1
|
Adewoyin M, Hamarsha A, Akinsola R, Teoh SL, Azmai MNA, Abu Bakar N, Nasruddin NS. Intraperitoneal Injection of the Porphyromonas gingivalis Outer Membrane Vesicle (OMV) Stimulated Expressions of Neuroinflammatory Markers and Histopathological Changes in the Brains of Adult Zebrafish. Int J Mol Sci 2024; 25:11025. [PMID: 39456807 PMCID: PMC11506875 DOI: 10.3390/ijms252011025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/22/2024] [Accepted: 09/25/2024] [Indexed: 10/28/2024] Open
Abstract
Porphyromonas gingivalis is the major pathogenic bacteria found in the subgingival plaque of patients with periodontitis, which leads to neuroinflammation. The bacteria destroy periodontal tissue through virulence factors, which are retained in the bacteria's outer membrane vesicles (OMV). This study aimed to determine the real-time effect of an intraperitoneal injection of P. gingivalis OMV on the production and expression of inflammatory markers and histopathological changes in adult zebrafishes' central nervous systems (CNS). Following the LD50 (21 µg of OMV), the zebrafish were injected intraperitoneally with 18 µg of OMVs, and the control group were injected with normal saline at seven different time points. Brains of experimental zebrafish were dissected at desired time points for colorimetric assays, ELISA, and histology. This study discovered that nitric oxide and PGE2 were significantly increased at 45 min, while IL-1β and IL-6 were expressed at subsequent 12 h and 24 h time points, respectively. Histopathological changes such as blood coagulation, astrocytosis, edema, spongiosis, and necrosis were observed between the 6hour and 24 h time points. The two apoptotic enzymes, caspases 3 and 9, were not expressed at any point. In summary, the OMV-induced neuroinflammatory responses and histopathological changes in adult zebrafish were time-point dependent. This study will enrich our understanding of the mechanism of P. gingivalis OMVs in neuroinflammation in a zebrafish model, most especially the timing of the expression of inflammatory mediators in relation to observable changes in brain tissues.
Collapse
Affiliation(s)
- Malik Adewoyin
- Department of Craniofacial Diagnostics and Biosciences, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia; (M.A.); (A.H.)
| | - Ahmed Hamarsha
- Department of Craniofacial Diagnostics and Biosciences, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia; (M.A.); (A.H.)
| | - Rasaq Akinsola
- Department of Medicine, Division of Hematology and Oncology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA;
| | - Seong Lin Teoh
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia;
| | - Mohammad Noor Amal Azmai
- Aquatic Animal Health and Therapeutics Laboratory, Institute of Bioscience, Universiti Putra Malaysia, UPM, Serdang 43400, Selangor, Malaysia;
- Department of Biology, Faculty of Science, Universiti Putra Malaysia, UPM, Serdang 43400, Selangor, Malaysia;
| | - Noraini Abu Bakar
- Department of Biology, Faculty of Science, Universiti Putra Malaysia, UPM, Serdang 43400, Selangor, Malaysia;
| | - Nurrul Shaqinah Nasruddin
- Department of Craniofacial Diagnostics and Biosciences, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia; (M.A.); (A.H.)
| |
Collapse
|
2
|
Abdel-Aziz N, Moustafa EM, Saada HN. The impact of citicoline on brain injury in rats subjected to head irradiation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:9742-9752. [PMID: 33155111 DOI: 10.1007/s11356-020-11101-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 10/04/2020] [Indexed: 06/11/2023]
Abstract
Hazard and risk associated with the use of radiotherapy play a crucial role in brain injury with interference via the neuroendocrine activity of the cancer survivors, and there is no effective preventive strategy. We conducted this study to assess the effect of citicoline in biosynthesis variants occurring in the cerebral cortex of rats in response to head γ-irradiation. Bio-analysis includes MDA, 8-OHdG, and NO as oxidation indicators; total antioxidant activity; the inflammatory factors TNF-α, IL-1β, and amyloid-β 42 levels; the caspase-3 cell death marker; IGF-I; serum hormones including GH, ACTH, FSH, and LH; and the neurotransmitters acetylcholine, dopamine, and serotonin. We exposed animals to 10 Gy head gamma irradiation followed by citicoline treatment and sustained for 30 days. The animals were sacrificed at the 3rd and 30th day post-irradiation. Citicoline mechanism has been linked to potent radical reduced ability counteracting the oxidative stress-mediated inflammation and apoptosis. Citicoline treatment has normalized the altering recorded in serum hormones associated with a significant modulation in the levels of IGF-1/PI3K/AKT factors. Such improvements have been concomitant with regulated neurotransmitter levels. We could conclude that citicoline may safely be supplemented to avoid both short- and long-term damages to the neuroendocrine disturbances, oxidative stress, inflammation, and apoptosis induced by head irradiation.
Collapse
Affiliation(s)
- Nahed Abdel-Aziz
- Department of Radiation Biology, National Center for Radiation Research & Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), PO Box 29, Nasr City, Cairo, Egypt
| | - Enas M Moustafa
- Department of Radiation Biology, National Center for Radiation Research & Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), PO Box 29, Nasr City, Cairo, Egypt.
| | - Helen N Saada
- Department of Radiation Biology, National Center for Radiation Research & Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), PO Box 29, Nasr City, Cairo, Egypt
| |
Collapse
|
3
|
Fulop GA, Ahire C, Csipo T, Tarantini S, Kiss T, Balasubramanian P, Yabluchanskiy A, Farkas E, Toth A, Nyúl-Tóth Á, Toth P, Csiszar A, Ungvari Z. Cerebral venous congestion promotes blood-brain barrier disruption and neuroinflammation, impairing cognitive function in mice. GeroScience 2019; 41:575-589. [PMID: 31691147 PMCID: PMC6885079 DOI: 10.1007/s11357-019-00110-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 09/20/2019] [Indexed: 02/07/2023] Open
Abstract
Cognitive impairment is one of the most common co-occurring chronic conditions among elderly heart failure patients (incidence: up to ~ 80%); however, the underlying mechanisms are not completely understood. It is hypothesized that in addition to decreased cardiac output, increases in central-and consequentially, cerebral-venous pressure (backward failure) also contribute significantly to the genesis of cognitive impairment. To test this hypothesis and elucidate the specific pathogenic role of venous congestion in the brain, we have established a novel model of increased cerebral venous pressure: mice with jugular vein ligation (JVL). To test the hypothesis that increased venous pressure in the brain contributes to the development of cognitive deficits by causing blood-brain barrier disruption, dysregulation of blood flow, and/or promoting neuroinflammation, in C57BL/6 mice, the internal and external jugular veins were ligated. Cognitive function (radial arm water maze), gait function (CatWalk), and motor coordination (rotarod) were tested post-JVL. Neurovascular coupling responses were assessed by measuring changes in cerebral blood flow in the whisker barrel cortex in response to contralateral whisker stimulation by laser speckle contrast imaging through a closed cranial window. Blood-brain barrier integrity (IgG extravasation) and microglia activation (Iba1 staining) were assessed in brain slices by immunohistochemistry. Neuroinflammation-related gene expression profile was assessed by a targeted qPCR array. After jugular vein ligation, mice exhibited impaired spatial learning and memory, altered motor coordination, and impaired gait function, mimicking important aspects of altered brain function observed in human heart failure patients. JVL did not alter neurovascular coupling responses. In the brains of mice with JVL, significant extravasation of IgG was detected, indicating blood-brain barrier disruption, which was associated with histological markers of neuroinflammation (increased presence of activated microglia) and a pro-inflammatory shift in gene expression profile. Thus, cerebral venous congestion per se can cause blood-brain barrier disruption and neuroinflammation, which likely contribute to the genesis of cognitive impairment. These findings have relevance to the pathogenesis of cognitive decline associated with heart failure as well as increased cerebal venous pressure due to increased jugular venous reflux in elderly human patients.
Collapse
Affiliation(s)
- Gabor A Fulop
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
- International Training Program in Geroscience, Division of Clinical Physiology, Department of Cardiology/Kálmán Laki Doctoral School of Biomedical and Clinical Sciences, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Chetan Ahire
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
| | - Tamas Csipo
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
- International Training Program in Geroscience, Division of Clinical Physiology, Department of Cardiology/Kálmán Laki Doctoral School of Biomedical and Clinical Sciences, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine, Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Stefano Tarantini
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine, Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Tamas Kiss
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
- International Training Program in Geroscience, Theoretical Medicine Doctoral School, Department of Medical Physics and Informatics, University of Szeged, Szeged, Hungary
| | - Priya Balasubramanian
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
| | - Eszter Farkas
- International Training Program in Geroscience, Theoretical Medicine Doctoral School, Department of Medical Physics and Informatics, University of Szeged, Szeged, Hungary
| | - Attila Toth
- International Training Program in Geroscience, Division of Clinical Physiology, Department of Cardiology/Kálmán Laki Doctoral School of Biomedical and Clinical Sciences, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Ádám Nyúl-Tóth
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
- International Training Program in Geroscience, Institute of Biophysics, Biological Research Centre, Szeged, Hungary
| | - Peter Toth
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
- International Training Program in Geroscience, Department of Neurosurgery and Szentagothai Research Center, University of Pecs, Medical School, Pecs, Hungary
- Institute for Translational Medicine, University of Pecs, Medical School , Pecs, Hungary
| | - Anna Csiszar
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
- International Training Program in Geroscience, Theoretical Medicine Doctoral School, Department of Medical Physics and Informatics, University of Szeged, Szeged, Hungary
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine, Institute of Clinical Experimental Research, Semmelweis University, Budapest, Hungary
| | - Zoltan Ungvari
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA.
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine, Department of Public Health, Semmelweis University, Budapest, Hungary.
- International Training Program in Geroscience, Theoretical Medicine Doctoral School, Department of Medical Physics and Informatics, University of Szeged, Szeged, Hungary.
| |
Collapse
|
4
|
Mansour A, Niizuma K, Rashad S, Sumiyoshi A, Ryoke R, Endo H, Endo T, Sato K, Kawashima R, Tominaga T. A refined model of chronic cerebral hypoperfusion resulting in cognitive impairment and a low mortality rate in rats. J Neurosurg 2019; 131:892-902. [PMID: 30192196 DOI: 10.3171/2018.3.jns172274] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 03/06/2018] [Indexed: 11/06/2022]
Abstract
OBJECTIVE The cognitive deficits of vascular dementia and the vasoocclusive state of moyamoya disease have often been mimicked with bilateral stenosis/occlusion of the common carotid artery (CCA) or internal carotid artery. However, the cerebral blood flow (CBF) declines abruptly in these models after ligation of the CCA, which differs from "chronic" cerebral hypoperfusion. While some modified but time-consuming techniques have used staged occlusion of both CCAs, others used microcoils for CCA stenosis, producing an adverse effect on the arterial endothelium. Thus, the authors developed a new chronic cerebral hypoperfusion (CCH) model with cognitive impairment and a low mortality rate in rats. METHODS Male Sprague-Dawley rats were subjected to unilateral CCA occlusion and contralateral induction of CCA stenosis (modified CCA occlusion [mCCAO]) or a sham operation. Cortical regional CBF (rCBF) was measured using laser speckle flowmetry. Cognitive function was assessed using a Barnes circular maze (BCM). MRI studies were performed 4 weeks after the operation to evaluate cervical and intracranial arteries and parenchymal injury. Behavioral and histological studies were performed at 4 and 8 weeks after surgery. RESULTS The mCCAO group revealed a gradual CBF reduction with a low mortality rate (2.3%). White matter degeneration was evident in the corpus callosum and corpus striatum. Although the cellular density declined in the hippocampus, MRI revealed no cerebral infarctions after mCCAO. Immunohistochemistry revealed upregulated inflammatory cells and angiogenesis in the hippocampus and cerebral cortex. Results of the BCM assessment indicated significant impairment in spatial learning and memory in the mCCAO group. Although some resolution of white matter injury was observed at 8 weeks, the animals still had cognitive impairment. CONCLUSIONS The mCCAO is a straightforward method of producing a CCH model in rats. It is associated with a low mortality rate and could potentially be used to investigate vascular disease, moyamoya disease, and CCH. This model was verified for an extended time point of 8 weeks after surgery.
Collapse
Affiliation(s)
- Ahmed Mansour
- 1Department of Neurosurgery and
- 5Department of Neurosurgery, Menoufia University Graduate School of Medicine, Menoufia, Egypt
| | | | | | - Akira Sumiyoshi
- 2Institute of Development, Aging, and Cancer, Tohoku University Graduate School of Medicine
| | - Rie Ryoke
- 2Institute of Development, Aging, and Cancer, Tohoku University Graduate School of Medicine
| | | | | | - Kenichi Sato
- 4Neuroendovascular Therapy, Kohnan Hospital, Sendai, Japan; and
| | - Ryuta Kawashima
- 2Institute of Development, Aging, and Cancer, Tohoku University Graduate School of Medicine
| | | |
Collapse
|
5
|
Herrera MI, Udovin LD, Toro-Urrego N, Kusnier CF, Luaces JP, Otero-Losada M, Capani F. Neuroprotection Targeting Protein Misfolding on Chronic Cerebral Hypoperfusion in the Context of Metabolic Syndrome. Front Neurosci 2018; 12:339. [PMID: 29904335 PMCID: PMC5990610 DOI: 10.3389/fnins.2018.00339] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Accepted: 04/30/2018] [Indexed: 01/04/2023] Open
Abstract
Metabolic syndrome (MetS) is a cluster of risk factors that lead to microvascular dysfunction and chronic cerebral hypoperfusion (CCH). Long-standing reduction in oxygen and energy supply leads to brain hypoxia and protein misfolding, thereby linking CCH to Alzheimer's disease. Protein misfolding results in neurodegeneration as revealed by studying different experimental models of CCH. Regulating proteostasis network through pathways like the unfolded protein response (UPR), the ubiquitin-proteasome system (UPS), chaperone-mediated autophagy (CMA), and macroautophagy emerges as a novel target for neuroprotection. Lipoxin A4 methyl ester, baclofen, URB597, N-stearoyl-L-tyrosine, and melatonin may pose potential neuroprotective agents for rebalancing the proteostasis network under CCH. Autophagy is one of the most studied pathways of proteostatic cell response against the decrease in blood supply to the brain though the role of the UPR-specific chaperones and the UPS system in CCH deserves further research. Pharmacotherapy targeting misfolded proteins at different stages in the proteostatic pathway might be promising in treating cognitive impairment following CCH.
Collapse
Affiliation(s)
- María I Herrera
- Centro de Investigaciones en Psicología y Psicopedagogía, Facultad de Psicología y Psicopedagogía, Universidad Católica Argentina, Buenos Aires, Argentina.,Instituto de Investigaciones Cardiológicas (ININCA), Universidad de Buenos Aires (UBA-CONICET), Buenos Aires, Argentina
| | - Lucas D Udovin
- Instituto de Investigaciones Cardiológicas (ININCA), Universidad de Buenos Aires (UBA-CONICET), Buenos Aires, Argentina
| | - Nicolás Toro-Urrego
- Instituto de Investigaciones Cardiológicas (ININCA), Universidad de Buenos Aires (UBA-CONICET), Buenos Aires, Argentina
| | - Carlos F Kusnier
- Instituto de Investigaciones Cardiológicas (ININCA), Universidad de Buenos Aires (UBA-CONICET), Buenos Aires, Argentina
| | - Juan P Luaces
- Instituto de Investigaciones Cardiológicas (ININCA), Universidad de Buenos Aires (UBA-CONICET), Buenos Aires, Argentina
| | - Matilde Otero-Losada
- Instituto de Investigaciones Cardiológicas (ININCA), Universidad de Buenos Aires (UBA-CONICET), Buenos Aires, Argentina
| | - Francisco Capani
- Instituto de Investigaciones Cardiológicas (ININCA), Universidad de Buenos Aires (UBA-CONICET), Buenos Aires, Argentina.,Facultad de Medicina, Universidad Católica Argentina, Buenos Aires, Argentina.,Universidad Autónoma de Chile, Santiago de Chile, Chile
| |
Collapse
|
6
|
Lee JM, Kim CJ, Park JM, Song MK, Kim YJ. Effect of treadmill exercise on spatial navigation impairment associated with cerebellar Purkinje cell loss following chronic cerebral hypoperfusion. Mol Med Rep 2018; 17:8121-8128. [PMID: 29693705 PMCID: PMC5983984 DOI: 10.3892/mmr.2018.8893] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 03/20/2018] [Indexed: 12/16/2022] Open
Abstract
In addition to roles in motor coordination, the cerebellum is also associated with cognitive function. The aim of the present study was to investigate the effect of treadmill exercise on spatial navigation deficit induced by chronic cerebral hypoperfusion (CCH). Furthermore, whether decreased loss of Purkinje cells, which contain the calcium-binding protein in the posterior lobe of the cerebellum, attenuates the spatial navigation deficit induced by CCH was also investigated. Wistar rats were randomly divided into three groups: Sham group, bilateral common carotid arteries occlusion (BCCAO) group and a BCCAO + exercise (Ex) group. The rats in the BCCAO + Ex group ran on a treadmill for 30 min once a day for 8 weeks, starting at 4 weeks post-birth. CCH was induced by performing BCCAO at 12 weeks post-birth. The Morris water maze test was performed to determine the spatial navigation function of the rats. To investigate the histological features of the cerebellum in all of the experimental groups post-treatment, terminal deoxynucleotidyl transferase dUTP nick end labeling staining, as well as immunohistochemical analysis revealing the expression of calbindin, parvalbumin, glial fibrillary acidic protein, ionized calcium-binding adaptor molecule 1 and caspase-3, was performed. The results of the present study revealed that treadmill exercise improved spatial navigation, decreased the expression of reactive astrocytes and microglial cells, and decreased apoptotic rates in the cerebellar vermis post-CCH. Treadmill exercise also attenuated the loss of Purkinje cells following CCH. The number of Purkinje cells was revealed to be negatively correlated with spatial navigation performance. These results indicate that treadmill exercise may attenuate spatial navigation impairment via inhibition of Purkinje cell loss in the posterior lobe of the cerebellum following CCH. Therefore, treadmill exercise may represent a therapeutic strategy for the treatment of patients with spatial navigation impairment following CCH.
Collapse
Affiliation(s)
- Jae-Min Lee
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Chang-Ju Kim
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jong-Min Park
- Department of Nursing, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Min Kyung Song
- Department of Nursing, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Youn-Jung Kim
- Department of Basic Nursing Science, College of Nursing Science, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
7
|
Su SH, Wu YF, Lin Q, Hai J. Cannabinoid receptor agonist WIN55,212-2 and fatty acid amide hydrolase inhibitor URB597 ameliorate neuroinflammatory responses in chronic cerebral hypoperfusion model by blocking NF-κB pathways. Naunyn Schmiedebergs Arch Pharmacol 2017; 390:1189-1200. [PMID: 28825114 DOI: 10.1007/s00210-017-1417-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 08/10/2017] [Indexed: 12/17/2022]
Abstract
The present study explored the protective effects of cannabinoid receptor agonist WIN55,212-2 (WIN) and fatty acid amide hydrolase inhibitor URB597 (URB) against neuroinflammation in rats with chronic cerebral hypoperfusion (CCH). Activated microglia, astrocytes, and nuclear factor kappa B (NF-κB) p65-positive cells were measured by immunofluorescence. Reactive oxygen species (ROS) was assessed by dihydroethidium staining. The protein levels of cluster of differentiation molecule 11b (OX-42), glial fibrillary acidic protein (GFAP), NF-κB p65, inhibitor of kappa B alpha (IκB-a), IκB kinase a/β (IKK a/β), phosphorylated IKK a/β (p-IKK a/β), cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), tumor necrosis factor (TNF)-α, and interleukin-1β (IL-1β) were examined by western blotting or enzyme-linked immunosorbent assay. All the protein levels of OX-42, GFAP, TNF-a, IL-1β, COX-2, and iNOS are increased in CCH rats. WIN and URB downregulated the levels of OX-42, GFAP, TNF-α, IL-1β, COX-2 and iNOS and inhibited CCH-induced ROS accumulation in CCH rats, indicating that WIN and URB might exert their neuroprotective effects by inhibiting the neuroinflammatory response. In addition, the NF-κB signaling pathway was activated by CCH in frontal cortex and hippocampus, while the aforementioned changes were reversed by WIN and URB treatment. These findings suggest that WIN and URB treatment ameliorated CCH-induced neuroinflammation through inhibition of the classical pathway of NF-κB activation, resulting in mitigation of chronic ischemic injury.
Collapse
Affiliation(s)
- Shao-Hua Su
- Department of Neurosurgery, Tongji Hospital, Tongji University School of Medicine, 389 Xincun Road, Shanghai, 200065, China
| | - Yi-Fang Wu
- Department of Neurosurgery, Tongji Hospital, Tongji University School of Medicine, 389 Xincun Road, Shanghai, 200065, China
| | - Qi Lin
- Department of Pharmacy, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jian Hai
- Department of Neurosurgery, Tongji Hospital, Tongji University School of Medicine, 389 Xincun Road, Shanghai, 200065, China.
| |
Collapse
|
8
|
Yilmaz I, Eseoglu M, Onen MR, Tanrıverdi O, Kilic M, Yilmaz A, Musluman AM, Aydin MD, Gündogdu C. Inverse Association Between Basilar Artery Volume and Neuron Density in the Stellate Ganglion Following Bilateral Common Carotid Artery Ligation: An Experimental Study. World Neurosurg 2017; 100:138-143. [DOI: 10.1016/j.wneu.2016.12.034] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 12/05/2016] [Accepted: 12/08/2016] [Indexed: 10/20/2022]
|
9
|
Ashabi G, Sarkaki A, Khodagholi F, Zareh Shahamati S, Goudarzvand M, Farbood Y, Badavi M, Khalaj L. Subchronic metformin pretreatment enhances novel object recognition memory task in forebrain ischemia: behavioural, molecular, and electrophysiological studies. Can J Physiol Pharmacol 2017; 95:388-395. [DOI: 10.1139/cjpp-2016-0260] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Metformin exerts its effect via AMP-activated protein kinase (AMPK), which is a key sensor for energy homeostasis that regulates different intracellular pathways. Metformin attenuates oxidative stress and cognitive impairment. In our experiment, rats were divided into 8 groups; some were pretreated with metformin (Met, 200 mg/kg) and (or) the AMPK inhibitor Compound C (CC) for 14 days. On day 14, rats underwent transient forebrain global ischemia. Data indicated that pretreatment of ischemic rats with metformin reduced working memory deficits in a novel object recognition test compared to group with ischemia–reperfusion (I–R) (P < 0.01). Pretreatment of the I–R animals with metformin increased phosphorylated cyclic-AMP response element-binding protein (pCREB) and c-fos levels compared to the I–R group (P < 0.001 for both). The level of CREB and c-fos was significantly lower in ischemic rats pretreated with Met + CC compared to the Met + I–R group. Field excitatory postsynaptic potential (fEPSP) amplitude and slope was significantly lower in the I–R group compared to the sham operation group (P < 0.001). Data showed that fEPSP amplitude and slope was significantly higher in the Met + I–R group compared to the I–R group (P < 0.001). Treatment of ischemic animals with Met + CC increased fEPSP amplitude and slope compared to the Met + I–R group (P < 0.01). We unravelled new aspects of the protective role of AMPK activation by metformin, further emphasizing the potency of metformin pretreatment against cerebral ischemia.
Collapse
Affiliation(s)
- Ghorbangol Ashabi
- Ahvaz Physiology Research Center and Department of Physiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Alireza Sarkaki
- Ahvaz Physiology Research Center and Department of Physiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Fariba Khodagholi
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shima Zareh Shahamati
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Yaghoob Farbood
- Ahvaz Physiology Research Center and Department of Physiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Badavi
- Ahvaz Physiology Research Center and Department of Physiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Leila Khalaj
- Medical School, Alborz University of Medical Sciences, Karaj, Iran
| |
Collapse
|
10
|
Su SH, Wang YQ, Wu YF, Wang DP, Lin Q, Hai J. Cannabinoid receptor agonist WIN55,212-2 and fatty acid amide hydrolase inhibitor URB597 may protect against cognitive impairment in rats of chronic cerebral hypoperfusion via PI3K/AKT signaling. Behav Brain Res 2016; 313:334-344. [DOI: 10.1016/j.bbr.2016.07.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Revised: 07/03/2016] [Accepted: 07/06/2016] [Indexed: 02/06/2023]
|
11
|
Long-lasting spatial learning and memory impairments caused by chronic cerebral hypoperfusion associate with a dynamic change of HCN1/HCN2 expression in hippocampal CA1 region. Neurobiol Learn Mem 2015; 123:72-83. [DOI: 10.1016/j.nlm.2015.05.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 05/15/2015] [Accepted: 05/17/2015] [Indexed: 01/17/2023]
|
12
|
Zhao Y, Gong CX. From chronic cerebral hypoperfusion to Alzheimer-like brain pathology and neurodegeneration. Cell Mol Neurobiol 2015; 35:101-10. [PMID: 25352419 DOI: 10.1007/s10571-014-0127-9] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 10/19/2014] [Indexed: 01/09/2023]
Abstract
Chronic cerebral hypoperfusion (CCH) is a common consequence of various cerebral vascular disorders and hemodynamic and blood changes. Recent studies have revealed an important role of CCH in neurodegeneration and dementia, including vascular dementia and Alzheimer's disease (AD). This article reviews the recent advances in understanding CCH-induced neurodegeneration and AD-related brain pathology and cognitive impairment. We discuss the causes and assessment of CCH, the possible mechanisms by which CCH promotes Alzheimer-like pathology and neurodegeneration, and animal models of CCH. It appears that CCH promotes neurodegeneration and AD through multiple mechanisms, including induction of oxidative stress, Aβ accumulation and aggravation, tau hyperphosphorylation, synaptic dysfunction, neuronal loss, white matter lesion, and neuroinflammation. Better understanding of the mechanisms of CCH will help develop therapeutic strategies for preventing and treating neurodegeneration, including sporadic AD and vascular dementia, caused by CCH.
Collapse
Affiliation(s)
- Yang Zhao
- Department of Neurology, The First Hospital of Jilin University, Xinmin Street, Changchun, 130021, Jilin, China,
| | | |
Collapse
|
13
|
Zhang H, Gao W, Qian T, Tang J, Li J. Transcription factor changes following long term cerebral ischemia/reperfusion injury. Neural Regen Res 2014; 8:916-21. [PMID: 25206383 PMCID: PMC4145920 DOI: 10.3969/j.issn.1673-5374.2013.10.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2012] [Accepted: 01/04/2013] [Indexed: 11/18/2022] Open
Abstract
The present study established a rat model of cerebral ischemia/reperfusion injury using four-vessel occlusion and found that hippocampal CA1 neuronal morphology was damaged, and that there were reductions in hippocampal neuron number and DNA-binding activity of cAMP response element binding protein and CCAAT/enhancer binding protein, accompanied by decreased learning and memory ability. These findings indicate that decline of hippocampal cAMP response element binding protein and CCAAT/enhancer binding protein DNA-binding activities may contribute to neuronal injury and learning and memory ability reduction induced by cerebral ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Hongbo Zhang
- Department of Pathophysiology, Chengde Medical College, Chengde 067000, Hebei Province, China
| | - Weijuan Gao
- Hebei Chemical and Pharmaceutical College, Shijiazhuang 050026, Hebei Province, China
| | - Tao Qian
- Hebei Provincial People's Hospital, Shijiazhuang 050051, Hebei Province, China
| | - Jinglong Tang
- Department of Pathophysiology, Chengde Medical College, Chengde 067000, Hebei Province, China
| | - Jun Li
- Department of Pathophysiology, Chengde Medical College, Chengde 067000, Hebei Province, China
| |
Collapse
|
14
|
Eseoglu M, Yilmaz I, Karalar M, Aydin MD, Kayaci S, Gundogdu C, Gunaldi O, Onen MR. The role of sympathectomy on the regulation of basilar artery volume changes in stenoocclusive carotid artery modeling after bilateral common carotid artery ligation: an animal model. Acta Neurochir (Wien) 2014; 156:963-9. [PMID: 24557449 DOI: 10.1007/s00701-014-1994-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 01/09/2014] [Indexed: 10/25/2022]
Abstract
BACKGROUND Stenoocclusive carotid artery disease causes important histomorphologic changes in all craniocervical vasculatures, such as luminal enlargement, vascular wall thinning, elongation, convolutions, and aneurysm formation in the posterior circulation. Although increased pressure, retrograde blood flow, and biochemical factors are described in the pathogenesis of vascular remodelisation, the vasoregulatory role of the autonomic nervous system has not been investigated thus far. We investigated the relationship between the sympathetic nervous system and the severity of histomorphologic alterations of basilar arteries after bilateral common carotid artery ligation (BCCAL). MATERIAL AND METHODS This study was conducted on 21 rabbits. The rabbits were randomly divided into three groups: baseline group (n = 5), sympathectomy non-applied group (SHAM; n = 8), and sympathectomy applied group (n = 8) before bilateral common carotid artery ligation. Permanent ligation of the prebifurcations of the common carotid arteries was performed to replicate stenoocclusive caroid artery disease. Basilar artery volumes were measured after ligation. Volumes of the basilar arteries were estimated by stereologic methods and compared between groups. RESULTS Luminal enlargement, wall thinning, elongation, convolutions, and doligoectatic configurations were detected in the majority of basilar arteries. The mean basilar arterial volume was 4.27 ± 0.22 mm3 in the baseline group; 5.28 ± 0.67 mm(3) in the SHAM group, and 8.84 ± 0.78 mm3 in the study group. The severity of basilar enlargement was significantly higher in the study group compared with the SHAM (p < 0.005) and baseline groups (p < 0.001). CONCLUSIONS Sympathectomy causes basilar artery enlargment, which is beneficial for maintaining cerebral blood flow; however, it also causes wall thinning, elongation, convolution, and aneurysm formation, which may be hazardous in stenoocclusive carotid artery disease. Sympathectomy can prevent new vessel formation and hyperthyrophic changes at the posterior circulation. Neovascularisation is not detected adequately in sympathectomised animals.
Collapse
|
15
|
Neuroprotective and antioxidant role of Phoenix dactylifera in permanent bilateral common carotid occlusion in rats. JOURNAL OF ACUTE DISEASE 2014. [DOI: 10.1016/s2221-6189(14)60026-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
16
|
Jian H, Yi-Fang W, Qi L, Xiao-Song H, Gui-Yun Z. Cerebral blood flow and metabolic changes in hippocampal regions of a modified rat model with chronic cerebral hypoperfusion. Acta Neurol Belg 2013; 113:313-7. [PMID: 23111782 DOI: 10.1007/s13760-012-0154-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 10/16/2012] [Indexed: 10/27/2022]
Abstract
Chronic cerebral hypoperfusion (CCH) causes neurodegeneration which contributes to the cognitive impairment. This study utilized a modified rat model with CCH to investigate cerebral blood flow (CBF) and hippocampal metabolic changes. CBF was measured by laser Doppler flowmetry. Various metabolic ratios were evaluated from selective volumes of interest (VOI) in left hippocampal regions using in vivo proton magnetic resonance spectroscopy ((1)H-MRS). The ultrastructural changes with special respect to ribosomes in rat hippocampal CA1 neurons were studied by electron microscopy. CBF decreased immediately after CCH and remained reduced significantly at 1 day and 3 months postoperatively. (1)H-MRS revealed that CCH led to a significant decrease of N-acetyl aspartate/creatine (NAA/Cr) ratio in the hippocampal VOI in the model rats compared with the sham-operated control rats. However, no changes of myo-inositol/Cr, choline/Cr and glutamate and glutamine/Cr ratios between the model and control groups were observed. Under electron microscopy, most rosette-shaped polyribosomes were relatively evenly distributed in the hippocampal CA1 neuronal cytoplasms of the control rats. After CCH, most ribosomes were clumped into large abnormal aggregates in the model rats. Our data suggests that both permanent decrease of CBF and reduction of NAA/Cr ratio in the hippocampal regions may be related to the cognitive deficits in rats with CCH.
Collapse
|
17
|
Wu X, Sun J, Li L. Chronic cerebrovascular hypoperfusion affects global DNA methylation and histone acetylation in rat brain. Neurosci Bull 2013; 29:685-92. [PMID: 23716065 DOI: 10.1007/s12264-013-1345-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 12/07/2012] [Indexed: 01/12/2023] Open
Abstract
DNA methylation and histone acetylation can be modified by various pathological or physiological factors such as hypoxia, thus influencing gene expression. In this study, we investigated the changes of global DNA methylation and histone acetylation and the related enzymes in rat brain after chronic cerebrovascular hypoperfusion by bilateral common carotid occlusion (2-VO) surgery. Colorimetric and immunohistochemistry staining were used to evaluate the global DNA methylation and histone acetylation levels, respectively. The expressions of DNA methyltransferase 1/3a (DNMT1/3a), methyl-CpG binding domain protein 2 (MBD2), histone deacetylase 3 (HDAC3) and acetyltransferase (HAT) were assessed by Western blot. We found that the level of global DNA methylation was decreased to 31.7% (P <0.01) of the sham-operated group at 10 days and increased by 30% (P <0.01) compared with the sham group at 90 days after 2-VO surgery. DNMT3a expression was down-regulated to 75.7% of the sham group, while MBD2 expression was up-regulated by 95% compared with sham group at 90 days after 2-VO. The histone H3 acetylation level was markedly decreased to 75.3% of the sham group at 10 days and 73.5% at 90 days after 2-VO, while no significant change was found for histone H4 acetylation. HDAC3 expression was markedly down-regulated to 36% of the sham group, whereas cAMP-response element binding protein expression was up-regulated by 33.6% compared with the sham group at 90 days after 2-VO. These results suggest that chronic cerebrovascular hypoperfusion influences global DNA methylation and histone acetylation levels through the related enzymes, and therefore might contribute to several neurodegenerative diseases.
Collapse
Affiliation(s)
- Xiangmei Wu
- Department of Pathology, Capital Medical University, Beijing, 100069, China
| | | | | |
Collapse
|
18
|
Su SH, Hai J, Zhang L, Yu F, Wu YF. Assessment of cognitive function in adult patients with hemorrhagic moyamoya disease who received no surgical revascularization. Eur J Neurol 2013; 20:1081-7. [PMID: 23577654 DOI: 10.1111/ene.12138] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Accepted: 02/14/2013] [Indexed: 02/02/2023]
Abstract
BACKGROUND AND PURPOSE Due to controversial surgical treatment for hemorrhagic moyamoya disease (MMD), a large proportion of these patients chose conservative treatment. The aim of this study was to assess cognitive function in adult patients with hemorrhagic MMD who received no surgical revascularization. METHODS Twenty-six adult hemorrhagic MMD patients with only intraventricular hemorrhage (IVH) confirmed by positive computed tomography and magnetic resonance imaging scan, 20 patients with spontaneous IVH whose digital subtraction angiography results were negative, and 30 healthy controls were identified and matched for age, gender, education background and living area. Cognitive function was evaluated by Montreal Cognitive Assessment (MoCA). The non-parametric test was used for comparisons among the three groups. RESULTS No patient was confirmed cognitive dysfunction at the initial screening. Twenty-four (92%) cases presented mild cognitive impairment (MCI) after 1 year. All the cases demonstrated MCI after 2 years. The difference between cases and healthy controls was statistically significant at the second screening (P = 0.000) and the third screening (P = 0.000), as was that between cases and patients with spontaneous IVH at the second screening (P = 0.000) and the third screening (P = 0.000). In addition, there were significant decreases in all MoCA subscores (P = 0.000) with special regards to delayed recall, visual space and executive function in cases compared with the other two groups. Moreover, significant differences were found in the subgroups of smoking (P = 0.021) and Suzuki angiographic classification of MMD (P = 0.030). CONCLUSIONS Cognitive impairment is a long-term complication for adult hemorrhagic MMD patients who underwent conservative treatment.
Collapse
Affiliation(s)
- S-H Su
- Department of Neurosurgery, Tongji Hospital, Tongji University, Shanghai, China
| | | | | | | | | |
Collapse
|
19
|
Hai J, Lin Q, Wu YF, Huang XS, Zhang GY, Wang F. Effects of N-stearoyl-L-tyrosine on the hippocampal ubiquitin-proteasome system in rats with chronic cerebral hypoperfusion. Neurol Res 2013; 35:734-43. [PMID: 23562289 DOI: 10.1179/1743132812y.0000000154] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
OBJECTIVES Chronic cerebral hypoperfusion (CCH) leads to neurodegeneration and cognitive impairment. Ubiquitinated protein aggregates are commonly present in neurodegenerative disorders and are believed to cause neuronal degeneration. Here, we investigated the effects of N-stearoyl-L-tyrosine (NSTyr) on the hippocampal ubiquitin-proteasome system (UPS) in rats with CCH. METHODS After induction of CCH, NSTyr was intraperitoneally administered daily for 3 months. Protein aggregation was analyzed by ethanolic phosphotungstic acid (EPTA) electron microscopy (EM), immunogold EM, laser-scanning confocal microscopy, and Western blot. Proteasome peptidase activity was measured by peptidase activity assays. RESULTS By using EPTA EM, immunogold EM and high-resolution laser-scanning confocal microscopy, we found that CCH resulted in the accumulation of ubiquitinated protein aggregates in rat hippocampal CA1 neurons. Western blot revealed that the levels of free ubiquitin were significantly reduced and that the levels of ubiquitinated proteins were markedly increased in the hippocampus of CCH rats. Direct activity measurements demonstrated that proteasome peptidase activity in the hippocampal region of rats was decreased after CCH induction. In the hippocampal tissue of CCH rats treated with NSTyr, however, ubiquitinated protein aggregates decreased and proteasome peptidase activity increased. DISCUSSION These data indicate that NSTyr may exert protective effects on rat hippocampal UPS function via endogenous regulation.
Collapse
Affiliation(s)
- Jian Hai
- Tongji University, Shanghai, China
| | | | | | | | | | | |
Collapse
|
20
|
Mohr JP, Kejda-Scharler J, Pile-Spellman J. Diagnosis and Treatment of Arteriovenous Malformations. Curr Neurol Neurosci Rep 2013; 13:324. [DOI: 10.1007/s11910-012-0324-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
21
|
The changes of signal transduction pathways in hippocampal regions and postsynaptic densities after chronic cerebral hypoperfusion in rats. Brain Res 2012; 1429:9-17. [DOI: 10.1016/j.brainres.2011.10.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2011] [Revised: 10/11/2011] [Accepted: 10/12/2011] [Indexed: 11/15/2022]
|
22
|
Fierstra J, Maclean DB, Fisher JA, Han JS, Mandell DM, Conklin J, Poublanc J, Crawley AP, Regli L, Mikulis DJ, Tymianski M. Surgical revascularization reverses cerebral cortical thinning in patients with severe cerebrovascular steno-occlusive disease. Stroke 2011; 42:1631-7. [PMID: 21493908 DOI: 10.1161/strokeaha.110.608521] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Chronic deficiencies in regional blood flow lead to cerebral cortical thinning without evidence of gross tissue loss at the same time as potentially negatively impacting on neurological and cognitive performance. This is most pronounced in patients with severe occlusive cerebrovascular disease in whom affected brain areas exhibit "steal physiology," a paradoxical reduction of cerebral blood flow in response to a global vasodilatory stimulus intended to increase blood flow. We tested whether surgical brain revascularization that eliminates steal physiology can reverse cortical thinning. METHODS We identified 29 patients from our database who had undergone brain revascularization with pre- and postoperative studies of cerebrovascular reactivity using blood oxygen(ation) level-dependent MRI and whose preoperative study exhibited steal physiology without MRI-evident structural abnormalities. Cortical thickness in regions corresponding to steal physiology, and where applicable corresponding areas in the normal hemisphere, were measured using Freesurfer software. RESULTS At an average of 11 months after surgery, cortical thickness increased in every successfully revascularized hemisphere (n=30). Mean cortical thickness in the revascularized regions increased by 5.1% (from 2.40 ± 0.03 to 2.53 ± 0.03; P<0.0001). CONCLUSIONS Successful regional revascularization and reversal of steal physiology is followed by restoration of cortical thickness.
Collapse
|
23
|
Hai J, Lin Q, Su SH, Zhang L, Wan JF, Lu Y. Chronic cerebral hypoperfusion in rats causes proteasome dysfunction and aggregation of ubiquitinated proteins. Brain Res 2010; 1374:73-81. [PMID: 21167821 DOI: 10.1016/j.brainres.2010.12.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Revised: 11/30/2010] [Accepted: 12/10/2010] [Indexed: 11/18/2022]
Abstract
The deposition of abnormal protein aggregates is a feature of several neurodegenerative diseases. We have employed a rat model to investigate whether chronic cerebral hypoperfusion (CCH) induces proteasome dysfunction and the accumulation of ubiquitinated proteins and aggregates in the CNS. Protein aggregation was analyzed by ethanolic phosphotungstic acid (EPTA) electron microscopy (EM), immunogold EM, laser-scanning confocal microscopy, and Western blotting. Proteasome peptidase activity was studied by peptidase activity assays. EPTA EM and immunogold EM revealed that CCH led to the accumulation of protein aggregates in rat hippocampal CA1 neurons. High-resolution confocal microscopy demonstrated the presence of ubiquitin-positive protein aggregates surrounding nuclei and along dendrites. Western blotting revealed that levels of free ubiquitin were significantly reduced and that levels of ubiquitinated proteins were markedly increased in the hippocampus of CCH rats. Direct activity measurements revealed that proteasome peptidase activity in the hippocampal region of rats was decreased after CCH induction. These data suggest that reduced proteasome activity following CCH could impair the removal of abnormally folded proteins via the ubiquitin-proteasome pathway, leading to the accumulation of potentially toxic protein aggregates that could contribute to neurodegeneration.
Collapse
Affiliation(s)
- Jian Hai
- Department of Neurosurgery, Tongji Hospital, Tongji University, Shanghai 200065, China.
| | | | | | | | | | | |
Collapse
|
24
|
Lin Q, Hai J, Yao LY, Lu Y. Neuroprotective effects of NSTyr on cognitive function and neuronal plasticity in rats of chronic cerebral hypoperfusion. Brain Res 2010; 1325:183-90. [DOI: 10.1016/j.brainres.2010.02.037] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2009] [Revised: 02/07/2010] [Accepted: 02/08/2010] [Indexed: 02/01/2023]
|