1
|
Walmsley R, Steele DS, Papaspyros S, Smith AJ. Sunitinib malate induces cell death in adult human cardiac progenitor cells. Curr Res Toxicol 2024; 6:100167. [PMID: 38659494 PMCID: PMC11039331 DOI: 10.1016/j.crtox.2024.100167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 04/03/2024] [Accepted: 04/15/2024] [Indexed: 04/26/2024] Open
Abstract
Sunitinib malate is known to cause cardiotoxicity in a sub-population of patients, with heart failure seen in more severe cases. Cardiac progenitor cells (CPCs) have been identified in adult human myocardium and contribute to overall tissue maintenance, with previous work identifying negative impacts of sunitinib on these cells. This study aimed to characterise the toxic effects of sunitinib in human CPCs, applying sunitinib concentrations equivalent to clinical plasma levels to these cells in vitro. Cell viability was reduced by 26.5 ± 6.6 % by 2 μM sunitinib for 24 h (p < 0.01); this concentration also induced fold-change increases in gene expression of: calpain (3.1 ± 0.73, p < 0.05), FAS (2.3 ± 0.8, p < 0.05) and BAX (1.9 ± 0.2, p < 0.05), and a decrease in BCL-2 (3.5 ± 0.0, p < 0.001), vs. control (1.0 ± 0.0). This was affirmed by sunitinib inducing fold changes in protein expression of: calpain-1 (2.5 ± 0.5, p < 0.05); FAS receptor (2.1 ± 0.2, p < 0.05) and BAX (2.1 ± 0.2, p < 0.05) vs. control (1.0 ± 0.0). These results indicated that sunitinib induced apoptosis in CPCs, but negative annexin V staining and lack of protection by caspase inhibitors indicated this was not the cell death pathway activated. Further investigation found sunitinib was concentrated in the lysosomes and autophagosomes within CPCs, but did not induce accumulation of acidic organelles. In conclusion, these data confirm that cell death is caused by sunitinib in CPCs at concentrations equivalent to clinical plasma levels, inducing cell death pathway signals that lead to non-apoptotic cell death.
Collapse
Affiliation(s)
- Robert Walmsley
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, United Kingdom
| | - Derek S. Steele
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, United Kingdom
| | - Sotiris Papaspyros
- Department of Cardiac Surgery, Yorkshire Heart Centre, Leeds General Infirmary, Leeds LS1 3EX, United Kingdom
| | - Andrew J. Smith
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, United Kingdom
| |
Collapse
|
2
|
Walmsley R, Steele DS, Ellison-Hughes GM, Papaspyros S, Smith AJ. Imatinib Mesylate Induces Necroptotic Cell Death and Impairs Autophagic Flux in Human Cardiac Progenitor Cells. Int J Mol Sci 2022; 23:11812. [PMID: 36233113 PMCID: PMC9570431 DOI: 10.3390/ijms231911812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/07/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022] Open
Abstract
The receptor tyrosine kinase inhibitor imatinib improves patient cancer survival but is linked to cardiotoxicity. This study investigated imatinib's effects on cell viability, apoptosis, autophagy, and necroptosis in human cardiac progenitor cells in vitro. Imatinib reduced cell viability (75.9 ± 2.7% vs. 100.0 ± 0.0%) at concentrations comparable to peak plasma levels (10 µM). Imatinib reduced cells' TMRM fluorescence (74.6 ± 6.5% vs. 100.0 ± 0.0%), consistent with mitochondrial depolarisation. Imatinib increased lysosome and autophagosome content as indicated by LAMP2 expression (2.4 ± 0.3-fold) and acridine orange fluorescence (46.0 ± 5.4% vs. 9.0 ± 3.0), respectively. Although imatinib increased expression of autophagy-associated proteins and also impaired autophagic flux, shown by proximity ligation assay staining for LAMP2 and LC3II (autophagosome marker): 48 h of imatinib treatment reduced visible puncta to 2.7 ± 0.7/cell from 11.3 ± 2.1 puncta/cell in the control. Cell viability was partially recovered by autophagosome inhibition by wortmannin, with the viability increasing 91.8 ± 8.2% after imatinib-wortmannin co-treatment (84 ± 1.5% after imatinib). Imatinib-induced necroptosis was associated with an 8.5 ± 2.5-fold increase in mixed lineage kinase domain-like pseudokinase activation. Imatinib-induced toxicity was rescued by RIP1 inhibition: 88.6 ± 3.0% vs. 100.0 ± 0.0% in the control. Imatinib applied to human cardiac progenitor cells depolarises mitochondria and induces cell death through necroptosis, recoverable by RIP1 inhibition, with a partial role for autophagy.
Collapse
Affiliation(s)
- Robert Walmsley
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, UK
| | - Derek S. Steele
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, UK
| | - Georgina M. Ellison-Hughes
- Centre for Human and Applied Physiological Sciences & Centre for Stem Cell and Regenerative Medicine, Faculty of Life Sciences and Medicine, Guy’s Campus, King’s College London, London SE1 1UL, UK
| | - Sotiris Papaspyros
- Department of Cardiac Surgery, Yorkshire Heart Centre, Leeds General Infirmary, Leeds LS1 3EX, UK
| | - Andrew J. Smith
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, UK
- Centre for Human and Applied Physiological Sciences & Centre for Stem Cell and Regenerative Medicine, Faculty of Life Sciences and Medicine, Guy’s Campus, King’s College London, London SE1 1UL, UK
| |
Collapse
|
3
|
Receptor tyrosine kinase inhibitors negatively impact on pro-reparative characteristics of human cardiac progenitor cells. Sci Rep 2022; 12:10132. [PMID: 35710779 PMCID: PMC9203790 DOI: 10.1038/s41598-022-13203-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 05/23/2022] [Indexed: 12/21/2022] Open
Abstract
Receptor tyrosine kinase inhibitors improve cancer survival but their cardiotoxicity requires investigation. We investigated these inhibitors’ effects on human cardiac progenitor cells in vitro and rat heart in vivo. We applied imatinib, sunitinib or sorafenib to human cardiac progenitor cells, assessing cell viability, proliferation, stemness, differentiation, growth factor production and second messengers. Alongside, sunitinib effects were assessed in vivo. Inhibitors decreased (p < 0.05) cell viability, at levels equivalent to ‘peak’ (24 h; imatinib: 91.5 ± 0.9%; sunitinib: 83.9 ± 1.8%; sorafenib: 75.0 ± 1.6%) and ‘trough’ (7 days; imatinib: 62.3 ± 6.2%; sunitinib: 86.2 ± 3.5%) clinical plasma levels, compared to control (100% viability). Reduced (p < 0.05) cell cycle activity was seen with imatinib (29.3 ± 4.3% cells in S/G2/M-phases; 50.3 ± 5.1% in control). Expression of PECAM-1, Nkx2.5, Wnt2, linked with cell differentiation, were decreased (p < 0.05) 2, 2 and 6-fold, respectively. Expression of HGF, p38 and Akt1 in cells was reduced (p < 0.05) by sunitinib. Second messenger (p38 and Akt1) blockade affected progenitor cell phenotype, reducing c-kit and growth factor (HGF, EGF) expression. Sunitinib for 9 days (40 mg/kg, i.p.) in adult rats reduced (p < 0.05) cardiac ejection fraction (68 ± 2% vs. baseline (83 ± 1%) and control (84 ± 4%)) and reduced progenitor cell numbers. Receptor tyrosine kinase inhibitors reduce cardiac progenitor cell survival, proliferation, differentiation and reparative growth factor expression.
Collapse
|
4
|
Ahtiainen A, Genocchi B, Tanskanen JMA, Barros MT, Hyttinen JAK, Lenk K. Astrocytes Exhibit a Protective Role in Neuronal Firing Patterns under Chemically Induced Seizures in Neuron-Astrocyte Co-Cultures. Int J Mol Sci 2021; 22:12770. [PMID: 34884577 PMCID: PMC8657549 DOI: 10.3390/ijms222312770] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 12/12/2022] Open
Abstract
Astrocytes and neurons respond to each other by releasing transmitters, such as γ-aminobutyric acid (GABA) and glutamate, that modulate the synaptic transmission and electrochemical behavior of both cell types. Astrocytes also maintain neuronal homeostasis by clearing neurotransmitters from the extracellular space. These astrocytic actions are altered in diseases involving malfunction of neurons, e.g., in epilepsy, Alzheimer's disease, and Parkinson's disease. Convulsant drugs such as 4-aminopyridine (4-AP) and gabazine are commonly used to study epilepsy in vitro. In this study, we aim to assess the modulatory roles of astrocytes during epileptic-like conditions and in compensating drug-elicited hyperactivity. We plated rat cortical neurons and astrocytes with different ratios on microelectrode arrays, induced seizures with 4-AP and gabazine, and recorded the evoked neuronal activity. Our results indicated that astrocytes effectively counteracted the effect of 4-AP during stimulation. Gabazine, instead, induced neuronal hyperactivity and synchronicity in all cultures. Furthermore, our results showed that the response time to the drugs increased with an increasing number of astrocytes in the co-cultures. To the best of our knowledge, our study is the first that shows the critical modulatory role of astrocytes in 4-AP and gabazine-induced discharges and highlights the importance of considering different proportions of cells in the cultures.
Collapse
Affiliation(s)
- Annika Ahtiainen
- Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland; (J.M.A.T.); (M.T.B.); (J.A.K.H.); (K.L.)
| | - Barbara Genocchi
- Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland; (J.M.A.T.); (M.T.B.); (J.A.K.H.); (K.L.)
| | - Jarno M. A. Tanskanen
- Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland; (J.M.A.T.); (M.T.B.); (J.A.K.H.); (K.L.)
| | - Michael T. Barros
- Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland; (J.M.A.T.); (M.T.B.); (J.A.K.H.); (K.L.)
- School of Computer Science and Electronic Engineering, University of Essex, Colchester CO4 3SQ, UK
| | - Jari A. K. Hyttinen
- Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland; (J.M.A.T.); (M.T.B.); (J.A.K.H.); (K.L.)
| | - Kerstin Lenk
- Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland; (J.M.A.T.); (M.T.B.); (J.A.K.H.); (K.L.)
- Institute of Neural Engineering, Graz University of Technology, 8010 Graz, Austria
- BioTechMed, 8010 Graz, Austria
| |
Collapse
|
5
|
Schlabitz S, Monni L, Ragot A, Dipper-Wawra M, Onken J, Holtkamp M, Fidzinski P. Spatiotemporal Correlation of Epileptiform Activity and Gene Expression in vitro. Front Mol Neurosci 2021; 14:643763. [PMID: 33859552 PMCID: PMC8042243 DOI: 10.3389/fnmol.2021.643763] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/03/2021] [Indexed: 11/14/2022] Open
Abstract
Epileptiform activity alters gene expression in the central nervous system, a phenomenon that has been studied extensively in animal models. Here, we asked whether also in vitro models of seizures are in principle suitable to investigate changes in gene expression due to epileptiform activity and tested this hypothesis mainly in rodent and additionally in some human brain slices. We focused on three genes relevant for seizures and epilepsy: FOS proto-oncogene (c-Fos), inducible cAMP early repressor (Icer) and mammalian target of rapamycin (mTor). Seizure-like events (SLEs) were induced by 4-aminopyridine (4-AP) in rat entorhinal-hippocampal slices and by 4-AP/8 mM potassium in human temporal lobe slices obtained from surgical treatment of epilepsy. SLEs were monitored simultaneously by extracellular field potentials and intrinsic optical signals (IOS) for 1–4 h, mRNA expression was quantified by real time PCR. In rat slices, both duration of SLE exposure and SLE onset region were associated with increased expression of c-Fos and Icer while no such association was shown for mTor expression. Similar to rat slices, c-FOS induction in human tissue was increased in slices with epileptiform activity. Our results indicate that irrespective of limitations imposed by ex vivo conditions, in vitro models represent a suitable tool to investigate gene expression. Our finding is of relevance for the investigation of human tissue that can only be performed ex vivo. Specifically, it presents an important prerequisite for future studies on transcriptome-wide and cell-specific changes in human tissue with the goal to reveal novel candidates involved in the pathophysiology of epilepsy and possibly other CNS pathologies.
Collapse
Affiliation(s)
- Sophie Schlabitz
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Neurology with Experimental Neurology, Clinical and Experimental Epileptology, Berlin, Germany
| | - Laura Monni
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Neurology with Experimental Neurology, Clinical and Experimental Epileptology, Berlin, Germany
| | - Alienor Ragot
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Neurology with Experimental Neurology, Clinical and Experimental Epileptology, Berlin, Germany
| | - Matthias Dipper-Wawra
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Neurology with Experimental Neurology, Clinical and Experimental Epileptology, Berlin, Germany
| | - Julia Onken
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Neurosurgery, Berlin, Germany
| | - Martin Holtkamp
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Neurology with Experimental Neurology, Clinical and Experimental Epileptology, Berlin, Germany.,Epilepsy-Center Berlin-Brandenburg, Institute for Diagnostics of Epilepsy, Berlin, Germany
| | - Pawel Fidzinski
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Neurology with Experimental Neurology, Clinical and Experimental Epileptology, Berlin, Germany.,Epilepsy-Center Berlin-Brandenburg, Institute for Diagnostics of Epilepsy, Berlin, Germany.,Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, NeuroCure Cluster of Excellence, Neuroscience Research Center, Berlin, Germany
| |
Collapse
|
6
|
Dietrich M, Hartung HP, Albrecht P. Neuroprotective Properties of 4-Aminopyridine. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2021; 8:8/3/e976. [PMID: 33653963 PMCID: PMC7931640 DOI: 10.1212/nxi.0000000000000976] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 01/06/2021] [Indexed: 02/07/2023]
Abstract
As an antagonist of voltage-gated potassium (Kv) channels, 4-aminopyridine (4-AP) is used as symptomatic therapy in several neurologic disorders. The improvement of visual function and motor skills and relieve of fatigue in patients with MS have been attributed to 4-AP. Its prolonged release formulation (fampridine) has been approved for the symptomatic treatment of walking disability in MS. The beneficial effects were explained by the blockade of axonal Kv channels, thereby enhancing conduction along demyelinated axons. However, an increasing body of evidence suggests that 4-AP may have additional properties beyond the symptomatic mode of action. In this review, we summarize preclinical and clinical data on possible neuroprotective features of 4-AP.
Collapse
Affiliation(s)
- Michael Dietrich
- From the Department of Neurology (M.D., H.-P.H., P.A.), Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany; and Brain and Mind Center (H.-P.H.), University of Sydney, Australia
| | - Hans-Peter Hartung
- From the Department of Neurology (M.D., H.-P.H., P.A.), Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany; and Brain and Mind Center (H.-P.H.), University of Sydney, Australia
| | - Philipp Albrecht
- From the Department of Neurology (M.D., H.-P.H., P.A.), Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany; and Brain and Mind Center (H.-P.H.), University of Sydney, Australia.
| |
Collapse
|
7
|
Gerace E, Zianni E, Landucci E, Scartabelli T, Berlinguer Palmini R, Iezzi D, Moroni F, Di Luca M, Mannaioni G, Gardoni F, Pellegrini-Giampietro DE. Differential mechanisms of tolerance induced by NMDA and 3,5-dihydroxyphenylglycine (DHPG) preconditioning. J Neurochem 2020; 155:638-649. [PMID: 32343420 DOI: 10.1111/jnc.15033] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/11/2020] [Accepted: 04/14/2020] [Indexed: 11/26/2022]
Abstract
We investigated the molecular events triggered by NMDA and 3,5-dihydroxyphenylglycine (DHPG) preconditioning, that lead to neuroprotection against excitotoxic insults (AMPA or oxygen and glucose deprivation) in rat organotypic hippocampal slices, with particular attention on glutamate receptors and on cannabinoid system. We firstly evaluated the protein expression of NMDA and AMPA receptor subunits after preconditioning using western blot analysis performed in post-synaptic densities. We observed that following NMDA, but not DHPG preconditioning, the expression of GluA1 was significantly reduced and this reduction appeared to be associated with the internalization of AMPA receptors. Whole-cell voltage clamp recordings on CA1 pyramidal neurons of organotypic slices show that 24 hr after exposure to NMDA and DHPG preconditioning, AMPA-induced currents were significantly reduced. To clarify the mechanisms induced by DHPG preconditioning, we then investigated the involvement of the endocannabinoid system. Exposure of slices to the CB1 antagonist AM251 prevented the development of tolerance to AMPA toxicity induced by DHPG but not NMDA. Accordingly, the MAG-lipase inhibitor URB602, that increases arachidonoylglycerol (2-AG) content, but not the FAAH inhibitor URB597, that limits the degradation of anandamide, was also able to induce tolerance versus AMPA and OGD toxicity, suggesting that 2-AG is responsible for the DHPG-induced tolerance. In conclusion, preconditioning with NMDA or DHPG promotes differential neuroprotective mechanisms: NMDA by internalization of GluA1-AMPA receptors, DHPG by producing the endocannabinoid 2-AG.
Collapse
Affiliation(s)
- Elisabetta Gerace
- Department of Neuroscience, Psychology, Drug Research and Child Health (NeuroFarBa), Section of Pharmacology and Toxicology, University of Florence, Florence, Italy.,Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy
| | - Elisa Zianni
- Department of Pharmacological and Biomolecular Sciences (DiSFeB), University of Milan, Milan, Italy
| | - Elisa Landucci
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy
| | - Tania Scartabelli
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy
| | - Rolando Berlinguer Palmini
- Department of Neuroscience, Psychology, Drug Research and Child Health (NeuroFarBa), Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Daniela Iezzi
- Department of Neuroscience, Psychology, Drug Research and Child Health (NeuroFarBa), Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Flavio Moroni
- Department of Neuroscience, Psychology, Drug Research and Child Health (NeuroFarBa), Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Monica Di Luca
- Department of Pharmacological and Biomolecular Sciences (DiSFeB), University of Milan, Milan, Italy
| | - Guido Mannaioni
- Department of Neuroscience, Psychology, Drug Research and Child Health (NeuroFarBa), Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Fabrizio Gardoni
- Department of Pharmacological and Biomolecular Sciences (DiSFeB), University of Milan, Milan, Italy
| | | |
Collapse
|
8
|
Neuroprotective or neurotoxic effects of 4-aminopyridine mediated by KChIP1 regulation through adjustment of Kv 4.3 potassium channels expression and GABA-mediated transmission in primary hippocampal cells. Toxicology 2015; 333:107-117. [PMID: 25917026 DOI: 10.1016/j.tox.2015.04.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Revised: 04/05/2015] [Accepted: 04/22/2015] [Indexed: 11/21/2022]
Abstract
4-Aminopyridine (4-AP) is a potassium channel blocker used for the treatment of neuromuscular disorders. Otherwise, it has been described to produce a large number of adverse effects among them cell death mediated mainly by blockage of K(+) channels. However, a protective effect against cell death has also been described. On the other hand, Kv channel interacting protein 1 (KChIP1) is a neuronal calcium sensor protein that is predominantly expressed at GABAergic synapses and it has been related with modulation of K(+) channels, GABAergic transmission and cell death. According to this KChIP1 could play a key role in the protective or toxic effects induced by 4-AP. We evaluated, in wild type and KChIP1 silenced primary hippocampal neurons, the effect of 4-AP (0.25μM to 2mM) with or without semicarbazide (0.3M) co-treatment after 24h and after 14 days 4-AP alone exposure on cell viability, the effect of 4-AP (0.25μM to 2mM) on KChIP1 and Kv 4.3 potassium channels gene expression and GABAergic transmission after 24h treatment or after 14 days exposure to 4-AP (0.25μM to1μM). 4-AP induced cell death after 24h (from 1mM) and after 14 days treatment. We observed that 4-AP modulates KChIP1 which regulate Kv 4.3 channels expression and GABAergic transmission. Our study suggests that KChIP1 is a key gene that has a protective effect up to certain concentration after short-term treatment with 4-AP against induced cell injury; but this protection is erased after long term exposure, due to KChIP1 down-regulation predisposing cell to 4-AP induced damages. These data might help to explain protective and toxic effects observed after overdose and long term exposure.
Collapse
|
9
|
Iwamoto K, Birkholz P, Schipper A, Mata D, Linn DM, Linn CL. A nicotinic acetylcholine receptor agonist prevents loss of retinal ganglion cells in a glaucoma model. Invest Ophthalmol Vis Sci 2014; 55:1078-87. [PMID: 24458148 DOI: 10.1167/iovs.13-12688] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE The purpose of this study was to analyze the neuroprotective effect of an α7 nAChR agonist, PNU-282987, using an in vivo model of glaucoma in Long Evans rats. METHODS One eye in each animal was surgically manipulated to induce glaucoma in control untreated animals and in animals that were treated with intravitreal injections of PNU-282987. To induce glaucoma-like conditions, 0.05 mL of 2 M NaCl was injected into the episcleral veins of right eyes in each rat to create scar tissue and increase intraocular pressure. The left eye in each rat acted as an internal control. One month following NaCl injection, rats were euthanized, retinas were removed, flatmounted, fixed, and nuclei were stained with cresyl violet or RGCs were immunostained with an antibody against Thy 1.1 or against Brn3a. Stained nuclei in the RGC layer and labeled RGCs in NaCl-injected retinas were counted and compared with cell counts from untreated retinas in the same animal. RESULTS NaCl injections into the episcleral veins caused a significant loss of cells by an average of 27.35% (± 2.12 SEM) in the RGC layer within 1 month after NaCl injection, which corresponded to a significant loss of RGCs. This loss of RGCs was eliminated if 5 μL of 100 μM PNU-282987 was injected into the right eye an hour before NaCl injection. CONCLUSIONS The results from this study support the hypothesis that the α7 agonist, PNU-282987, has a neuroprotective effect in the rat retina. PNU-282987 may be a viable candidate for future therapeutic treatments of glaucoma.
Collapse
Affiliation(s)
- Kazuhiro Iwamoto
- Western Michigan University, Department of Biological Sciences, Kalamazoo, Michigan
| | | | | | | | | | | |
Collapse
|
10
|
Anilkumar U, Weisová P, Düssmann H, Concannon CG, König HG, Prehn JHM. AMP-activated protein kinase (AMPK)-induced preconditioning in primary cortical neurons involves activation of MCL-1. J Neurochem 2012. [PMID: 23199202 DOI: 10.1111/jnc.12108] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Neuronal preconditioning is a phenomenon where a previous exposure to a sub-lethal stress stimulus increases the resistance of neurons towards a second, normally lethal stress stimulus. Activation of the energy stress sensor, AMP-activated protein kinase (AMPK) has been shown to contribute to the protective effects of ischaemic and mitochondrial uncoupling-induced preconditioning in neurons, however, the molecular basis of AMPK-mediated preconditioning has been less well characterized. We investigated the effect of AMPK preconditioning using 5-aminoimidazole-4-carboxamide riboside (AICAR) in a model of NMDA-mediated excitotoxic injury in primary mouse cortical neurons. Activation of AMPK with low concentrations of AICAR (0.1 mM for 2 h) induced a transient increase in AMPK phosphorylation, protecting neurons against NMDA-induced excitotoxicity. Analysing potential targets of AMPK activation, demonstrated a marked increase in mRNA expression and protein levels of the anti-apoptotic BCL-2 family protein myeloid cell leukaemia sequence 1 (MCL-1) in AICAR-preconditioned neurons. Interestingly, over-expression of MCL-1 protected neurons against NMDA-induced excitotoxicity while MCL-1 gene silencing abolished the effect of AICAR preconditioning. Monitored intracellular Ca²⁺ levels during NMDA excitation revealed that MCL-1 over-expressing neurons exhibited improved bioenergetics and markedly reduced Ca²⁺ elevations, suggesting a potential mechanism through which MCL-1 confers neuroprotection. This study identifies MCL-1 as a key effector of AMPK-induced preconditioning in neurons.
Collapse
Affiliation(s)
- Ujval Anilkumar
- Department of Physiology and Medical Physics, Centre for the Study of Neurological Disorders, Royal College of Surgeons in Ireland, Dublin, Ireland
| | | | | | | | | | | |
Collapse
|
11
|
Strupp M, Kalla R, Claassen J, Adrion C, Mansmann U, Klopstock T, Freilinger T, Neugebauer H, Spiegel R, Dichgans M, Lehmann-Horn F, Jurkat-Rott K, Brandt T, Jen JC, Jahn K. A randomized trial of 4-aminopyridine in EA2 and related familial episodic ataxias. Neurology 2011; 77:269-75. [PMID: 21734179 DOI: 10.1212/wnl.0b013e318225ab07] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
OBJECTIVE The therapeutic effects of 4-aminopyridine (4AP) were investigated in a randomized, double-blind, crossover trial in 10 subjects with familial episodic ataxia with nystagmus. METHODS After randomization, placebo or 4AP (5 mg 3 times daily) was administered for 2 3-month-long treatment periods separated by a 1-month-long washout period. The primary outcome measure was the number of ataxia attacks per month; the secondary outcome measures were the attack duration and patient-reported quality of life (Vestibular Disorders Activities of Daily Living Scale [VDADL]). Nonparametric tests and a random-effects model were used for statistical analysis. RESULTS The diagnosis of episodic ataxia type 2 (EA2) was genetically confirmed in 7 subjects. Patients receiving placebo had a median monthly attack frequency of 6.50, whereas patients taking 4AP had a frequency of 1.65 (p = 0.03). Median monthly attack duration decreased from 13.65 hours with placebo to 4.45 hours with 4AP (p = 0.08). The VDADL score decreased from 6.00 to 1.50 (p = 0.02). 4AP was well-tolerated. CONCLUSIONS This controlled trial on EA2 and familial episodic ataxia with nystagmus demonstrated that 4AP decreases attack frequency and improves quality of life. LEVEL OF EVIDENCE This crossover study provides Class II evidence that 4AP decreases attack frequency and improves the patient-reported quality of life in patients with episodic ataxia and related familial ataxias.
Collapse
Affiliation(s)
- M Strupp
- Department of Neurology, Friedrich-Baur-Institute and IFB(LMU), University of Munich, Campus Grosshadern, Marchioninistr. 15, 81377 Munich, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Toxicological and pathophysiological roles of reactive oxygen and nitrogen species. Toxicology 2010; 276:85-94. [PMID: 20643181 DOI: 10.1016/j.tox.2010.07.009] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Revised: 06/23/2010] [Accepted: 07/11/2010] [Indexed: 01/20/2023]
Abstract
'Oxidative and Nitrative Stress in Toxicology and Disease' was the subject of a symposium held at the EUROTOX meeting in Dresden 15th September 2009. Reactive oxygen (ROS) and reactive nitrogen species (RNS) produced during tissue pathogenesis and in response to viral or chemical toxicants, induce a complex series of downstream adaptive and reparative events driven by the associated oxidative and nitrative stress. As highlighted by all the speakers, ROS and RNS can promote diverse biological responses associated with a spectrum of disorders including neurodegenerative/neuropsychiatric and cardiovascular diseases. Similar pathways are implicated during the process of liver and skin carcinogenesis. Mechanistically, reactive oxygen and nitrogen species drive sustained cell proliferation, cell death including both apoptosis and necrosis, formation of nuclear and mitochondrial DNA mutations, and in some cases stimulation of a pro-angiogenic environment. Here we illustrate the pivotal role played by oxidative and nitrative stress in cell death, inflammation and pain and its consequences for toxicology and disease pathogenesis. Examples are presented from five different perspectives ranging from in vitro model systems through to in vivo animal model systems and clinical outcomes.
Collapse
|