1
|
Tsentsevitsky AN, Gafurova CR, Petrov AM. KATP channels as ROS-dependent modulator of neurotransmitter release at the neuromuscular junctions. Life Sci 2022; 310:121120. [DOI: 10.1016/j.lfs.2022.121120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 10/12/2022] [Accepted: 10/20/2022] [Indexed: 11/09/2022]
|
2
|
Salgado-Puga K, Rodríguez-Colorado J, Prado-Alcalá RA, Peña-Ortega F. Subclinical Doses of ATP-Sensitive Potassium Channel Modulators Prevent Alterations in Memory and Synaptic Plasticity Induced by Amyloid-β. J Alzheimers Dis 2018; 57:205-226. [PMID: 28222502 DOI: 10.3233/jad-160543] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In addition to coupling cell metabolism and excitability, ATP-sensitive potassium channels (KATP) are involved in neural function and plasticity. Moreover, alterations in KATP activity and expression have been observed in Alzheimer's disease (AD) and during amyloid-β (Aβ)-induced pathology. Thus, we tested whether KATP modulators can influence Aβ-induced deleterious effects on memory, hippocampal network function, and plasticity. We found that treating animals with subclinical doses (those that did not change glycemia) of a KATP blocker (Tolbutamide) or a KATP opener (Diazoxide) differentially restrained Aβ-induced memory deficit, hippocampal network activity inhibition, and long-term synaptic plasticity unbalance (i.e., inhibition of LTP and promotion of LTD). We found that the protective effect of Tolbutamide against Aβ-induced memory deficit was strong and correlated with the reestablishment of synaptic plasticity balance, whereas Diazoxide treatment produced a mild protection against Aβ-induced memory deficit, which was not related to a complete reestablishment of synaptic plasticity balance. Interestingly, treatment with both KATP modulators renders the hippocampus resistant to Aβ-induced inhibition of hippocampal network activity. These findings indicate that KATP are involved in Aβ-induced pathology and they heighten the potential role of KATP modulation as a plausible therapeutic strategy against AD.
Collapse
Affiliation(s)
- Karla Salgado-Puga
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, QRO, México
| | - Javier Rodríguez-Colorado
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, QRO, México
| | - Roberto A Prado-Alcalá
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, QRO, México
| | - Fernando Peña-Ortega
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, QRO, México
| |
Collapse
|
3
|
ATP-sensitive potassium-channel inhibitor glibenclamide attenuates HPA axis hyperactivity, depression- and anxiety-related symptoms in a rat model of Alzheimer's disease. Brain Res Bull 2018; 137:265-276. [PMID: 29307659 DOI: 10.1016/j.brainresbull.2018.01.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Revised: 12/13/2017] [Accepted: 01/03/2018] [Indexed: 12/17/2022]
Abstract
Affective disorders including depression and anxiety are among the most prevalent behavioral abnormalities in patients with Alzheimer's disease (AD), which affect the quality of life and progression of the disease. Dysregulation of the hypothalamic-pituitary-adrenal-(HPA) axis has been reported in affective disorders and AD. Recent studies revealed that current antidepressant drugs are not completely effective for treating anxiety- and depression-related disorders in people with dementia. ATP-sensitive-potassium-(KATP) channels are well-known to be involved in AD pathophysiology, HPA axis function and the pathogenesis of depression and anxiety-related behaviors. Thus, targeting of KATP channel may be a potential therapeutic strategy in AD. Hence, we investigated the effects of intracerebroventricular injection of Aβ25-35 alone or in combination with glibenclamide, KATP channel inhibitor on depression- and anxiety-related behaviors as well as HPA axis response to stress in rats. To do this, non-Aβ25-35- and Aβ25-35-treated rats were orally treated with glibenclamide, then the behavioral consequences were assessed using sucrose preference, forced swim, light-dark box and plus maze tests. Stress-induced corticosterone levels following forced swim and plus maze tests were also evaluated as indicative of abnormal HPA-axis-function. Aβ25-35 induced HPA axis hyperreactivity and increased depression- and anxiety-related symptoms in rats. Our results showed that blockade of KATP channels with glibenclamide decreased depression- and anxiety-related behaviors by normalizing HPA axis activity in Aβ25-35-treated rats. This study provides additional evidence that Aβ administration can induce depression- and anxiety-like symptoms in rodents, and suggests that KATP channel inhibitors may be a plausible therapeutic strategy for treating affective disorders in AD patients.
Collapse
|
4
|
Bastos FC, Corceiro VN, Lopes SA, de Almeida JG, Matias CM, Dionisio JC, Mendes PJ, Sampaio Dos Aidos FDS, Quinta-Ferreira RM, Quinta-Ferreira ME. Effect of tolbutamide on tetraethylammonium-induced postsynaptic zinc signals at hippocampal mossy fiber-CA3 synapses. Can J Physiol Pharmacol 2017; 95:1058-1063. [PMID: 28654763 DOI: 10.1139/cjpp-2016-0379] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The application of tetraethylammonium (TEA), a blocker of voltage-dependent potassium channels, can induce long-term potentiation (LTP) in the synaptic systems CA3-CA1 and mossy fiber-CA3 pyramidal cells of the hippocampus. In the mossy fibers, the depolarization evoked by extracellular TEA induces a large amount of glutamate and also of zinc release. It is considered that zinc has a neuromodulatory role at the mossy fiber synapses, which can, at least in part, be due to the activation of presynaptic ATP-dependent potassium (KATP) channels. The aim of this work was to study properties of TEA-induced zinc signals, detected at the mossy fiber region, using the permeant form of the zinc indicator Newport Green. The application of TEA caused a depression of those signals that was partially blocked by the KATP channel inhibitor tolbutamide. After the removal of TEA, the signals usually increased to a level above baseline. These results are in agreement with the idea that intense zinc release during strong synaptic events triggers a negative feedback action. The zinc depression, caused by the LTP-evoking chemical stimulation, turns into potentiation after TEA washout, suggesting the existence of a correspondence between the observed zinc potentiation and TEA-evoked mossy fiber LTP.
Collapse
Affiliation(s)
- Fatima C Bastos
- a Department of Physics, University of Coimbra, P-3004-516 Coimbra, Portugal
| | - Vanessa N Corceiro
- a Department of Physics, University of Coimbra, P-3004-516 Coimbra, Portugal
| | - Sandra A Lopes
- a Department of Physics, University of Coimbra, P-3004-516 Coimbra, Portugal
| | - José G de Almeida
- b Department of Life Sciences, University of Coimbra, P-3000-456 Coimbra, Portugal
| | - Carlos M Matias
- c CNC - Center for Neurosciences and Cell Biology, University of Coimbra, P-3004-504 Coimbra, Portugal.,d UTAD - University of Trás-os-montes and Alto Douro, P-5000-801 Vila Real, Portugal
| | - Jose C Dionisio
- c CNC - Center for Neurosciences and Cell Biology, University of Coimbra, P-3004-504 Coimbra, Portugal.,e Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Paulo J Mendes
- a Department of Physics, University of Coimbra, P-3004-516 Coimbra, Portugal.,f LIP - Laboratory of Instrumentation and Experimental Particles Physics, P-3004-516 Coimbra, Portugal
| | | | - Rosa M Quinta-Ferreira
- h CIEPQPF - Research Centre of Chemical Process Engineering and Forest Products, Department of Chemical Engineering, University of Coimbra, P-3030-790 Coimbra, Portugal
| | - M Emilia Quinta-Ferreira
- a Department of Physics, University of Coimbra, P-3004-516 Coimbra, Portugal.,c CNC - Center for Neurosciences and Cell Biology, University of Coimbra, P-3004-504 Coimbra, Portugal
| |
Collapse
|
5
|
Fajardo AS, Seca HF, Martins RC, Corceiro VN, Vieira JP, Quinta-Ferreira ME, Quinta-Ferreira RM. Phenolic wastewaters depuration by electrochemical oxidation process using Ti/IrO 2 anodes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:7521-7533. [PMID: 28116623 DOI: 10.1007/s11356-017-8431-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 01/09/2017] [Indexed: 06/06/2023]
Abstract
The electrochemical oxidation (EO) of phenolic wastewaters mimicking olive oil mill effluents was carried out in a batch stirring reactor using Ti/IrO2 anodes, varying the nature (NaCl and Na2SO4) and electrolyte concentration (1.8-20 g L-1), current density (57-119 mA cm-2) and initial pH (3.4-9). Phenolic content (TPh) and chemical oxygen demand (COD) removals were monitored as a function of applied charge and over time. The nature of the electrolyte greatly affected the efficiency of the system, followed by the influence of the current density. The NaCl concentration and the initial pH influenced the process in a lesser extent. The best operating conditions achieved were 10 g L-1 of NaCl, current density of 119 mA cm-2 and initial pH of 3.4. These parameters led to 100 and 84.8% of TPh and COD removal, respectively. Under these conditions, some morphological differences were observed by SEM on the surface of the anode after treatment. To study the potential toxicity of the synthetic effluent in neuronal activity, this mixture was applied to rat brain slices prior to and after EO. The results indicate that although the treated effluent causes a smaller depression of the neuronal reactive oxygen species (ROS) signal than the untreated one, it leads to a potentiation instead of recovery, upon washout. Furthermore, the purification of a real olive mill wastewater (OMW), with the organic load of the synthetic effluent, using the same optimised operating conditions, achieved total phenolic compounds abatement and 62.8% of COD removal.This study demonstrates the applicability of this EO as a pre-treatment process of a real effluent, in order to achieve the legal limit values to be discharged into natural streams regarding its organic load.
Collapse
Affiliation(s)
- Ana S Fajardo
- Chemical Process Engineering and Forest Products Research Centre, Department of Chemical Engineering, University of Coimbra, P3030 790, Coimbra, Portugal.
| | - Helga F Seca
- Chemical Process Engineering and Forest Products Research Centre, Department of Chemical Engineering, University of Coimbra, P3030 790, Coimbra, Portugal
| | - Rui C Martins
- Chemical Process Engineering and Forest Products Research Centre, Department of Chemical Engineering, University of Coimbra, P3030 790, Coimbra, Portugal
| | - Vanessa N Corceiro
- Department of Physics, University of Coimbra, P3004 516, Coimbra, Portugal
| | - João P Vieira
- Department of Physics, University of Coimbra, P3004 516, Coimbra, Portugal
| | - M Emília Quinta-Ferreira
- Department of Physics, University of Coimbra, P3004 516, Coimbra, Portugal
- Centre for Neuroscience and Cell Biology, University of Coimbra, P3004 504, Coimbra, Portugal
| | - Rosa M Quinta-Ferreira
- Chemical Process Engineering and Forest Products Research Centre, Department of Chemical Engineering, University of Coimbra, P3030 790, Coimbra, Portugal
| |
Collapse
|
6
|
Fajardo AS, Seca HF, Martins RC, Corceiro VN, Freitas IF, Quinta-Ferreira ME, Quinta-Ferreira RM. Electrochemical oxidation of phenolic wastewaters using a batch-stirred reactor with NaCl electrolyte and Ti/RuO 2 anodes. J Electroanal Chem (Lausanne) 2017. [DOI: 10.1016/j.jelechem.2016.12.033] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
7
|
Obata T, Nakashima M. Opening of ATP-sensitive K(+) (KATP) channels enhance hydroxyl radical generation induced by MPP(+) in rat striatum. J Neurol Sci 2016; 366:180-183. [PMID: 27288802 DOI: 10.1016/j.jns.2016.04.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 04/01/2016] [Accepted: 04/04/2016] [Indexed: 11/15/2022]
Abstract
The present study examined whether opening of adenosine triphosphate (ATP) sensitive K(+) (KATP) channels can enhance 1-methyl-4-phenylpyridinium (MPP(+))-induced hydroxyl radical (OH) generation in rat striatum. Rats were anesthetized, and sodium salicylate in Ringer's solution (0.5nmol/ml per min) was infused through a microdialysis probe to detect the generation of OH as reflected by the non-enzymatic formation of 2.3-dihydroxybenzoic acid (DHBA) in the striatum. MPP(+) (5mM) enhanced generation of OH with concomitant increased efflux of dopamine (DA). Cromakalim (100μM), a KATP channel opener, through the microdialysis probe significantly increased both DA efflux and OH formation induced by MPP(+). Another KATP channel opener, nicorandil (1mM), also increased the level DA or DHBA, but these changes were not significant. However, in the presence of glibenclamide (10μM), a KATP channel antagonist, and the increase of MPP(+)-induced DA or DHBA were not observed. Cromakalim (10, 50 and 100μM) increased MPP(+)-induced DHBA formation in a concentration-dependent manner. However, the effects of cromakalim in the presence of glibenclamide were abolished. These results suggest that opening of KATP channels may cause OH generation by MPP(+).
Collapse
Affiliation(s)
- Toshio Obata
- School of Nursing, Faculty of Health Sciences, Osaka Aoyama University, 2-11-1 Niina, Mino City, Japan.
| | - Michiko Nakashima
- Department of Nursing, School of Health Sciences, Asahi University, 1851 Hozumi, Mizuho City, Gifu, Japan
| |
Collapse
|
8
|
Beltrán C, Rodríguez-Miranda E, Granados-González G, de De la Torre LG, Nishigaki T, Darszon A. Zn(2+) induces hyperpolarization by activation of a K(+) channel and increases intracellular Ca(2+) and pH in sea urchin spermatozoa. Dev Biol 2014; 394:15-23. [PMID: 25092071 PMCID: PMC4163537 DOI: 10.1016/j.ydbio.2014.07.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 07/01/2014] [Accepted: 07/24/2014] [Indexed: 11/24/2022]
Abstract
Zinc (Zn(2+)) has been recently recognized as a crucial element for male gamete function in many species although its detailed mechanism of action is poorly understood. In sea urchin spermatozoa, Zn(2+) was reported as an essential trace ion for efficient sperm motility initiation and the acrosome reaction by modulating intracellular pH (pHi). In this study we found that submicromolar concentrations of free Zn(2+) change membrane potential (Em) and increase the concentration of intracellular Ca(2+) ([Ca(2+)]i) and cAMP in Lytechinus pictus sperm. Our results indicate that the Zn(2+) response in sperm of this species mainly involves an Em hyperpolarization caused by K(+) channel activation. The pharmacological profile of the Zn(2+)-induced hyperpolarization indicates that the cGMP-gated K(+) selective channel (tetraKCNG/CNGK), which is crucial for speract signaling, is likely a main target for Zn(2+). Considering that Zn(2+) also induces [Ca(2+)]i fluctuations, our observations suggest that Zn(2+) activates the signaling cascade of speract, except for an increase in cGMP, and facilitates sperm motility initiation upon spawning. These findings provide new insights about the role of Zn(2+) in male gamete function.
Collapse
Affiliation(s)
- Carmen Beltrán
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos CP 62210, México
| | - Esmeralda Rodríguez-Miranda
- Departamento de Medicina y Nutrición, División de Ciencias de la Salud, Universidad de Guanajuato; Campus León. Guanajuato CP 37320, México
| | - Gisela Granados-González
- Facultad de Ciencias, Universidad Autónoma del Estado de México, Toluca, Estado de México CP 50000, México
| | | | - Takuya Nishigaki
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos CP 62210, México
| | - Alberto Darszon
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos CP 62210, México
| |
Collapse
|
9
|
Supplemented zinc does not alter mood in healthy older European adults – a randomised placebo-controlled trial: the Zenith study. Public Health Nutr 2011; 14:882-8. [DOI: 10.1017/s1368980010002764] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractObjectiveOlder people are vulnerable to zinc deficiency, which may impact upon their mood. This randomised, placebo-controlled, double-blind intervention study aimed to investigate the effect of oral zinc gluconate supplementation (15 mg/d; 30 mg/d; and placebo) on subjective mood (affect) in older Europeans.SubjectsHealthy volunteers (n 387) aged 55–87 years were recruited.SettingVolunteers in Rome (Italy; n 108) and Grenoble (France; n 91) were aged 70–87 years and those in Coleraine (Northern Ireland; n 93) and Clermont-Ferrand (France; n 95) were aged 55–70 years.DesignMood was measured using the Positive and Negative Affect Scale on four occasions per day over 4 d at baseline, 3 and 6 months post-intervention.ResultsMixed ANOVA indicated that neither positive nor negative affect altered in response to zinc (15 mg/d or 30 mg/d) compared to placebo in either the 55–70 years or the ≥70 years age group.ConclusionsThese results suggest that zinc does not benefit mood in healthy older people.
Collapse
|