1
|
Effect of Metallothionein-III on Mercury-Induced Chemokine Gene Expression. TOXICS 2018; 6:toxics6030048. [PMID: 30103553 PMCID: PMC6161308 DOI: 10.3390/toxics6030048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 08/02/2018] [Accepted: 08/07/2018] [Indexed: 11/16/2022]
Abstract
Mercury compounds are known to cause central nervous system disorders; however the detailed molecular mechanisms of their actions remain unclear. Methylmercury increases the expression of several chemokine genes, specifically in the brain, while metallothionein-III (MT-III) has a protective role against various brain diseases. In this study, we investigated the involvement of MT-III in chemokine gene expression changes in response to methylmercury and mercury vapor in the cerebrum and cerebellum of wild-type mice and MT-III null mice. No difference in mercury concentration was observed between the wild-type mice and MT-III null mice in any brain tissue examined. The expression of Ccl3 in the cerebrum and of Cxcl10 in the cerebellum was increased by methylmercury in the MT-III null but not the wild-type mice. The expression of Ccl7 in the cerebellum was increased by mercury vapor in the MT-III null mice but not the wild-type mice. However, the expression of Ccl12 and Cxcl12 was increased in the cerebrum by methylmercury only in the wild-type mice and the expression of Ccl3 in the cerebellum was increased by mercury vapor only in the wild-type mice. These results indicate that MT-III does not affect mercury accumulation in the brain, but that it affects the expression of some chemokine genes in response to mercury compounds.
Collapse
|
2
|
Nakamura S, Shimazawa M, Hara H. Physiological Roles of Metallothioneins in Central Nervous System Diseases. Biol Pharm Bull 2018; 41:1006-1013. [DOI: 10.1248/bpb.b17-00856] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Shinsuke Nakamura
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University
| | - Masamitsu Shimazawa
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University
| | - Hideaki Hara
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University
| |
Collapse
|
3
|
Hsu WH, Lin YC, Chen BR, Wu SC, Lee BH. The neuronal protection of a zinc-binding protein isolated from oyster. Food Chem Toxicol 2018; 114:61-68. [PMID: 29432843 DOI: 10.1016/j.fct.2018.02.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 01/22/2018] [Accepted: 02/06/2018] [Indexed: 12/19/2022]
Abstract
Mitochondrial function is applied as oxidative stress and neuronal damage index. In this study, d-galactose was used to induce free radicals production and neuronal damage in HN-h cells, and the effect of novel 43 kDa protein isolated from oyster on anti-mitochondrial dysfunction and zinc-binding ability were evaluated. Crystal violet stain results indicated zinc-binding protein of oyster (ZPO) attenuated neuronal cell death induced by 100 mM of d-galactose on HN-h cells in a dose-dependent manner. ZPO alleviated mitochondrial inactivation, mitochondrial membrane potential decreasing, oxidative stress, and fusion/fission state in non-cytotoxic concentration of d-galactose (50 mM)-treated HN-h cells. ZPO treatment recovered metallathionein-3 (MT-3) decrease and inhibited β- and γ-secretase as well as amyloid beta (Aβ) accumulation in HN-h cells caused by d-galactose induction. These results suggest ZPO could avoid oxidative stress and is a functional protein for zinc concentration maintainability, which has potential for development of functional foods for neuronal protection.
Collapse
Affiliation(s)
- Wei-Hsuan Hsu
- Biochemical Process Technology Department, Center of Excellence for Drug Development, Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan, ROC
| | - Yu-Chun Lin
- Division of Hematology and Oncology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, Taiwan, ROC
| | - Bo-Rui Chen
- Department of Food Science, National Taiwan Ocean University, Keelung, Taiwan, ROC; Doctoral Degree Program in Marine Biotechnology, National Taiwan Ocean University, Keelung, Taiwan, ROC; Doctoral Degree Program in Marine Biotechnology, Academia Sinica, Taipei, Taiwan, ROC
| | - She-Ching Wu
- Department of Food Science, National Chiayi University, Chiayi, Taiwan, ROC.
| | - Bao-Hong Lee
- Division of Hematology and Oncology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, Taiwan, ROC; Department of Chinese Medicine, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, Taiwan, ROC.
| |
Collapse
|
4
|
Metallothionein in Brain Disorders. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:5828056. [PMID: 29085556 PMCID: PMC5632493 DOI: 10.1155/2017/5828056] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 07/17/2017] [Accepted: 08/03/2017] [Indexed: 12/22/2022]
Abstract
Metallothioneins are a family of proteins which are able to bind metals intracellularly, so their main function is to regulate the cellular metabolism of essential metals. There are 4 major isoforms of MTs (I-IV), three of which have been localized in the central nervous system. MT-I and MT-II have been localized in the spinal cord and brain, mainly in astrocytes, whereas MT-III has been found mainly in neurons. MT-I and MT-II have been considered polyvalent proteins whose main function is to maintain cellular homeostasis of essential metals such as zinc and copper, but other functions have also been considered: detoxification of heavy metals, regulation of gene expression, processes of inflammation, and protection against free radicals generated by oxidative stress. On the other hand, the MT-III has been related in events of pathogenesis of neurodegenerative diseases such as Parkinson and Alzheimer. Likewise, the participation of MTs in other neurological disorders has also been reported. This review shows recent evidence about the role of MT in the central nervous system and its possible role in neurodegenerative diseases as well as in brain disorders.
Collapse
|
5
|
Changes in intracellular copper concentration and copper-regulating gene expression after PC12 differentiation into neurons. Sci Rep 2016; 6:33007. [PMID: 27623342 PMCID: PMC5020689 DOI: 10.1038/srep33007] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 08/18/2016] [Indexed: 12/02/2022] Open
Abstract
It is suspected that some neurodegenerative diseases are a result of the disturbance of copper (Cu) homeostasis, although it remains unclear whether the disturbance of Cu homeostasis has aberrant effects on neurons. Herein, we investigated Cu metabolism specifically in neurons in terms of changes in the intracellular Cu concentration and the expression of Cu-regulating genes, such as Cu transporters and metallothioneins (MTs), before and after the differentiation of rat pheochromocytoma cells (PC12 cells) into neurons. After the differentiation, Cu and Zn imaging with fluorescent probes revealed an increase in intracellular Cu concentration. The concentrations of other essential metals, which were determined by an inductively coupled plasma mass spectrometer, were not altered. The mRNA expression of the Cu influx transporter, Ctr1, was decreased after the differentiation, and the differentiated cells acquired tolerance to Cu and cisplatin, another substrate of Ctr1. In addition, the expression of MT-3, a brain-specific isoform, was increased, contrary to the decreased expression of MT-1 and MT-2. Taken together, the differentiation of PC12 cells into neurons induced MT-3 expression, thereby resulting in intracellular Cu accumulation. The decrease in Ctr1 expression was assumed to be a response aimed at abolishing the physiological accumulation of Cu after the differentiation.
Collapse
|
6
|
Ingberg E, Dock H, Theodorsson E, Theodorsson A, Ström JO. Method parameters' impact on mortality and variability in mouse stroke experiments: a meta-analysis. Sci Rep 2016; 6:21086. [PMID: 26876353 PMCID: PMC4753409 DOI: 10.1038/srep21086] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 01/13/2016] [Indexed: 12/17/2022] Open
Abstract
Although hundreds of promising substances have been tested in clinical trials,
thrombolysis currently remains the only specific pharmacological treatment for
ischemic stroke. Poor quality, e.g. low statistical power, in the preclinical
studies has been suggested to play an important role in these failures. Therefore,
it would be attractive to use animal models optimized to minimize unnecessary
mortality and outcome variability, or at least to be able to power studies more
exactly by predicting variability and mortality given a certain experimental setup.
The possible combinations of methodological parameters are innumerous, and an
experimental comparison of them all is therefore not feasible. As an alternative
approach, we extracted data from 334 experimental mouse stroke articles and, using a
hypothesis-driven meta-analysis, investigated the method parameters’
impact on infarct size variability and mortality. The use of Swiss and C57BL6 mice
as well as permanent occlusion of the middle cerebral artery rendered the lowest
variability of the infarct size while the emboli methods increased variability. The
use of Swiss mice increased mortality. Our study offers guidance for researchers
striving to optimize mouse stroke models.
Collapse
Affiliation(s)
- Edvin Ingberg
- Division of Microbiology and Molecular Medicine, Department of Clinical and Experimental Medicine, Linköping University, Department of Clinical Chemistry, Center for Diagnostics, Region Östergötland, Sweden
| | - Hua Dock
- Division of Microbiology and Molecular Medicine, Department of Clinical and Experimental Medicine, Linköping University, Department of Clinical Chemistry, Center for Diagnostics, Region Östergötland, Sweden
| | - Elvar Theodorsson
- Division of Microbiology and Molecular Medicine, Department of Clinical and Experimental Medicine, Linköping University, Department of Clinical Chemistry, Center for Diagnostics, Region Östergötland, Sweden
| | - Annette Theodorsson
- Division of Microbiology and Molecular Medicine, Department of Clinical and Experimental Medicine, Linköping University, Department of Clinical Chemistry, Center for Diagnostics, Region Östergötland, Sweden.,Division of Neuro and Inflammation Science, Department of Clinical and Experimental Medicine, Linköping University, Department of Neurosurgery, Anaesthetics, Operations and Specialty Surgery Center, Region Östergötland, Sweden
| | - Jakob O Ström
- Division of Microbiology and Molecular Medicine, Department of Clinical and Experimental Medicine, Linköping University, Department of Clinical Chemistry, Center for Diagnostics, Region Östergötland, Sweden.,Vårdvetenskapligt Forskningscentrum/Centre for Health Sciences, Örebro University Hospital, County Council of Örebro, Örebro, Sweden.,School of Health and Medical Sciences, Örebro University, Örebro, Sweden
| |
Collapse
|
7
|
Assessment of the Therapeutic Potential of Metallothionein-II Application in Focal Cerebral Ischemia In Vitro and In Vivo. PLoS One 2015; 10:e0144035. [PMID: 26658636 PMCID: PMC4682799 DOI: 10.1371/journal.pone.0144035] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 11/12/2015] [Indexed: 01/17/2023] Open
Abstract
Metallothionein-II (MT-II) is an ubiquitously expressed small-molecular-weight protein and highly induced in various species and tissues upon stress, inflammation, and ischemia. MT-deficiency exacerbates ischemic injury in rodent stroke models in vitro and in vivo. However, there is conflicting data on the potential neuroprotective effect of exogenously applied metallothionein. Thus, we applied MT-II in an in vitro stroke model and intraperitoneally (i.p.) in two in vivo standard models of transient middle cerebral artery occlusion (MCAO) (a ‘stringent’ one [60min MCAO/48h reperfusion] and a ‘mild’ one [30min MCAO/72h reperfusion]), as well as i.v. together with recombinant tissue plasminogen activator (rtPA) to evaluate if exogenous MT-II-application protects against ischemic stroke. Whereas MT-II did not protect against 60min MCAO, there was a significant reduction of direct and indirect infarct volumes and neurological deficit in the MT-II (i.p.) treated animals in the ‘mild’ model at 3d after MCAO. Furthermore, MT-II also improved survival of the mice after MCAO, suppressed TNF-α mRNA induction in ischemic brain tissue, and protected primary neuronal cells against oxygen-glucose-deprivation in vitro. Thus, exogenous application of MT-II protects against ischemic injury in vitro and in vivo. However, long-term studies with different species and larger sampling sizes are required before a clinical use can be envisaged.
Collapse
|
8
|
Yoshikawa A, Kamide T, Hashida K, Ta HM, Inahata Y, Takarada-Iemata M, Hattori T, Mori K, Takahashi R, Matsuyama T, Hayashi Y, Kitao Y, Hori O. Deletion of Atf6α impairs astroglial activation and enhances neuronal death following brain ischemia in mice. J Neurochem 2015; 132:342-53. [PMID: 25351847 DOI: 10.1111/jnc.12981] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 10/22/2014] [Accepted: 10/22/2014] [Indexed: 01/02/2023]
Abstract
To dissect the role of endoplasmic reticulum (ER) stress and unfolded protein response in brain ischemia, we investigated the relevance of activating transcription factor 6α (ATF6α), a master transcriptional factor in the unfolded protein response, after permanent middle cerebral artery occlusion (MCAO) in mice. Enhanced expression of glucose-regulated protein78, a downstream molecular chaperone of ATF6α, was observed in both neurons and glia in the peri-infarct region of wild-type mice after MCAO. Analysis using wild-type and Atf6α(-/-) mice revealed a larger infarct volume and increased cell death in the peri-ischemic region of Atf6α(-/-) mice 5 days after MCAO. These phenotypes in Atf6α(-/-) mice were associated with reduced levels of astroglial activation/glial scar formation, and a spread of tissue damage into the non-infarct area. Further analysis in mice and cultured astrocytes revealed that signal transducer and activator of transcription 3 (STAT3)-glial fibrillary acidic protein signaling were diminished in Atf6α(-/-) astrocytes. A chemical chaperone, 4-phenylbutyrate, restored STAT3-glial fibrillary acidic protein signaling, while ER stressors, such as tunicamycin and thapsigargin, almost completely abolished signaling in cultured astrocytes. Furthermore, ER stress-induced deactivation of STAT3 was mediated, at least in part, by the ER stress-responsive tyrosine phosphatase, TC-PTP/PTPN2. These results suggest that ER stress plays critical roles in determining the level of astroglial activation and neuronal survival after brain ischemia.
Collapse
Affiliation(s)
- Akifumi Yoshikawa
- Department of Neurosurgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa City, Ishikawa, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Bolognin S, Pasqualetto F, Mucignat-Caretta C, Scancar J, Milacic R, Zambenedetti P, Cozzi B, Zatta P. Effects of a copper-deficient diet on the biochemistry, neural morphology and behavior of aged mice. PLoS One 2012; 7:e47063. [PMID: 23071712 PMCID: PMC3468563 DOI: 10.1371/journal.pone.0047063] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Accepted: 09/07/2012] [Indexed: 12/20/2022] Open
Abstract
Copper dyshomeostasis has been suggested as an aetiological risk factor for some neurodegenerative diseases, such as Alzheimer’s disease. However, the precise mechanism at the base of this involvement is still obscure. In this work, we show the effects of a copper-deficient diet in aged CD1 mice and the influence of such a diet on: a) the concentration of various metal ions (aluminium, copper, iron, calcium, zinc) in the main organs and in different brain areas; b) the alteration of metallothioneins I-II and tyrosine hydroxylase immunopositivity in the brain; c) behavioural tests (open field, pole, predatory aggression, and habituation/dishabituation smell tests). Our data suggested that the copper-deficiency was able to produce a sort of “domino effect” which altered the concentration of the other tested metal ions in the main organs as well as in the brain, without, however, significantly affecting the animal behaviour.
Collapse
Affiliation(s)
- Silvia Bolognin
- CNR-Institute for Biomedical Technologies, Metalloproteins Unit, Department of Biology, University of Padova, Padova, Italy
| | - Federica Pasqualetto
- CNR-Institute for Biomedical Technologies, Metalloproteins Unit, Department of Biology, University of Padova, Padova, Italy
| | | | - Janez Scancar
- Department of Environmental Sciences, Jozef Stefan Institute, Ljubljana, Slovenia
| | - Radmila Milacic
- Department of Environmental Sciences, Jozef Stefan Institute, Ljubljana, Slovenia
| | | | - Bruno Cozzi
- Department of Experimental Veterinary Science, University of Padova, Legnaro (PD), Italy
- * E-mail: (PZ); (BC)
| | - Paolo Zatta
- CNR-Institute for Biomedical Technologies, Metalloproteins Unit, Department of Biology, University of Padova, Padova, Italy
- * E-mail: (PZ); (BC)
| |
Collapse
|
10
|
Sohn EJ, Kim DW, Kim MJ, Jeong HJ, Shin MJ, Ahn EH, Kwon SW, Kim YN, Kim DS, Han KH, Park J, Hwang HS, Eum WS, Choi SY. PEP-1–metallothionein-III protein ameliorates the oxidative stress-induced neuronal cell death and brain ischemic insults. Biochim Biophys Acta Gen Subj 2012; 1820:1647-55. [DOI: 10.1016/j.bbagen.2012.06.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Revised: 06/06/2012] [Accepted: 06/19/2012] [Indexed: 01/13/2023]
|
11
|
Affiliation(s)
- Kasper P Kepp
- DTU Chemistry, Technical University of Denmark, DK 2800 Kongens Lyngby, Denmark.
| |
Collapse
|
12
|
Santos CRA, Martinho A, Quintela T, Gonçalves I. Neuroprotective and neuroregenerative properties of metallothioneins. IUBMB Life 2011; 64:126-35. [DOI: 10.1002/iub.585] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Accepted: 09/09/2011] [Indexed: 12/30/2022]
|
13
|
Ma F, Wang H, Chen B, Wang F, Xu H. Metallothionein 3 attenuated the apoptosis of neurons in the CA1 region of the hippocampus in the senescence-accelerated mouse/PRONE8 (SAMP8). ARQUIVOS DE NEURO-PSIQUIATRIA 2011; 69:105-11. [PMID: 21359432 DOI: 10.1590/s0004-282x2011000100020] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2010] [Accepted: 06/18/2010] [Indexed: 11/21/2022]
Abstract
OBJECTIVE Metallothionein 3 (MT-3) has been shown to protect against apoptotic neuronal death in the brains of patients with Alzheimer's disease. Zinc is a potent inhibitor of caspase-3 and its deficiency was found to promote apoptosis. Here, we measured the zinc and copper content in the brains of senescence-accelerated mouse/PRONE8 (SAMP8) and sought to investigate the effect of MT-3 on the apoptosis of neurons in the hippocampal CA1 region of these mice. METHOD The zinc and copper content in the brain samples of SAMP8 and normal control SAMR1 mice were determined using an atomic absorption spectrophotometer. The mice were administered intraperitoneally for four weeks with MT-3 or MT1 and thereafter apoptosis was measured using the TUNEL method and the expression of anti-apoptotic protein Bcl-2 and proapoptotic protein Bax was examined by immunohistochemistry. RESULTS Compared with that in SMAR1 mice, the content of zinc in the brains of SAMP8 mice was significantly reduced (P<0.05). Moreover, significant levels of apoptosis of neurons were observed in the hippocampus of SAMP8 mice, which, compared with those in SMAR1 mice, also showed significantly lower levels of Bcl-2 and higher levels of Bax (P<0.05). MT-3 increased zinc concentration in the hippocampus of SAMP8 mice and also significantly decreased apoptosis in these neurons dose-dependently and increased the levels of Bcl-2 and decreased the levels of Bax. CONCLUSION MT-3 could attenuate apoptotic neuron death in the hippocampus of SAMP8, suggesting that the protein may lessen the development of neurodegeneration.
Collapse
Affiliation(s)
- Feiyu Ma
- Department of Neurology, Shantou Central Hospital, Sun Yat-sen University, Guangdong, China
| | | | | | | | | |
Collapse
|
14
|
Shuttleworth CW, Weiss JH. Zinc: new clues to diverse roles in brain ischemia. Trends Pharmacol Sci 2011; 32:480-6. [PMID: 21621864 DOI: 10.1016/j.tips.2011.04.001] [Citation(s) in RCA: 132] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Revised: 04/19/2011] [Accepted: 04/21/2011] [Indexed: 12/22/2022]
Abstract
Cerebral ischemia is a leading cause of morbidity and mortality, reflecting the extraordinary sensitivity of the brain to a brief loss of blood flow. A significant goal has been to identify pathways of neuronal injury that are selectively activated after stroke and may be amenable to drug therapy. An important advance was made nearly 25 years ago when Ca(2+) overload was implicated as a critical link between glutamate excitotoxicity and ischemic neurodegeneration. However, early hope for effective therapies faded as glutamate-targeted trials repeatedly failed to demonstrate efficacy in humans. In a review in 2000 in this journal, we described new evidence linking a related cation, zinc (Zn(2+)), to neuronal injury, emphasizing sources and mechanisms of Zn(2+) toxicity. The current review highlights progress over the last decade, emphasizing mechanisms through which Zn(2+) ions (from multiple sources) participate together with Ca(2+) in different stages of cascades of ischemic injury.
Collapse
Affiliation(s)
- C William Shuttleworth
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque NM 87131, USA
| | | |
Collapse
|
15
|
Oyagi A, Morimoto N, Hamanaka J, Ishiguro M, Tsuruma K, Shimazawa M, Hara H. Forebrain specific heparin-binding epidermal growth factor-like growth factor knockout mice show exacerbated ischemia and reperfusion injury. Neuroscience 2011; 185:116-24. [PMID: 21524692 DOI: 10.1016/j.neuroscience.2011.04.034] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Revised: 04/12/2011] [Accepted: 04/12/2011] [Indexed: 01/28/2023]
Abstract
Heparin-binding epidermal growth factor-like growth factor (HB-EGF) is a hypoxia-inducible neuroprotective protein that also stimulates proliferation of neuronal precursor cells. In this study, we investigated the possible role of HB-EGF in ischemia and reperfusion injury by measuring the changes in its mRNA expression following focal cerebral ischemia. We also examined neural damage after a middle cerebral artery occlusion (MCAO) and reperfusion in ventral forebrain specific HB-EGF knockout (KO) mice. The levels of HB-EGF mRNA in the cerebral cortex of wild-type (WT) mice were significantly increased 3-24 h after MCAO and reperfusion. Cerebral infraction in HB-EGF KO mice was aggravated at 1 day and 6 days after MCAO and reperfusion compared with WT mice. The number of terminal deoxynucleotidyl transferase (TdT)-mediated dNTP nick end labeling (TUNEL) and an oxidative stress marker, 8-hydroxy-2'-deoxyguanosine (8-OHdG) positive cells, were higher in HB-EGF KO mice than in WT mice. On the other hand, fewer bromodeoxyuridine (BrdU) positive cells were found in the subventricular zone in HB-EGF KO mice compared with WT mice. These results indicate that HB-EGF may play a pivotal role in ischemia and reperfusion injury and that endogenously synthesized HB-EGF is necessary for both the neuroprotective effect and for regulation of cell proliferation in the subventricular zone.
Collapse
Affiliation(s)
- A Oyagi
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| | | | | | | | | | | | | |
Collapse
|
16
|
Barrette B, Calvo E, Vallières N, Lacroix S. Transcriptional profiling of the injured sciatic nerve of mice carrying the Wld(S) mutant gene: identification of genes involved in neuroprotection, neuroinflammation, and nerve regeneration. Brain Behav Immun 2010; 24:1254-67. [PMID: 20688153 DOI: 10.1016/j.bbi.2010.07.249] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Revised: 07/29/2010] [Accepted: 07/29/2010] [Indexed: 12/21/2022] Open
Abstract
Wallerian degeneration (WD) involves the fragmentation of axonal segments disconnected from their cell bodies, segmentation of the myelin sheath, and removal of debris by Schwann cells and immune cells. The removal and downregulation of myelin-associated inhibitors of axonal regeneration and synthesis of growth factors by these two cell types are critical responses to successful nerve repair. Here, we analyzed the transcriptome of the sciatic nerve of mice carrying the Wallerian degeneration slow (Wld(S)) mutant gene, a gene that confers axonal protection in the distal stump after injury, therefore causing significant delays in WD, neuroinflammation, and axonal regeneration. Of the thousands of genes analyzed by microarray, 719 transcripts were differentially expressed between Wld(S) and wild-type (wt) mice. Notably, the Nmnat1, a transcript contained within the sequence of the Wld(S) gene, was upregulated by five to eightfold in the sciatic nerve of naive Wld(S) mice compared with wt. The injured sciatic nerve of wt could be further distinguished from the one of Wld(S) mice by the preferential upregulation of genes involved in axonal processes and plasticity (Chl1, Epha5, Gadd45b, Jun, Nav2, Nptx1, Nrcam, Ntm, Sema4f), inflammation and immunity (Arg1, Lgals3, Megf10, Panx1), growth factors/cytokines and their receptors (Clcf1, Fgf5, Gdnf, Gfrα1, Il7r, Lif, Ngfr/p75(NTR), Shh), and cell adhesion and extracellular matrix (Adam8, Gpc1, Mmp9, Tnc). These results will help understand how the nervous and immune systems interact to modulate nerve repair, and identify the molecules that drive these responses.
Collapse
Affiliation(s)
- Benoit Barrette
- Laboratory of Endocrinology and Genomics, Department of Molecular Medicine, Université Laval, CHUL Research Center, Québec, Canada
| | | | | | | |
Collapse
|
17
|
Attenuation of cadmium-induced testicular injury in metallothionein-III null mice. Life Sci 2010; 87:545-50. [DOI: 10.1016/j.lfs.2010.09.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Revised: 08/24/2010] [Accepted: 09/07/2010] [Indexed: 01/11/2023]
|
18
|
Zbinden S, Wang J, Adenika R, Schmidt M, Tilan JU, Najafi AH, Peng X, Lassance-Soares RM, Iantorno M, Morsli H, Gercenshtein L, Jang GJ, Epstein SE, Burnett MS. Metallothionein enhances angiogenesis and arteriogenesis by modulating smooth muscle cell and macrophage function. Arterioscler Thromb Vasc Biol 2010; 30:477-82. [PMID: 20056912 DOI: 10.1161/atvbaha.109.200949] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE In a previous study we identified metallothionein (MT) as a candidate gene potentially influencing collaterogenesis. In this investigation, we determined the effect of MT on collaterogenesis and examined the mechanisms contributing to the effects we found. METHODS AND RESULTS Collateral blood flow recovery was assessed using laser Doppler perfusion imaging, and angiogenesis was measured using a Matrigel plug assay. Smooth muscle cells were isolated from MT knockout (KO) mice for functional assays. Gene expression of matrix metalloproteinase-9, platelet-derived growth factor, vascular endothelial growth factor, and Fat cadherin in smooth muscle cells was measured by real-time polymerase chain reaction, and protein levels of vascular endothelial growth factor and matrix metalloproteinase-9 were determined using enzyme-linked immunosorbent assay and Western blot. CD11b(+) macrophages were tested for invasiveness using a real-time impedance assay. Both flow recovery and angiogenesis were impaired in MT KO mice. Proliferation, migration, and invasion were decreased in MT KO smooth muscle cells, and matrix metalloproteinase-9, platelet-derived growth factor, and vascular endothelial growth factor expression were also decreased, whereas FAT-1 cadherin expression was elevated. MT KO CD11b(+) cells were more invasive than wild-type cells. CONCLUSIONS MT plays an important role in collateral flow recovery and angiogenesis, an activity that appears to be mediated, in part, by the effects of MT on the functionality of 3 cell types essential for these processes: endothelial cells, smooth muscle cells, and macrophages.
Collapse
Affiliation(s)
- Stephan Zbinden
- Cardiovascular Research Institute, MedStar Research Institute, 108 Irving Street, NW, Room 214, Washington, DC 20010, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Honda A, Komuro H, Hasegawa T, Seko Y, Shimada A, Nagase H, Hozumi I, Inuzuka T, Hara H, Fujiwara Y, Satoh M. Resistance of metallothionein-III null mice to cadmium-induced acute hepatotoxicity. J Toxicol Sci 2010; 35:209-15. [DOI: 10.2131/jts.35.209] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Akiko Honda
- Laboratory of Pharmaceutical Health Sciences, School of Pharmacy, Aichi Gakuin University
- Laboratory of Hygienic Chemistry and Molecular Toxicology, Gifu Pharmaceutical University
| | - Hiroaki Komuro
- Laboratory of Pharmaceutical Health Sciences, School of Pharmacy, Aichi Gakuin University
| | - Tatsuya Hasegawa
- Department of Environmental Biochemistry, Yamanashi Institute of Environmental Sciences
| | - Yoshiyuki Seko
- Department of Environmental Biochemistry, Yamanashi Institute of Environmental Sciences
| | - Akinori Shimada
- Department of Veterinary Pathology, Faculty of Agriculture, Tottori University
| | - Hisamitsu Nagase
- Laboratory of Hygienic Chemistry and Molecular Toxicology, Gifu Pharmaceutical University
| | - Isao Hozumi
- Department of Neurology and Geriatrics, Gifu University Graduate School of Medicine
| | - Takashi Inuzuka
- Department of Neurology and Geriatrics, Gifu University Graduate School of Medicine
| | - Hideaki Hara
- Department of Biofunctional Evaluation, Molecular Pharmacology, Gifu Pharmaceutical University
| | - Yasuyuki Fujiwara
- Laboratory of Pharmaceutical Health Sciences, School of Pharmacy, Aichi Gakuin University
| | - Masahiko Satoh
- Laboratory of Pharmaceutical Health Sciences, School of Pharmacy, Aichi Gakuin University
| |
Collapse
|
20
|
Pountney DL, Dickson TC, Power JHT, Vickers JC, West AJ, Gai WP. Association of Metallothionein-III with Oligodendroglial Cytoplasmic Inclusions in Multiple System Atrophy. Neurotox Res 2009; 19:115-22. [DOI: 10.1007/s12640-009-9146-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Revised: 12/11/2009] [Accepted: 12/15/2009] [Indexed: 01/04/2023]
|