cells. Time to reperfusion therapy is a critical determinant of functional recovery in stroke patients. Although recent trials have shown the significant efficacy of endovascular thrombectomy, either alone or with intravenous tissue plasminogen activator, in improving the functional outcomes of stroke patients with large vessel occlusion, hours can pass before patients receive reperfusion therapy. Moreover, many patients do not meet the eligibility criteria to receive reperfusion treatments. Therefore, an adjunct and alternative agent that can protect ischemic neuronal tissue during the hyperacute phase until reperfusion therapy can be administered may prevent further brain damage and enhance functional recovery. Memantine is a US Food and Drug Administration approved drug for the treatment of Alzheimer’s disease. Memantine blocks overstimulated N-methyl-d-aspartate receptors and prevents neurotoxicity caused by massive glutamate release. Preclinical studies show that memantine decreases infarction volume and improves neurologic outcomes. However, few clinical studies have evaluated the safety and efficacy of memantine in stroke patients. This review article summarizes the current evidence for the role of memantine in the treatment of ischemic stroke and highlights areas for future research.
Collapse
|
10
|
Fabres RB, da Rosa LA, de Souza SK, Cecconello AL, Azambuja AS, Sanches EF, Ribeiro MFM, de Fraga LS. Effects of progesterone on the neonatal brain following hypoxia-ischemia. Metab Brain Dis 2018; 33:813-821. [PMID: 29363039 DOI: 10.1007/s11011-018-0193-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 01/17/2018] [Indexed: 11/25/2022]
Abstract
Progesterone displays a strong potential for the treatment of neonatal hypoxic-ischemic encephalopathy since it has been shown to be beneficial in the treatment of the central nervous system injuries in adult animals. Here, we evaluated the effects of the administration of progesterone (10 mg/kg) in seven-days-old male Wistar rats submitted to neonatal hypoxia-ischemia (HI). Progesterone was administered immediately before ischemia and/or 6 and 24 h after the onset of hypoxia. The body weight of the animals, the volume of brain lesion and the expression of p-Akt and procaspase-3 in the hippocampus were evaluated. All animals submitted to HI showed a reduction in the body weight. However, this reduction was more remarkable in those animals which received progesterone before surgery. Administration of progesterone was unable to reduce the volume of brain damage caused by HI. Moreover, no significant differences were observed in the expression of p-Akt and procaspase-3 in animals submitted to HI and treated with either progesterone or vehicle. In summary, progesterone did not show a neuroprotective effect on the volume of brain lesion in neonatal rats submitted to hypoxia-ischemia. Furthermore, progesterone was unable to modulate p-Akt and procaspase-3 signaling pathways, which may explain the absence of neuroprotection. On the other hand, it seems that administration of progesterone before ischemia exerts some systemic effect, leading to a remarkable reduction in the body weight.
Collapse
Affiliation(s)
- Rafael Bandeira Fabres
- Laboratory of Neurohumoral Interaction, Department of Physiology, Universidade Federal do Rio Grande do Sul (UFRGS), Sarmento Leite, 500, Porto Alegre, RS, 90050-170, Brazil
- Laboratory of Comparative Metabolism and Endocrinology, Department of Physiology, Universidade Federal do Rio Grande do Sul (UFRGS), Sarmento Leite, 500, Porto Alegre, RS, 90050-170, Brazil
- Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Universidade Federal do Rio Grande do Sul (UFRGS), Sarmento Leite, 500, Porto Alegre, RS, 90050-170, Brazil
- Hospital de Clínicas de Porto Alegre (HCPA), Ramiro Barcelos, 2350, Porto Alegre, RS, 90035-903, Brazil
| | - Luciana Abreu da Rosa
- Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Universidade Federal do Rio Grande do Sul (UFRGS), Sarmento Leite, 500, Porto Alegre, RS, 90050-170, Brazil
| | - Samir Khal de Souza
- Laboratory of Comparative Metabolism and Endocrinology, Department of Physiology, Universidade Federal do Rio Grande do Sul (UFRGS), Sarmento Leite, 500, Porto Alegre, RS, 90050-170, Brazil
- Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Universidade Federal do Rio Grande do Sul (UFRGS), Sarmento Leite, 500, Porto Alegre, RS, 90050-170, Brazil
| | - Ana Lucia Cecconello
- Laboratory of Neurohumoral Interaction, Department of Physiology, Universidade Federal do Rio Grande do Sul (UFRGS), Sarmento Leite, 500, Porto Alegre, RS, 90050-170, Brazil
- Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Universidade Federal do Rio Grande do Sul (UFRGS), Sarmento Leite, 500, Porto Alegre, RS, 90050-170, Brazil
| | - Amanda Stapenhorst Azambuja
- Laboratory of Neurohumoral Interaction, Department of Physiology, Universidade Federal do Rio Grande do Sul (UFRGS), Sarmento Leite, 500, Porto Alegre, RS, 90050-170, Brazil
- Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Universidade Federal do Rio Grande do Sul (UFRGS), Sarmento Leite, 500, Porto Alegre, RS, 90050-170, Brazil
| | - Eduardo Farias Sanches
- Laboratory of Cerebral Ischemia, Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Ramiro Barcelos, 2600, Porto Alegre, RS, 90035-000, Brazil
| | - Maria Flavia Marques Ribeiro
- Laboratory of Neurohumoral Interaction, Department of Physiology, Universidade Federal do Rio Grande do Sul (UFRGS), Sarmento Leite, 500, Porto Alegre, RS, 90050-170, Brazil
- Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Universidade Federal do Rio Grande do Sul (UFRGS), Sarmento Leite, 500, Porto Alegre, RS, 90050-170, Brazil
| | - Luciano Stürmer de Fraga
- Laboratory of Comparative Metabolism and Endocrinology, Department of Physiology, Universidade Federal do Rio Grande do Sul (UFRGS), Sarmento Leite, 500, Porto Alegre, RS, 90050-170, Brazil.
- Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Universidade Federal do Rio Grande do Sul (UFRGS), Sarmento Leite, 500, Porto Alegre, RS, 90050-170, Brazil.
- Hospital de Clínicas de Porto Alegre (HCPA), Ramiro Barcelos, 2350, Porto Alegre, RS, 90035-903, Brazil.
| |
Collapse
|
11
|
Landucci E, Filippi L, Gerace E, Catarzi S, Guerrini R, Pellegrini-Giampietro DE. Neuroprotective effects of topiramate and memantine in combination with hypothermia in hypoxic-ischemic brain injury in vitro and in vivo. Neurosci Lett 2018; 668:103-107. [DOI: 10.1016/j.neulet.2018.01.023] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 01/11/2018] [Accepted: 01/12/2018] [Indexed: 12/20/2022]
|
12
|
Zhang XG, Shan C, Zhu JZ, Bao XY, Tong Q, Wu XF, Tang XC, Xue T, Liu J, Zheng GQ, Wang Y. Additive Neuroprotective Effect of Borneol with Mesenchymal Stem Cells on Ischemic Stroke in Mice. Front Physiol 2018; 8:1133. [PMID: 29387017 PMCID: PMC5776113 DOI: 10.3389/fphys.2017.01133] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 12/22/2017] [Indexed: 12/26/2022] Open
Abstract
Intravenous stem cell transplantation initiates neuroprotection related to the secretion of trophic factor. Borneol, a potential herbal neuroprotective agent, is a penetration enhancer. Here, we aimed to investigate whether they have additive neuroprotective effect on cerebral ischemia. Borneol was given to mice by gavage 3 days before middle cerebral artery occlusion (MCAO) induction until the day when the mice were sacrificed. Mesenchymal stem cells (MSCs) were intravenously injected at 24 h after MCAO induction. Neurological deficits, infarct volume, cell death, and neurogenesis were evaluated. Combined use of MSCs and borneol could more effectively reduce infarction volume and cell apoptosis, enhance neurogenesis, and improve the functional recovery than that of MSCs alone. The findings showed that combined use of borneol and stem cells provided additive neuroprotective effect on cerebral ischemia. However, the supposed effect of borneol on the improved MSC penetration still needs further direct evidence.
Collapse
Affiliation(s)
- Xiao-Guang Zhang
- Department of Internal Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Translational Center for Stem Cell Research, Tongji Hospital, Stem Cell Research Center, Tongji University School of Medicine, Shanghai, China
| | - Chang Shan
- Department of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Rui-jin Hospital, Shanghai Jiao-tong University School of Medicine, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai, China
| | - Jia-Zhen Zhu
- Department of Internal Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiao-Yi Bao
- Department of Internal Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qiang Tong
- Department of Internal Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xi-Fan Wu
- Translational Center for Stem Cell Research, Tongji Hospital, Stem Cell Research Center, Tongji University School of Medicine, Shanghai, China
| | - Xiao-Chen Tang
- Translational Center for Stem Cell Research, Tongji Hospital, Stem Cell Research Center, Tongji University School of Medicine, Shanghai, China
| | - Ting Xue
- Translational Center for Stem Cell Research, Tongji Hospital, Stem Cell Research Center, Tongji University School of Medicine, Shanghai, China
| | - Jie Liu
- Translational Center for Stem Cell Research, Tongji Hospital, Stem Cell Research Center, Tongji University School of Medicine, Shanghai, China
| | - Guo-Qing Zheng
- Department of Internal Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yan Wang
- Department of Internal Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
13
|
Rodrigues FTS, de Sousa CNS, Ximenes NC, Almeida AB, Cabral LM, Patrocínio CFV, Silva AH, Leal LKAM, Honório Júnior JER, Macedo D, Vasconcelos SMM. Effects of standard ethanolic extract from Erythrina velutina in acute cerebral ischemia in mice. Biomed Pharmacother 2017; 96:1230-1239. [PMID: 29174035 DOI: 10.1016/j.biopha.2017.11.093] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 11/11/2017] [Accepted: 11/17/2017] [Indexed: 12/31/2022] Open
Abstract
The objective of this study was to verify a possible neuroprotective effect of the ethanolic extract of Erythrina velutina (EEEV). Male Swiss mice were submitted to transient cerebral ischemia by occlusion of both carotid arteries for 30 min and treated for 5 days with EEEV (200 or 400 mg/kg) or Memantine (MEM) 10 mg/kg, with initiation of treatment 2 or 24 h after Ischemia. On the 6th day after the induction of ischemia, the animals were submitted to evaluation of locomotor activity and memory and then sacrificed. The brains were dissected for the removal of the prefrontal cortex (PFC), hippocampus (HC) and striatum (ST) for determination of amino acid concentrations. In the step down and Y-maze tests, ischemia caused damage to the animals and treatment with EEEV or MEM reversed this effect. The animals submitted to ischemia also showed memory deficit in the object recognition test, an effect that was reverted by EEEV400 and MEM10. Amino acid dosage showed an increase in excitatory amino acid concentrations in the PFC of the ischemic animals and this effect was reversed by the treatment with EEEV400/24H. Regarding the inhibitory amino acids, ischemia caused an increase of taurine in the PFC while treatment with MEM10/24H or EEEV400/24H reversed this effect. In HC, an increase in excitatory amino acids was also observed in ischemiated animals having treatment with EEEV200/2H or EEEV400/24H reversed this effect. Similar effect was also observed in the same area in relation to the inhibitory amino acids with treatment with MEM10/24H or EEEV400/24H. In the ST, ischemia was also able to cause an increase in excitatory amino acids that was reversed more efficiently by the treatments with MEM10/24H and EEEV200. Also in this area, an increase of taurine and GABA was observed and only the treatment with EEEV200/2H showed a reversion of this effect. In view of these findings, EEEV presents a neuroprotective effect possibly due to its action on amino acid concentrations, and is therefore a potential therapeutic tool in reducing the damage caused by ischemia.
Collapse
Affiliation(s)
- Francisca Taciana Sousa Rodrigues
- Department of Physiology and Pharmacology, Federal University of Ceara, Brazil; University Centre Christus, Fortaleza, Ceará, Brazil
| | | | | | | | - Lucas Moraes Cabral
- Department of Physiology and Pharmacology, Federal University of Ceara, Brazil
| | | | | | | | | | - Danielle Macedo
- Department of Physiology and Pharmacology, Federal University of Ceara, Brazil
| | | |
Collapse
|
14
|
Modification to the Rice-Vannucci perinatal hypoxic-ischaemic encephalopathy model in the P7 rat improves the reliability of cerebral infarct development after 48hours. J Neurosci Methods 2017. [PMID: 28648719 DOI: 10.1016/j.jneumeth.2017.06.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND The Rice-Vannucci model of hypoxic-ischaemic encephalopathy (HIE) has been associated with a high degree of variability with respect to the development of cerebral infarction and infarct lesion volume. For this reason, we examined the occurrence of communicational blood flow within the common carotid (CCA), internal (ICA), and external (ECA) carotid arteries following CCA occlusion as a source of variability in the model. NEW METHOD We propose a novel modification to the Rice-Vannucci model, whereby both the CCA and ECA are permanently ligated; mitigating communicational blood flow. RESULTS Using magnetic resonance angiography, phase-contrast velocity encoding, and pulsed arterial spin labelling, the modified Rice-Vannucci model (CCA/ECA occlusion) was demonstrated to mitigate communicational blood flow, whilst significantly reducing ipsilateral hemispherical cerebral blood flow (CBF). Comparatively, the original Rice-Vannucci model (CCA occlusion) demonstrated anterograde and retrograde blood flow within the ICA and CCA, respectively, with a non-significant reduction in ipsilateral CBF. Furthermore, CCA/ECA occlusion plus hypoxia (8% O2/92% N2; 2.5h) resulted in 100% of animals presenting with an infarct (vs 87%), significantly larger infarct volume at 48h (18.5% versus 10.0%; p<0.01), reduced standard deviation (±10% versus ±15%), and significantly worsened functional outcomes when compared to CCA occlusion plus hypoxia. COMPARISON WITH EXISTING METHOD We compared a modified Rice-Vannucci model (CCA/ECA occlusion±hypoxia) to the commonly used Rice-Vannucci model (CCA occlusion±hypoxia). CONCLUSION This study demonstrates that CCA/ECA occlusion in the Rice-Vannucci model of HIE reduces infarct volume variability by limiting communicational blood flow.
Collapse
|
15
|
Motaghinejad M, Motevalian M, Babalouei F, Abdollahi M, Heidari M, Madjd Z. Possible involvement of CREB/BDNF signaling pathway in neuroprotective effects of topiramate against methylphenidate induced apoptosis, oxidative stress and inflammation in isolated hippocampus of rats: Molecular, biochemical and histological evidences. Brain Res Bull 2017; 132:82-98. [PMID: 28552672 DOI: 10.1016/j.brainresbull.2017.05.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 05/13/2017] [Accepted: 05/19/2017] [Indexed: 12/29/2022]
Abstract
Chronic abuse of methylphenidate (MPH) can cause serious neurotoxicity. The neuroprotective effects of topiramate (TPM) were approved, but its putative mechanism remains unclear. In current study the role of CREB/BDNF signaling pathway in TPM protection against methylphenidate-induced neurotoxicity in rat hippocampus was evaluated. 60 adult male rats were divided randomly into six groups. Groups received MPH (10mg/kg) only and concurrently with TPM (50mg/kg and 100mg/kg) and TPM (50 and 100mg/kg) only for 14 days. Open field test (OFT) was used to investigate motor activity. Some biomarkers of apoptotic, anti-apoptotic, oxidative, antioxidant and inflammatory factors were also measured in hippocampus. Expression of total (inactive) and phosphorylated (active) CREB and BDNF were also measured in gene and protein levels in dentate gyrus (DG) and CA1 areas of hippocampus. MPH caused significant decreases in motor activity in OFT while TPM (50 and 100mg/kg) inhibited MPH-induced decreases in motor activity. On the other hand, MPH caused remarkable increases in Bax protein level, lipid peroxidation, catalase activity, IL-1β and TNF-α levels in hippocampal tissue. MPH also caused significant decreases of superoxide dismutase, activity and also decreased CREB, in both forms, BDNF and Bcl-2 protein levels. TPM, by the mentioned doses, attenuated these effects and increased superoxide dismutase, glutathione peroxidase and glutathione reductase activities and also increased CREB, in both forms, BDNF and Bcl-2 protein levels and inhibited MPH induced increase in Bax protein level, lipid peroxidation, catalase activity, IL-1β and TNF-α levels. TPM also inhibited MPH induced decreases in cell number and changes in cell shapes in DG and CA1 areas. TPM can probably act as a neuroprotective agent against MPH induced neurotoxicity and this might have been mediated by CREB/BDNF signaling pathway.
Collapse
Affiliation(s)
- Majid Motaghinejad
- Razi Drug Research Center & Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Manijeh Motevalian
- Razi Drug Research Center & Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Babalouei
- Deparemten of Chemistry, Faculty of Science, Islamic Azad University, Share-Qods Brach, Tehran, Iran
| | - Mohammad Abdollahi
- Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mansour Heidari
- Department of Medical Genetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Madjd
- Oncopathology Research Center and Department of Pathology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
16
|
Hasegawa H, Urrea-Mendoza E. Prognosis of post-cardiac-arrest anoxic encephalopathy using felbamate: A case report. COGENT MEDICINE 2017. [DOI: 10.1080/2331205x.2017.1331601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022] Open
Affiliation(s)
- Hisanori Hasegawa
- Greenville Health System, Greenville, SC, USA
- Saginaw VA Medical Center, 1500 Weiss St., Saginaw, MI 48602, USA
- Bronson Methodist Hospital, Kalamazoo, MI, USA
| | | |
Collapse
|
17
|
Different response to antiepileptic drugs according to the type of epileptic events in a neonatal ischemia-reperfusion model. Neurobiol Dis 2016; 99:145-153. [PMID: 28042096 DOI: 10.1016/j.nbd.2016.12.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 12/16/2016] [Accepted: 12/28/2016] [Indexed: 12/23/2022] Open
Abstract
Perinatal arterial stroke is the most frequent form of cerebral infarction in children. Neonatal seizures are the most frequent symptom during the neonatal period. The current management of perinatal stroke is based on supportive care. It is currently unknown if treatment of the seizures modifies the outcome, and no clinical studies have focused on seizures during neonatal stroke. We studied the effect of phenobarbital and levetiracetam on an ischemic-reperfusion stroke model in P7 rats using prolonged electroencephalographic recordings and a histologic analysis of the brain (24h after injury). The following two types of epileptic events were observed: 1) bursts of high amplitude spikes during ischemia and the first hours of reperfusion and 2) organized seizures consisting in discharges of a 1-2Hz spike-and-wave. Both phenobarbital and levetiracetam decreased the total duration of the bursts of high amplitude spikes. Phenobarbital also delayed the start of seizures without changing the total duration of epileptic discharges. The markedly limited efficacy of the antiepileptic drugs studied in our neonatal stroke rat model is frequently observed in human neonatal seizures. Both drugs did not modify the stroke volume, which suggests that the modification of the quantity of bursts of high amplitude spikes does not influence the infarct size. In the absence of a reduction in seizure burden by the antiepileptic drugs, we increased the seizure burden and stroke volume by combining our neonatal stroke model with a lithium-pilocarpine-induced status epilepticus. Our data suggest that the reduction of burst of spikes did not influence the stroke volume. The presence of organized seizure with a pattern close to what is observed in human newborns seems related to the presence of the infarct. Further research is required to determine the relationship between seizure burden and infarct volume.
Collapse
|
18
|
Gamdzyk M, Ziembowicz A, Bratek E, Salinska E. Combining hypobaric hypoxia or hyperbaric oxygen postconditioning with memantine reduces neuroprotection in 7-day-old rat hypoxia-ischemia. Pharmacol Rep 2016; 68:1076-83. [PMID: 27552063 DOI: 10.1016/j.pharep.2016.06.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 06/09/2016] [Accepted: 06/10/2016] [Indexed: 01/06/2023]
Abstract
BACKGROUND Perinatal hypoxia-ischemia causes brain injury in neonates, but a fully successful treatment to prevent changes in the brain has yet to be developed. The aim of this study was to evaluate the effect of combining memantine treatment with HBO (2.5 ATA) or HH (0.47 ATA) on neonatal hypoxia-ischemia brain injury. METHODS 7-day old rats were subjected to hypoxia-ischemia (H-I) and treated with combination of memantine and HBO or HH. The brain damage was evaluated by examination of infarct area and the number of apoptotic cells in CA1 region of hippocampus. Additionally, the level of reactive oxygen species (ROS) was measured. RESULTS Memantine, HBO or HH postconditioning applied at short time (1-6h) after H-I, and repeated for two subsequent days, resulted in significant neuroprotection. The reduction in ipsilateral hemisphere weight deficit and in the size of infarct area was observed 14days after H-I. A reduction in apoptosis and ROS level was also observed. Combining memantine with HBO or HH resulted in a loss of neuroprotection. CONCLUSIONS Our results show that, combining HBO or HH postconditioning with memantine produce no additive increase in the neuroprotective effect. On the contrary, combining the treatments resulted in lower neuroprotection in comparison to the effects of memantine, HBO or HH alone.
Collapse
Affiliation(s)
- Marcin Gamdzyk
- Department of Neurochemistry, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warszawa, Poland
| | - Apolonia Ziembowicz
- Department of Neurochemistry, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warszawa, Poland
| | - Ewelina Bratek
- Department of Neurochemistry, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warszawa, Poland
| | - Elzbieta Salinska
- Department of Neurochemistry, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warszawa, Poland.
| |
Collapse
|
19
|
Chen ZZ, Yang DD, Zhao Z, Yan H, Ji J, Sun XL. Memantine mediates neuroprotection via regulating neurovascular unit in a mouse model of focal cerebral ischemia. Life Sci 2016; 150:8-14. [PMID: 26920629 DOI: 10.1016/j.lfs.2016.02.081] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 02/12/2016] [Accepted: 02/22/2016] [Indexed: 01/15/2023]
Abstract
AIMS Memantine is a low-moderate affinity and uncompetitive N-methyl-d-aspartate receptor (NMDAR) antagonist, which is also a potential neuroprotectant in acute ischemic stroke for its particular action profiles. The present study was to reveal the mechanisms involved in the neuroprotection of memantine. MAIN METHODS We used a mouse model of permanent focal cerebral ischemia via middle cerebral artery occlusion to verify our hypothesis. 2,3,5-Triphenyltetrazolium chloride staining was used to compare infarct size. The amount of astrocytes and the somal volume of the microglia cell body were analyzed by immunohistochemistry and stereological estimates. Western blotting was used to determine the protein expressions. KEY FINDINGS Memantine prevented cerebral ischemia-induced brain infarct and neuronal injury, and reduced oxygen-glucose deprivation-induced cortical neuronal apoptosis. Moreover, memantine reduced the amount of the damaged astrocytes and over activated microglia after 24h of ischemia. In the early phase of ischemia, higher production of MMP-9 was observed, and thereby collagen IV was dramatically disrupted. Meanwhile, the post-synaptic density protein 95(PSD-95) was also severely cleavaged. Memantine decreased MMP-9 secretion, prevented the degradation of collagen IV in mouse brain. PSD-95 cleavage was also inhibited by memantine. SIGNIFICANCE These results suggested that memantine exerted neuroprotection effects in acute ischemic brain damage, partially via improving the functions of neurovascular unit. Taking all these findings together, we consider that memantine might be a promising protective agent against ischemic stroke.
Collapse
Affiliation(s)
- Zheng-Zhen Chen
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu 210029, PR China
| | - Dan-Dan Yang
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu 210029, PR China
| | - Zhan Zhao
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu 210029, PR China
| | - Hui Yan
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu 210029, PR China
| | - Juan Ji
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu 210029, PR China
| | - Xiu-Lan Sun
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu 210029, PR China.
| |
Collapse
|
20
|
Kelestemur T, Yulug B, Caglayan AB, Beker MC, Kilic U, Caglayan B, Yalcin E, Gundogdu RZ, Kilic E. Targeting different pathophysiological events after traumatic brain injury in mice: Role of melatonin and memantine. Neurosci Lett 2015; 612:92-97. [PMID: 26639427 DOI: 10.1016/j.neulet.2015.11.043] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 11/12/2015] [Accepted: 11/25/2015] [Indexed: 01/08/2023]
Abstract
The tissue damage that emerges during traumatic brain injury (TBI) is a consequence of a variety of pathophysiological events, including free radical generation and over-activation of N-methyl-d-aspartate-type glutamate receptors (NMDAR). Considering the complex pathophysiology of TBI, we hypothesized that combination of neuroprotective compounds, targeting different events which appear during injury, may be a more promising approach for patients. In this context, both NMDAR antagonist memantine and free radical scavenger melatonin are safe in humans and promising agents for the treatment of TBI. Herein, we examined the effects of melatonin administered alone or in combination with memantine on the activation of signaling pathways, injury development and DNA fragmentation. Both compounds reduced brain injury moderately and the density of DNA fragmentation significantly. Notably, melatonin/memantine combination decreased brain injury and DNA fragmentation significantly, which was associated with reduced p38 and ERK-1/2 phosphorylation. As compared with melatonin and memantine groups, SAPK/JNK-1/2 phosphorylation was also reduced in melatonin/memantine combined animals. In addition, melatonin, memantine and their combination decreased iNOS activity significantly. Here, we provide evidence that melatonin/memantine combination protects brain from traumatic injury, which was associated with decreased DNA fragmentation, p38 phosphorylation and iNOS activity.
Collapse
Affiliation(s)
- Taha Kelestemur
- Department of Physiology, Regenerative and Restorative Medical Research Center, University of Istanbul Medipol, Turkey
| | - Burak Yulug
- Department of Neurology, University of Istanbul Medipol, Turkey
| | - Ahmet Burak Caglayan
- Department of Physiology, Regenerative and Restorative Medical Research Center, University of Istanbul Medipol, Turkey
| | - Mustafa Caglar Beker
- Department of Physiology, Regenerative and Restorative Medical Research Center, University of Istanbul Medipol, Turkey
| | - Ulkan Kilic
- Department of Medical Biology, University of Istanbul Medipol, Turkey
| | - Berrak Caglayan
- Department of Physiology, Regenerative and Restorative Medical Research Center, University of Istanbul Medipol, Turkey
| | - Esra Yalcin
- Department of Physiology, Regenerative and Restorative Medical Research Center, University of Istanbul Medipol, Turkey
| | - Reyhan Zeynep Gundogdu
- Department of Physiology, Regenerative and Restorative Medical Research Center, University of Istanbul Medipol, Turkey
| | - Ertugrul Kilic
- Department of Physiology, Regenerative and Restorative Medical Research Center, University of Istanbul Medipol, Turkey.
| |
Collapse
|
21
|
Min JW, Hu JJ, He M, Sanchez RM, Huang WX, Liu YQ, Bsoul NB, Han S, Yin J, Liu WH, He XH, Peng BW. Vitexin reduces hypoxia-ischemia neonatal brain injury by the inhibition of HIF-1alpha in a rat pup model. Neuropharmacology 2015; 99:38-50. [PMID: 26187393 DOI: 10.1016/j.neuropharm.2015.07.007] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 06/16/2015] [Accepted: 07/07/2015] [Indexed: 01/25/2023]
Abstract
Previous studies have demonstrated that the early suppression of HIF-1α after hypoxia-ischemia (HI) injury provides neuroprotection. Vitexin (5, 7, 4-trihydroxyflavone-8-glucoside), an HIF-1α inhibitor, is a c-glycosylated flavone that has been identified in medicinal plants. Therefore, we hypothesized that treatment with vitexin would protect against HI brain injury. Newborn rat pups were subjected to unilateral carotid artery ligation followed by 2.5 h of hypoxia (8% O2 at 37 °C). Vitexin (30, 45 or 60 mg/kg) was administered intraperitoneally at 5 min or 3 h after HI. Vitexin, administered 5 min after HI, was neuroprotective as seen by decreased infarct volume evaluated at 48 h post-HI. This neuroprotection was removed when vitexin was administered 3 h after HI. Neuronal cell death, blood-brain barrier (BBB) integrity, brain edema, HIF-1α and VEGF protein levels were evaluated using a combination of Nissl staining, IgG staining, brain water content, immunohistochemistry and Western blot at 24 and 48 h after HI. The long-term effects of vitexin were evaluated by brain atrophy measurement, Nissl staining and neurobehavioral tests. Vitexin (45 mg/kg) ameliorated brain edema, BBB disruption and neuronal cell death; Upregulation of HIF-1α by dimethyloxalylglycine (DMOG) increased the BBB permeability and brain edema compared to HI alone. Vitexin attenuated the increase in HIF-1α and VEGF. Vitexin also had long-term effects of protecting against the loss of ipsilateral brain and improveing neurobehavioral outcomes. In conclusion, our data indicate early HIF-1α inhibition with vitexin provides both acute and long-term neuroprotection in the developing brain after neonatal HI injury.
Collapse
Affiliation(s)
- Jia-Wei Min
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disorder, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Jiang-Jian Hu
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disorder, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Miao He
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disorder, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Russell M Sanchez
- Department of Surgery, College of Medicine, Texas A&M Health Science Center, Neuroscience Institute, Scott & White Hospital, & Central Texas Veterans Health Care System, Temple, TX, USA
| | - Wen-Xian Huang
- Department of Pathophysiology, Hubei Provincial Key Laboratory of Developmentally Originated Disorder, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Yu-Qiang Liu
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disorder, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Najeeb Bassam Bsoul
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disorder, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Song Han
- Department of Pathophysiology, Hubei Provincial Key Laboratory of Developmentally Originated Disorder, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Jun Yin
- Department of Pathophysiology, Hubei Provincial Key Laboratory of Developmentally Originated Disorder, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Wan-Hong Liu
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Xiao-Hua He
- Department of Pathophysiology, Hubei Provincial Key Laboratory of Developmentally Originated Disorder, School of Basic Medical Sciences, Wuhan University, Wuhan, China.
| | - Bi-Wen Peng
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disorder, School of Basic Medical Sciences, Wuhan University, Wuhan, China.
| |
Collapse
|
22
|
López-Valdés HE, Clarkson AN, Ao Y, Charles AC, Carmichael ST, Sofroniew MV, Brennan KC. Memantine enhances recovery from stroke. Stroke 2014; 45:2093-2100. [PMID: 24938836 DOI: 10.1161/strokeaha.113.004476] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
BACKGROUND AND PURPOSE Stroke treatment is constrained by limited treatment windows and the clinical inefficacy of agents that showed preclinical promise. Yet animal and clinical data suggest considerable poststroke plasticity, which could allow treatment with recovery-modulating agents. Memantine is a well-tolerated N-methyl-D-aspartate glutamate receptor antagonist in common use for Alzheimer disease. METHODS Memantine, 30 mg/kg per day, or vehicle, was delivered chronically in drinking water beginning >2 hours after photothrombotic stroke. RESULTS Although there was no difference in infarct size, behavior, or optical intrinsic signal maps in the first 7 days after stroke, mice treated chronically with memantine showed significant improvements in motor control, measured by cylinder test and grid-walking performance, compared with vehicle-treated animals. Optical intrinsic signal revealed an increased area of forepaw sensory maps at 28 days after stroke. There was decreased reactive astrogliosis and increased vascular density around the infarcted cortex. Peri-infarct Western blots revealed increased brain-derived neurotrophic factor and phosphorylated-tropomyosin-related kinase-B receptor expression. CONCLUSIONS Our results suggest that memantine improves stroke outcomes in an apparently non-neuroprotective manner involving increased brain-derived neurotrophic factor signaling, reduced reactive astrogliosis, and improved vascularization, associated with improved recovery of sensory and motor cortical function. The clinical availability and tolerability of memantine make it an attractive candidate for clinical translation.
Collapse
Affiliation(s)
| | - Andrew N Clarkson
- Neurology, David Geffen School of Medicine at UCLA.,Anatomy and Psychology, University of Otago
| | - Yan Ao
- Neurobiology, David Geffen School of Medicine at UCLA
| | | | | | | | - K C Brennan
- Neurology, David Geffen School of Medicine at UCLA.,Neurology, University of Utah School of Medicine
| |
Collapse
|
23
|
Neuroprotective effect of levetiracetam on hypoxic ischemic brain injury in neonatal rats. Childs Nerv Syst 2014; 30:1001-9. [PMID: 24526342 DOI: 10.1007/s00381-014-2375-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 01/27/2014] [Indexed: 02/07/2023]
Abstract
PURPOSE Hypoxic-ischemic brain injury that occurs in the perinatal period is one of the leading causes of mental retardation, visual and auditory impairment, motor defects, epilepsy, cerebral palsy, and death in neonates. The severity of apoptosis that develops after ischemic hypoxia and reperfusion is an indication of brain injury. Thus, it may be possible to prevent or reduce injury with treatments that can be given before the reperfusion period following hypoxia and ischemia. Levetiracetam is a new-generation antiepileptic drug that has begun to be used in the treatment of epilepsy. METHODS The present study investigated the effects of levetiracetam on neuronal apoptosis with histopathological and biochemical tests in the early period and behavioral experiments in the late period. RESULTS This study showed histopathologically that levetiracetam reduces the number of apoptotic neurons and has a neuroprotective effect in a neonatal rat model of hypoxic-ischemic brain injury in the early period. On the other hand, we demonstrated that levetiracetam dose dependently improves behavioral performance in the late period. CONCLUSIONS Based on these results, we believe that one mechanism of levetiracetam's neuroprotective effects is due to increases in glutathione peroxidase and superoxide dismutase enzyme levels. To the best of our knowledge, this study is the first to show the neuroprotective effects of levetiracetam in a neonatal rat model of hypoxic-ischemic brain injury using histopathological, biochemical, and late-period behavioral experiments within the same experimental group.
Collapse
|
24
|
Kilic U, Yilmaz B, Reiter R, Yüksel A, Kilic E. Effects of memantine and melatonin on signal transduction pathways vascular leakage and brain injury after focal cerebral ischemia in mice. Neuroscience 2013; 237:268-76. [DOI: 10.1016/j.neuroscience.2013.01.059] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 01/21/2013] [Accepted: 01/22/2013] [Indexed: 12/09/2022]
|
25
|
Pan R, Rong Z, She Y, Cao Y, Chang LW, Lee WH. Sodium pyruvate reduces hypoxic-ischemic injury to neonatal rat brain. Pediatr Res 2012; 72:479-89. [PMID: 22885415 PMCID: PMC3596790 DOI: 10.1038/pr.2012.107] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Neonatal hypoxia-ischemia (HI) remains a major cause of severe brain damage and is often associated with high mortality and lifelong disability. Immature brains are extremely sensitive to HI, shown as prolonged mitochondrial neuronal death. Sodium pyruvate (SP), a substrate of the tricarboxylic acid cycle and an extracellular antioxidant, has been considered as a potential treatment for hypoxic-ischemic encephalopathy, but its effects have not been evaluated in appropriate animal models for hypoxic-ischemic encephalopathy. METHODS This investigation used primary cortical neuron cultures derived from neonatal rats subjected to oxygen and glucose deprivation (OGD) and a well-established neonatal rat HI model. RESULTS HI caused brain tissue loss and impaired sensorimotor function and spatial memory whereas SP significantly reduced brain damage and improved neurological performance. These neuroprotective effects of SP are likely the result of improved cerebral metabolism as demonstrated by maintaining adenosine triphosphate (ATP) levels and preventing an increase in intracellular reactive oxygen species (ROS) levels. SP treatment also decreased levels of Bax, a death signal for immature neurons, blocked caspase-3 activation, and activated a key survival signaling kinase, Akt, both in vitro and in vivo. CONCLUSION SP protected neonatal brain from hypoxic-ischemic injury through maintaining cerebral metabolism and mitochondrial function.
Collapse
Affiliation(s)
- Rui Pan
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China 430030
| | - Zhihui Rong
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China 430030
| | - Yun She
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Yuan Cao
- Department of General Surgery, Pu Ai Hospital of Wuhan City, Hubei, China 430033
| | - Li-Wen Chang
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China 430030
| | - Wei-Hua Lee
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202
| |
Collapse
|
26
|
Kim JY, Jeong HY, Lee HK, Kim S, Hwang BY, Bae K, Seong YH. Neuroprotection of the leaf and stem of Vitis amurensis and their active compounds against ischemic brain damage in rats and excitotoxicity in cultured neurons. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2012; 19:150-159. [PMID: 21778042 DOI: 10.1016/j.phymed.2011.06.015] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Revised: 03/31/2011] [Accepted: 06/16/2011] [Indexed: 05/31/2023]
Abstract
Vitis amurensis (Vitaceae) has been reported to have anti-oxidant and anti-inflammatory activities. The present study investigated a methanol extract from the leaf and stem of V. amurensis for neuroprotective effects on cerebral ischemic damage in rats and on excitotoxicity induced by glutamate in cultured rat cortical neurons. Transient focal cerebral ischemia was induced by 2h middle cerebral artery occlusion followed by 24h reperfusion (MCAO/reperfusion) in rats. Orally administered V. amurensis (25-100 mg/kg) reduced MCAO/reperfusion-induced infarct and edema formation, neurological deficits, and neuronal death. Depletion of glutathione (GSH) level and lipid peroxidation induced by MCAO/reperfusion was inhibited by administration of V. amurensis. The increase of phosphorylated mitogen-activated protein kinases (MAPKs), cyclooxygenase-2 (COX-2), and pro-apoptotic proteins and the decrease of anti-apoptotic protein in MCAO/reperfusion rats were significantly inhibited by treatment with V. amurensis. Exposure of cultured cortical neurons to 500 μM glutamate for 12h induced neuronal cell death. V. amurensis (1-50 μg/ml) and (+)-ampelopsin A, γ-2-viniferin, and trans-ε-viniferin isolated from the leaf and stem of V. amurensis inhibited glutamate-induced neuronal death, the elevation of intracellular calcium ([Ca(2+)](i)), the generation of reactive oxygen species (ROS), and changes of apoptosis-related proteins in cultured cortical neurons, suggesting that the neuroprotective effect of V. amurensis may be partially attributed to these compounds. These results suggest that the neuroprotective effect of V. amurensis against focal cerebral ischemic injury might be due to its anti-apoptotic effect, resulting from anti-excitotoxic, anti-oxidative, and anti-inflammatory effects and that the leaf and stem of V. amurensis have possible therapeutic roles for preventing neurodegeneration in stroke.
Collapse
Affiliation(s)
- Joo Youn Kim
- College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
27
|
Sanches EF, Arteni NS, Spindler C, Moysés F, Siqueira IR, Perry ML, Netto CA. Effects of pre- and postnatal protein malnutrition in hypoxic-ischemic rats. Brain Res 2011; 1438:85-92. [PMID: 22244305 DOI: 10.1016/j.brainres.2011.12.024] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Revised: 12/09/2011] [Accepted: 12/13/2011] [Indexed: 11/17/2022]
Abstract
Neonatal hypoxic-ischemic encephalopathy (HI) is a major cause of nervous system damage and neurological morbidity. Perinatal malnutrition affects morphological, biochemical and behavioral aspects of neural development, including pathophysiological cascades of cell death triggered by ischemic events, so modifying resulting brain damage. Female Wistar rats were subjected to protein restriction during pregnancy and lactation (control group: 25% soybean protein; malnourished group: 7%). Seven days after delivery (PND7), their offspring were submitted to unilateral cerebral HI; rats were then tested for sensorimotor (PND7 and PND60) and memory (PND60) functions. Offspring of malnourished mothers showed marked reduction in body weight starting in lactation and persisting during the entire period of observation. There was a greater sensorimotor deficit after HI in malnourished (M) animals, in righting reflex and in home bedding task, indicating an interaction between diet and hypoxia-ischemia. At PND60, HI rats showed impaired performance when compared to controls in training and test sessions of rota-rod task, however there was no effect of malnutrition per se. In the open field, nourished HI (HI-N) presented an increase in crossings number; this effect was not present in HI-M group. Surprisingly, HI-M rats presented a better performance in inhibitory avoidance task and a smaller hemispheric brain damage as compared to HI-N animals. Our data points to a possible metabolic adaptation in hypoxic-ischemic animals receiving protein malnutrition during pregnancy and lactation; apparently we observed a neuroprotective effect of diet, possibly decreasing the brain energy demand, under a hypoxic-ischemic situation.
Collapse
Affiliation(s)
- Eduardo Farias Sanches
- Programa de Pós-Graduação em Neurociências, ICBS, Universidade Federal do Rio Grande do Sul, Brazil.
| | | | | | | | | | | | | |
Collapse
|
28
|
Developmental regulation of group I metabotropic glutamate receptors in the premature brain and their protective role in a rodent model of periventricular leukomalacia. ACTA ACUST UNITED AC 2011; 6:277-88. [PMID: 22169210 DOI: 10.1017/s1740925x11000111] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Cerebral white matter injury in premature infants, known as periventricular leukomalacia (PVL), is common after hypoxia-ischemia (HI). While ionotropic glutamate receptors (iGluRs) can mediate immature white matter injury, we have previously shown that excitotoxic injury to premyelinating oligodendrocytes (preOLs) in vitro can be attenuated by group I metabotropic glutamate receptor (mGluR) agonists. Thus, we evaluated mGluR expression in developing white matter in rat and human brain, and tested the protective efficacy of a central nervous system (CNS)-penetrating mGluR agonist on injury to developing oligodendrocytes (OLs) in vivo. Group I mGluRs (mGluR1 and mGluR5) were strongly expressed on OLs in neonatal rodent cerebral white matter throughout normal development, with highest expression early in development on preOLs. Specifically at P6, mGluR1 and mGLuR5 were most highly expressed on GalC-positive OLs compared to neurons, axons, astrocytes and microglia. Systemic administration of (1S,3R) 1-aminocyclopentane-trans-1,3,-dicarboxylic acid (ACPD) significantly attenuated the loss of myelin basic protein in the white matter following HI in P6 rats. Assessment of postmortem human tissue showed both mGluR1 and mGluR5 localized on immature OLs in white matter throughout development, with mGluR5 highest in the preterm period. These data indicate group I mGluRs are highly expressed on OLs during the peak period of vulnerability to HI and modulation of mGluRs is protective in a rodent model of PVL. Group I mGluRs may represent important therapeutic targets for protection from HI-mediated white matter injury.
Collapse
|
29
|
Manning SM, Boll G, Fitzgerald E, Selip DB, Volpe JJ, Jensen FE. The clinically available NMDA receptor antagonist, memantine, exhibits relative safety in the developing rat brain. Int J Dev Neurosci 2011; 29:767-73. [PMID: 21624454 PMCID: PMC3282022 DOI: 10.1016/j.ijdevneu.2011.05.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Revised: 04/27/2011] [Accepted: 05/15/2011] [Indexed: 11/25/2022] Open
Abstract
The N-methyl-d-aspartate glutamate receptor (NMDAR) has been implicated in preterm brain injury (periventricular leukomalacia (PVL)) and represents a potential therapeutic target. However, the antagonist dizocilpine (MK-801) has been reported to increase constitutive neuronal apoptosis in the developing rat brain, limiting its clinical use in the developing brain. Memantine is another use-dependent NMDAR antagonist with shorter binding kinetics and has been demonstrated to be protective in a rat model of PVL, without effects on normal myelination or cortical growth. To further evaluate the safety of memantine in the developing brain, we demonstrate here that, in contrast to MK-801, memantine at neuroprotective doses does not increase neuronal constitutive apoptosis. In addition, there are no long-term alterations in the expression of NMDAR subunits, AMPAR subunits, and two markers of synaptogenesis, Synapsin-1 and PSD95. Evaluating clinically approved drugs in preclinical neonatal animal models of early brain development is an important prerequisite to considering them for clinical trial in preterm infants and early childhood.
Collapse
MESH Headings
- Animals
- Animals, Newborn/metabolism
- Apoptosis/drug effects
- Brain/anatomy & histology
- Brain/drug effects
- Brain/growth & development
- Brain/pathology
- Disks Large Homolog 4 Protein
- Dizocilpine Maleate/pharmacology
- Excitatory Amino Acid Antagonists/pharmacology
- Excitatory Amino Acid Antagonists/therapeutic use
- Humans
- In Situ Nick-End Labeling
- Infant, Newborn
- Intracellular Signaling Peptides and Proteins/metabolism
- Leukomalacia, Periventricular/drug therapy
- Leukomalacia, Periventricular/pathology
- Male
- Memantine/pharmacology
- Memantine/therapeutic use
- Membrane Proteins/metabolism
- Neuroprotective Agents/pharmacology
- Neuroprotective Agents/therapeutic use
- Protein Subunits/chemistry
- Protein Subunits/metabolism
- Rats
- Rats, Long-Evans
- Receptors, AMPA/antagonists & inhibitors
- Receptors, AMPA/metabolism
- Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors
- Receptors, N-Methyl-D-Aspartate/chemistry
- Receptors, N-Methyl-D-Aspartate/metabolism
- Synapsins/metabolism
Collapse
Affiliation(s)
- Simon M. Manning
- Department of Neurology, Children’s Hospital Boston and Harvard Medical School, Boston, Massachusetts 02115, USA
- Division of Newborn Medicine, Brigham and Women’s Hospital, Boston, Massachusetts 02115, USA
| | - Griffin Boll
- Department of Neurology, Children’s Hospital Boston and Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Erin Fitzgerald
- Department of Neurology, Children’s Hospital Boston and Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Debra B. Selip
- Department of Neurology, Children’s Hospital Boston and Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Joseph J. Volpe
- Department of Neurology, Children’s Hospital Boston and Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Frances E. Jensen
- Department of Neurology, Children’s Hospital Boston and Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
30
|
Morales P, Bustamante D, Espina-Marchant P, Neira-Peña T, Gutiérrez-Hernández MA, Allende-Castro C, Rojas-Mancilla E. Pathophysiology of perinatal asphyxia: can we predict and improve individual outcomes? EPMA J 2011. [PMID: 23199150 PMCID: PMC3405380 DOI: 10.1007/s13167-011-0100-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Perinatal asphyxia occurs still with great incidence whenever delivery is prolonged, despite improvements in perinatal care. After asphyxia, infants can suffer from short- to long-term neurological sequelae, their severity depend upon the extent of the insult, the metabolic imbalance during the re-oxygenation period and the developmental state of the affected regions. Significant progresses in understanding of perinatal asphyxia pathophysiology have achieved. However, predictive diagnostics and personalised therapeutic interventions are still under initial development. Now the emphasis is on early non-invasive diagnosis approach, as well as, in identifying new therapeutic targets to improve individual outcomes. In this review we discuss (i) specific biomarkers for early prediction of perinatal asphyxia outcome; (ii) short and long term sequelae; (iii) neurocircuitries involved; (iv) molecular pathways; (v) neuroinflammation systems; (vi) endogenous brain rescue systems, including activation of sentinel proteins and neurogenesis; and (vii) therapeutic targets for preventing or mitigating the effects produced by asphyxia.
Collapse
Affiliation(s)
- Paola Morales
- Programme of Molecular & Clinical Pharmacology, ICBM, Medical Faculty, University of Chile, PO Box 70.000, Santiago 7, Chile
| | - Diego Bustamante
- Programme of Molecular & Clinical Pharmacology, ICBM, Medical Faculty, University of Chile, PO Box 70.000, Santiago 7, Chile
| | - Pablo Espina-Marchant
- Programme of Molecular & Clinical Pharmacology, ICBM, Medical Faculty, University of Chile, PO Box 70.000, Santiago 7, Chile
| | - Tanya Neira-Peña
- Programme of Molecular & Clinical Pharmacology, ICBM, Medical Faculty, University of Chile, PO Box 70.000, Santiago 7, Chile
| | - Manuel A. Gutiérrez-Hernández
- Programme of Molecular & Clinical Pharmacology, ICBM, Medical Faculty, University of Chile, PO Box 70.000, Santiago 7, Chile
| | - Camilo Allende-Castro
- Programme of Molecular & Clinical Pharmacology, ICBM, Medical Faculty, University of Chile, PO Box 70.000, Santiago 7, Chile
| | - Edgardo Rojas-Mancilla
- Programme of Molecular & Clinical Pharmacology, ICBM, Medical Faculty, University of Chile, PO Box 70.000, Santiago 7, Chile
| |
Collapse
|
31
|
Abstract
Knowledge of the nature, prognosis, and ways to treat brain lesions in neonatal infants has increased remarkably. Neonatal hypoxic-ischaemic encephalopathy (HIE) in term infants, mirrors a progressive cascade of excito-oxidative events that unfold in the brain after an asphyxial insult. In the laboratory, this cascade can be blocked to protect brain tissue through the process of neuroprotection. However, proof of a clinical effect was lacking until the publication of three positive randomised controlled trials of moderate hypothermia for term infants with HIE. These results have greatly improved treatment prospects for babies with asphyxia and altered understanding of the theory of neuroprotection. The studies show that moderate hypothermia within 6 h of asphyxia improves survival without cerebral palsy or other disability by about 40% and reduces death or neurological disability by nearly 30%. The search is on to discover adjuvant treatments that can further enhance the effects of hypothermia.
Collapse
|
32
|
Kwon KJ, Kim JN, Kim MK, Lee J, Ignarro LJ, Kim HJ, Shin CY, Han SH. Melatonin synergistically increases resveratrol-induced heme oxygenase-1 expression through the inhibition of ubiquitin-dependent proteasome pathway: a possible role in neuroprotection. J Pineal Res 2011; 50:110-23. [PMID: 21073519 DOI: 10.1111/j.1600-079x.2010.00820.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Melatonin is an indoleamine secreted by the pineal gland as well as a plant-derived product, and resveratrol (RSV) is a naturally occurring polyphenol synthesized by a variety of plant species; both molecules act as a neuroprotector and antioxidant. Recent studies have demonstrated that RSV reduced the incidence of Alzheimer's disease and stroke, while melatonin supplementation was found to reduce the progression of the cognitive impairment in AD. The heme oxygenase-1 (HO-1) is an inducible and redox-regulated enzyme that provides tissue-specific antioxidant effects. We assessed whether the co-administration of melatonin and RSV shows synergistic effects in terms of their neuroprotective properties through HO-1. RSV significantly increased the expression levels of HO-1 protein in a concentration-dependent manner both in primary cortical neurons and in astrocytes, while melatonin per se did not. Melatonin + RSV showed a synergistic increase in the expression levels of HO-1 protein but not in the HO-1 mRNA level compared to either melatonin or RSV alone, which is mediated by the activation of PI3K-Akt pathway. Treatment of melatonin + RSV significantly attenuated the neurotoxicity induced by H(2) O(2) in primary cortical neurons and also in organotypic hippocampal slice culture. The blockade of HO-1 induction by shRNA attenuated HO-1 induction by melatonin + RSV and hindered the neuroprotective effects against oxidative stress induced by H(2) O(2) . The treatment of MG132 + RSV mimicked the effects of melatonin + RSV, and melatonin + RSV inhibited ubiquitination of HO-1. These data suggest that melatonin potentiates the neuroprotective effect of RSV against oxidative injury, by enhancing HO-1 induction through inhibiting ubiquitination-dependent proteasome pathway, which may provide an effective means to treat neurodegenerative disorders.
Collapse
Affiliation(s)
- Kyoung Ja Kwon
- Departments of Neurology Pharmacology Rehabilitation, Center for Geriatric Neuroscience Research, Institute of Biomedical Science and Technology, School of Medicine, Konkuk University, Seoul, Korea
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Cheng CY, Su SY, Tang NY, Ho TY, Lo WY, Hsieh CL. Ferulic acid inhibits nitric oxide-induced apoptosis by enhancing GABA(B1) receptor expression in transient focal cerebral ischemia in rats. Acta Pharmacol Sin 2010; 31:889-99. [PMID: 20644551 PMCID: PMC4007809 DOI: 10.1038/aps.2010.66] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Accepted: 05/06/2010] [Indexed: 12/20/2022] Open
Abstract
AIM Ferulic acid (4-hydroxy-3-methoxycinnamic acid, FA) provides neuroprotection against apoptosis in a transient middle cerebral artery occlusion (MCAo) model. This study was to further investigate the anti-apoptotic effect of FA during reperfusion after cerebral ischemia. METHODS Rats were subjected to 90 min of cerebral ischemia followed by 3 or 24 h of reperfusion after which they were sacrificed. RESULTS Intravenous FA (100 mg/kg) administered immediately after middle cerebral artery occlusion (MCAo) or 2 h after reperfusion effectively abrogated the elevation of postsynaptic density-95 (PSD-95), neuronal nitric oxide synthase (nNOS), inducible nitric oxide synthase (iNOS), nitrotyrosine, and cleaved caspase-3 levels as well as apoptosis in the ischemic cortex at 24 h of reperfusion. FA further inhibited Bax translocation, cytochrome c release, and p38 mitogen-activated protein (MAP) kinase phosphorylation. Moreover, FA enhanced the expression of gamma-aminobutyric acid type B receptor subunit 1 (GABA(B1)) in the ischemic cortex at 3 and 24 h of reperfusion. In addition, nitrotyrosine-positive cells colocalized with cleaved caspase-3-positive cells, and phospho-p38 MAP kinase-positive cells colocalized with nitrotyrosine- and Bax-positive cells, indicating a positive relationship among the expression of nitrotyrosine, phospho-p38 MAP kinase, Bax, and cleaved caspase-3. The mutually exclusive expression of GABA(B1) and nitrotyrosine revealed that there is a negative correlation between GABA(B1) and nitrotyrosine expression profiles. Additionally, pretreatment with saclofen, a GABA(B) receptor antagonist, abolished the neuroprotection of FA against nitric oxide (NO)-induced apoptosis. CONCLUSION FA significantly enhances GABA(B1) receptor expression at early reperfusion and thereby provides neuroprotection against p38 MAP kinase-mediated NO-induced apoptosis at 24 h of reperfusion.
Collapse
Affiliation(s)
- Chin-yi Cheng
- Graduate Institute of Acupuncture Science, China Medical University 40402, Taichung, Taiwan, China
- Acupuncture Research Center, China Medical University 40402, Taichung, Taiwan, China
| | - Shan-yu Su
- School of Chinese Medicine, China Medical University 40402, Taichung, Taiwan, China
- Department of Chinese Medicine, China Medical University Hospital 40447, Taichung, Taiwan, China
| | - Nou-ying Tang
- School of Chinese Medicine, China Medical University 40402, Taichung, Taiwan, China
| | - Tin-yun Ho
- School of Chinese Medicine, China Medical University 40402, Taichung, Taiwan, China
| | - Wan-yu Lo
- Graduate Institute of Integrated Medicine, China Medical University 40402, Taichung, Taiwan, China
| | - Ching-liang Hsieh
- Graduate Institute of Acupuncture Science, China Medical University 40402, Taichung, Taiwan, China
- Acupuncture Research Center, China Medical University 40402, Taichung, Taiwan, China
- Department of Chinese Medicine, China Medical University Hospital 40447, Taichung, Taiwan, China
| |
Collapse
|
34
|
Chen XH, Lin ZZ, Liu AM, Ye JT, Luo Y, Luo YY, Mao XX, Liu PQ, Pi RB. The orally combined neuroprotective effects of sodium ferulate and borneol against transient global ischaemia in C57 BL/6J mice. J Pharm Pharmacol 2010; 62:915-23. [DOI: 10.1211/jpp.62.07.0013] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
35
|
Kim YW, Shin JC, An YS. Changes in cerebral glucose metabolism in patients with posttraumatic cognitive impairment after memantine therapy: a preliminary study. Ann Nucl Med 2010; 24:363-9. [DOI: 10.1007/s12149-010-0360-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2010] [Accepted: 02/16/2010] [Indexed: 11/24/2022]
|
36
|
Jeon SJ, Bak HR, Seo JE, Kwon KJ, Kang YS, Kim HJ, Cheong JH, Ryu JH, Ko KH, Shin CY. Synergistic Increase of BDNF Release from Rat Primary Cortical Neuron by Combination of Several Medicinal Plant-Derived Compounds. Biomol Ther (Seoul) 2010. [DOI: 10.4062/biomolther.2010.18.1.039] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
37
|
Thomas SJ, Grossberg GT. Memantine: a review of studies into its safety and efficacy in treating Alzheimer's disease and other dementias. Clin Interv Aging 2009; 4:367-77. [PMID: 19851512 PMCID: PMC2762361 DOI: 10.2147/cia.s6666] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Memantine is an uncompetitive N-methyl-D-aspartate receptor antagonist with moderate affinity. Its mechanism of action is neuroprotective and potentially therapeutic in several neuropsychiatric diseases. It has been approved by the FDA for the treatment of moderate to severe Alzheimer's disease (AD) either as a monotherapy or in combination with cholinesterase inhibitors. This review covers key studies of memantine's safety and efficacy in treating moderate to severe AD. It also covers current research into other dementias including but not exclusively mild AD and vascular dementia. Other studies on the efficacy of memantine for other neuropsychiatric diseases are discussed. Memantine is a safe and effective drug that merits further research on several topics. Clinicians should be aware of new studies and potential uses of memantine because of its safety and efficacy.
Collapse
Affiliation(s)
- Stuart J Thomas
- Department of Neurology and Psychiatry, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - George T Grossberg
- Department of Neurology and Psychiatry, Saint Louis University School of Medicine, St. Louis, MO, USA
| |
Collapse
|