1
|
Reduction of oxidative stress and inflammatory signaling in the commissural nucleus of the solitary tract (commNTS) and rostral ventrolateral medulla (RVLM) in treadmill trained rats. Brain Res 2021; 1769:147582. [PMID: 34314729 DOI: 10.1016/j.brainres.2021.147582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 11/21/2022]
Abstract
Inflammation has been associated with cardiovascular diseases and the key point is the generation of reactive oxygen species (ROS). Exercise modulates medullary neurons involved in cardiovascular control. We investigated the effect of chronic exercise training (Tr) in treadmill running on gene expression (GE) of ROS and inflammation in commNTS and RVLM neurons. Male Wistar rats (N = 7/group) were submitted to training in a treadmill running (1 h/day, 5 days/wk/10 wks) or maintained sedentary (Sed). Superoxide dismutase (SOD), catalase (CAT), neuroglobin (Ngb), Cytoglobin (Ctb), NADPH oxidase (Nox), cicloxigenase-2 (Cox-2), and neuronal nitric oxide synthase (NOS1) gene expression were evaluated in commNTS and RVLM neurons by qPCR. In RVLM, Tr rats increased Ngb (1.285 ± 0.03 vs. 0.995 ± 0.06), Cygb (1.18 ± 0.02 vs.0.99 ± 0.06), SOD (1.426 ± 0.108 vs. 1.00 ± 0.08), CAT (1.34 ± 0.09 vs. 1.00 ± 0.08); and decreased Nox (0.55 ± 0.146 vs. 1.001 ± 0.08), Cox-2 (0.335 ± 0.05 vs. 1.245 ± 0.02), NOS1 (0.51 ± 0.08 vs. 1.08 ± 0.209) GE compared to Sed. In commNTS, Tr rats increased SOD (1.384 ± 0.13 vs. 0.897 ± 0.101), CAT GE (1.312 ± 0.126 vs. 0.891 ± 0.106) and decreased Cox-2 (0.052 ± 0.011 vs. 1.06 ± 0.207) and NOS1 (0.1550 ± 0.03559 vs. 1.122 ± 0.26) GE compared to Sed. Therefore, GE of proteins of the inflammatory process reduced while GE of antioxidant proteins increased in the commNTS and RVLM after training, suggesting a decrease in oxidative stress of downstream pathways mediated by nitric oxide.
Collapse
|
2
|
Smirnova E, Shulkina S, Loran E, Podtaev S, Antonova N. Relationship between skin blood flow regulation mechanisms and vascular endothelial growth factor in patients with metabolic syndrome. Clin Hemorheol Microcirc 2018; 70:129-142. [DOI: 10.3233/ch-170247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- E. Smirnova
- Perm State Medical University, Perm, Russia
- Institute of Continuous Media Mechanics, Russian Academy of Sciences Ural Branch, Korolyova str, Perm, Russia
| | - S. Shulkina
- Perm State Medical University, Perm, Russia
- Institute of Continuous Media Mechanics, Russian Academy of Sciences Ural Branch, Korolyova str, Perm, Russia
| | - E. Loran
- Perm State Medical University, Perm, Russia
- Institute of Continuous Media Mechanics, Russian Academy of Sciences Ural Branch, Korolyova str, Perm, Russia
| | - S. Podtaev
- Institute of Continuous Media Mechanics, Russian Academy of Sciences Ural Branch, Korolyova str, Perm, Russia
| | - N. Antonova
- Institute of Mechanics, Bulgarian Academy of Sciences, Sofia, Bulgaria
| |
Collapse
|
3
|
Morgan BJ, Schrimpf N, Rothman M, Mitzey A, Brownfieldc MS, Speth RC, Dopp JM. Effect of Chronic Intermittent Hypoxia on Angiotensin II Receptors in the Central Nervous System. Clin Exp Hypertens 2018; 41:1-7. [PMID: 29561178 PMCID: PMC6150845 DOI: 10.1080/10641963.2018.1451536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 02/21/2018] [Accepted: 03/07/2018] [Indexed: 10/17/2022]
Abstract
Chronic intermittent hypoxia (CIH) increases basal sympathetic nervous system activity, augments chemoreflex-induced sympathoexcitation, and raises blood pressure. All effects are attenuated by systemic or intracerebroventricular administration of angiotensin II type 1 receptor (AT1R) antagonists. This study aimed to quantify the effects of CIH on AT1R- and AT2R-like immunoreactivity in the rostroventrolateral medulla (RVLM) and paraventricular nucleus of the hypothalamus (PVN), central regions that are important components of the extended chemoreflex pathway. Eighteen Sprague-Dawley rats were exposed to intermittent hypoxia (FIO2 = 0.10, 1 min at 4-min intervals) for 10 hr/day for 1, 5, 10, or 21 days. After exposure, rats were deeply anesthetized and transcardially perfused with phosphate buffered saline (PBS) followed by 4% paraformaldehyde in PBS. Brains were removed and sectioned coronally into 50 µm slices. Immunohistochemistry was used to quantify AT1R and AT2R in the RVLM and the PVN. In the RVLM, CIH significantly increased the AT1R-like immunoreactivity, but did not alter AT2R immunoreactivity, thereby augmenting the AT1R:AT2R ratio in this nucleus. In the PVN, CIH had no effect on immunoreactivity of either receptor subtype. The current findings provide mechanistic insight into increased basal sympathetic outflow, enhanced chemoreflex sensitivity, and blood pressure elevation observed in rodents exposed to CIH.
Collapse
Affiliation(s)
- Barbara J. Morgan
- John Rankin Laboratory of Pulmonary Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
- Department of Orthopedics and Rehabilitation, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Nicole Schrimpf
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, USA
| | - Morgan Rothman
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, USA
| | - Ann Mitzey
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, USA
| | - Mark S. Brownfieldc
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, USA
| | - Robert C. Speth
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Ft. Lauderdale, FL, USA
| | - John M. Dopp
- Pharmacy Practice Division, School of Pharmacy, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
4
|
Mascolo A, Sessa M, Scavone C, De Angelis A, Vitale C, Berrino L, Rossi F, Rosano G, Capuano A. New and old roles of the peripheral and brain renin-angiotensin-aldosterone system (RAAS): Focus on cardiovascular and neurological diseases. Int J Cardiol 2016; 227:734-742. [PMID: 27823897 DOI: 10.1016/j.ijcard.2016.10.069] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 10/26/2016] [Indexed: 02/06/2023]
Abstract
It is commonly accepted that the renin-angiotensin-aldosterone system (RAAS) is a cardiovascular circulating hormonal system that plays also an important role in the modulation of several patterns in the brain. The pathway of the RAAS can be divided into two classes: the traditional pathway of RAAS, also named classic RAAS, and the non-classic RAAS. Both pathways play a role in both cardiovascular and neurological diseases through a peripheral or central control. In this regard, renewed interest is growing in the last years for the consideration that the brain RAAS could represent a new important therapeutic target to regulate not only the blood pressure via central nervous control, but also neurological diseases. However, the development of compounds able to cross the blood-brain barrier and to act on the brain RAAS is challenging, especially if the metabolic stability and the half-life are taken into consideration. To date, two drug classes (aminopeptidase type A inhibitors and angiotensin IV analogues) acting on the brain RAAS are in development in pre-clinical or clinical stages. In this article, we will present an overview of the biological functions played by peripheral and brain classic and non-classic pathways of the RAAS in several clinical conditions, focusing on the brain RAAS and on the new pharmacological targets of the RAAS.
Collapse
Affiliation(s)
- A Mascolo
- Department of Experimental Medicine, Section of Pharmacology L. Donatelli, Second University of Naples, Naples, Italy.
| | - M Sessa
- Department of Experimental Medicine, Section of Pharmacology L. Donatelli, Second University of Naples, Naples, Italy
| | - C Scavone
- Department of Experimental Medicine, Section of Pharmacology L. Donatelli, Second University of Naples, Naples, Italy
| | - A De Angelis
- Department of Experimental Medicine, Section of Pharmacology L. Donatelli, Second University of Naples, Naples, Italy
| | - C Vitale
- IRCCS San Raffaele Pisana, Rome, Italy
| | - L Berrino
- Department of Experimental Medicine, Section of Pharmacology L. Donatelli, Second University of Naples, Naples, Italy
| | - F Rossi
- Department of Experimental Medicine, Section of Pharmacology L. Donatelli, Second University of Naples, Naples, Italy
| | - G Rosano
- IRCCS San Raffaele Pisana, Rome, Italy; Cardiovascular and Cell Sciences Research Institute, St. George's, University of London, London, UK
| | - A Capuano
- Department of Experimental Medicine, Section of Pharmacology L. Donatelli, Second University of Naples, Naples, Italy
| |
Collapse
|
5
|
Bourassa EA, Stedenfeld KA, Sved AF, Speth RC. Selective C1 Lesioning Slightly Decreases Angiotensin II Type I Receptor Expression in the Rat Rostral Ventrolateral Medulla (RVLM). Neurochem Res 2015; 40:2113-20. [PMID: 26138553 DOI: 10.1007/s11064-015-1649-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 06/16/2015] [Accepted: 06/20/2015] [Indexed: 01/28/2023]
Abstract
Cardiovascular homeostasis is regulated in large part by the rostral ventrolateral medulla (RVLM) in mammals. Projections from the RVLM to the intermediolateral column of the thoracolumbar spinal cord innervate preganglionic neurons of the sympathetic nervous system causing elevation of blood pressure and heart rate. A large proportion, but not all, of the neurons in the RVLM contain the enzymes necessary for the production of epinephrine and are identified as the C1 cell group. Angiotensin II (Ang II) activates the RVLM acting upon AT1 receptors. To assess the proportion of AT1 receptors that are located on C1 neurons in the rat RVLM this study employed an antibody to dopamine-beta-hydroxylase conjugated to saporin, to selectively destroy C1 neurons in the RVLM. Expression of tyrosine hydroxylase immunoreactive neurons in the RVLM was reduced by 57 % in the toxin injected RVLM compared to the contralateral RVLM. In contrast, densitometric analysis of autoradiographic images of (125)I-sarcosine(1), isoleucine(8) Ang II binding to AT1 receptors of the injected side RVLM revealed a small (10 %) reduction in AT1-receptor expression compared to the contralateral RVLM. These results suggest that the majority of AT1 receptors in the rat RVLM are located on non-C1 neurons or glia.
Collapse
Affiliation(s)
- Erick A Bourassa
- Mississippi College, 200 S Capitol St, Clinton, MS, 39058, USA.
- Department of Pharmacology, School of Pharmacy, University of Mississippi, Oxford, MS, 38677, USA.
| | - Kristen A Stedenfeld
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Alan F Sved
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, 15260, USA.
| | - Robert C Speth
- Department of Pharmacology, School of Pharmacy, University of Mississippi, Oxford, MS, 38677, USA.
- College of Pharmacy, Nova Southeastern University, 3200 S. University Dr., Fort Lauderdale, FL, 33328, USA.
| |
Collapse
|
6
|
Recent insights and therapeutic perspectives of angiotensin-(1-9) in the cardiovascular system. Clin Sci (Lond) 2014; 127:549-57. [PMID: 25029123 DOI: 10.1042/cs20130449] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Chronic RAS (renin-angiotensin system) activation by both AngII (angiotensin II) and aldosterone leads to hypertension and perpetuates a cascade of pro-hypertrophic, pro-inflammatory, pro-thrombotic and atherogenic effects associated with cardiovascular damage. In 2000, a new pathway consisting of ACE2 (angiotensin-converting enzyme2), Ang-(1-9) [angiotensin-(1-9)], Ang-(1-7) [angiotensin-(1-7)] and the Mas receptor was discovered. Activation of this novel pathway stimulates vasodilation, anti-hypertrophy and anti-hyperplasia. For some time, studies have focused mainly on ACE2, Ang-(1-7) and the Mas receptor, and their biological properties that counterbalance the ACE/AngII/AT1R (angiotensin type 1 receptor) axis. No previous information about Ang-(1-9) suggested that this peptide had biological properties. However, recent data suggest that Ang-(1-9) protects the heart and blood vessels (and possibly the kidney) from adverse cardiovascular remodelling in patients with hypertension and/or heart failure. These beneficial effects are not modified by the Mas receptor antagonist A779 [an Ang-(1-7) receptor blocker], but they are abolished by the AT2R (angiotensin type 2 receptor) antagonist PD123319. Current information suggests that the beneficial effects of Ang-(1-9) are mediated via the AT2R. In the present review, we summarize the biological effects of the novel vasoactive peptide Ang-(1-9), providing new evidence of its cardiovascular-protective activity. We also discuss the potential mechanism by which this peptide prevents and ameliorates the cardiovascular damage induced by RAS activation.
Collapse
|
7
|
Sympathoexcitation associated with Renin-Angiotensin system in metabolic syndrome. Int J Hypertens 2013; 2013:406897. [PMID: 23476747 PMCID: PMC3586511 DOI: 10.1155/2013/406897] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 12/26/2012] [Accepted: 01/09/2013] [Indexed: 02/07/2023] Open
Abstract
Renin-angiotensin system (RAS) is activated in metabolic syndrome (MetS), and RAS inhibitors are preferred for the treatments of hypertension with MetS. Although RAS activation is important for the therapeutic target, underlying sympathetic nervous system (SNS) activation is critically involved and should not be neglected in the pathogenesis of hypertension with MetS. In fact, previous studies have suggested that SNS activation has the interaction with RAS activation and/or insulin resistance. As a novel aspect connecting the importance of SNS and RAS activation, we and other investigators have recently demonstrated that angiotensin II type 1 receptor (AT1R) blockers (ARBs) improve SNS activation in patients with MetS. In the animal studies, SNS activation is regulated by the AT1R-induced oxidative stress in the brain. We have also demonstrated that orally administered ARBs cause sympathoinhibition independent of the depressor effects in dietary-induced hypertensive rats. Interestingly, these benefits on SNS activation of ARBs in clinical and animal studies are not class effects of ARBs. In conclusion, SNS activation associated with RAS activation in the brain should be the target of the treatment, and ARBs could have the potential benefit on SNS activation in patients with MetS.
Collapse
|
8
|
Renin-Angiotensin system and sympathetic neurotransmitter release in the central nervous system of hypertension. Int J Hypertens 2012; 2012:474870. [PMID: 23227311 PMCID: PMC3512297 DOI: 10.1155/2012/474870] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Accepted: 10/18/2012] [Indexed: 02/07/2023] Open
Abstract
Many Studies suggest that changes in sympathetic nerve activity in the central nervous system might have a crucial role in blood pressure control. The present paper discusses evidence in support of the concept that the brain renin-angiotensin system (RAS) might be linked to sympathetic nerve activity in hypertension. The amount of neurotransmitter release from sympathetic nerve endings can be regulated by presynaptic receptors located on nerve terminals. It has been proposed that alterations in sympathetic nervous activity in the central nervous system of hypertension might be partially due to abnormalities in presynaptic modulation of neurotransmitter release. Recent evidence indicates that all components of the RAS have been identified in the brain. It has been proposed that the brain RAS may actively participate in the modulation of neurotransmitter release and influence the central sympathetic outflow to the periphery. This paper summarizes the results of studies to evaluate the possible relationship between the brain RAS and sympathetic neurotransmitter release in the central nervous system of hypertension.
Collapse
|
9
|
Putnam K, Shoemaker R, Yiannikouris F, Cassis LA. The renin-angiotensin system: a target of and contributor to dyslipidemias, altered glucose homeostasis, and hypertension of the metabolic syndrome. Am J Physiol Heart Circ Physiol 2012; 302:H1219-30. [PMID: 22227126 DOI: 10.1152/ajpheart.00796.2011] [Citation(s) in RCA: 159] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The renin-angiotensin system (RAS) is an important therapeutic target in the treatment of hypertension. Obesity has emerged as a primary contributor to essential hypertension in the United States and clusters with other metabolic disorders (hyperglycemia, hypertension, high triglycerides, low HDL cholesterol) defined within the metabolic syndrome. In addition to hypertension, RAS blockade may also serve as an effective treatment strategy to control impaired glucose and insulin tolerance and dyslipidemias in patients with the metabolic syndrome. Hyperglycemia, insulin resistance, and/or specific cholesterol metabolites have been demonstrated to activate components required for the synthesis [angiotensinogen, renin, angiotensin-converting enzyme (ACE)], degradation (ACE2), or responsiveness (angiotensin II type 1 receptors, Mas receptors) to angiotensin peptides in cell types (e.g., pancreatic islet cells, adipocytes, macrophages) that mediate specific disorders of the metabolic syndrome. An activated local RAS in these cell types may contribute to dysregulated function by promoting oxidative stress, apoptosis, and inflammation. This review will discuss data demonstrating the regulation of components of the RAS by cholesterol and its metabolites, glucose, and/or insulin in cell types implicated in disorders of the metabolic syndrome. In addition, we discuss data supporting a role for an activated local RAS in dyslipidemias and glucose intolerance/insulin resistance and the development of hypertension in the metabolic syndrome. Identification of an activated RAS as a common thread contributing to several disorders of the metabolic syndrome makes the use of angiotensin receptor blockers and ACE inhibitors an intriguing and novel option for multisymptom treatment.
Collapse
Affiliation(s)
- Kelly Putnam
- Graduate Center for Nutritional Sciences, University of Kentucky, Lexington, 40536-0200, USA
| | | | | | | |
Collapse
|
10
|
Oshima N, Kumagai H, Iigaya K, Onimaru H, Kawai A, Nishida Y, Saruta T, Itoh H. Baro-excited neurons in the caudal ventrolateral medulla (CVLM) recorded using the whole-cell patch-clamp technique. Hypertens Res 2011; 35:500-6. [DOI: 10.1038/hr.2011.211] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
11
|
Wangler NJ, Santos KL, Schadock I, Hagen FK, Escher E, Bader M, Speth RC, Karamyan VT. Identification of membrane-bound variant of metalloendopeptidase neurolysin (EC 3.4.24.16) as the non-angiotensin type 1 (non-AT1), non-AT2 angiotensin binding site. J Biol Chem 2011; 287:114-122. [PMID: 22039052 DOI: 10.1074/jbc.m111.273052] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Recently, we discovered a novel non-angiotensin type 1 (non-AT1), non-AT2 angiotensin binding site in rodent and human brain membranes, which is distinctly different from angiotensin receptors and key proteases processing angiotensins. It is hypothesized to be a new member of the renin-angiotensin system. This study was designed to isolate and identify this novel angiotensin binding site. An angiotensin analog, photoaffinity probe 125I-SBpa-Ang II, was used to specifically label the non-AT1, non-AT2 angiotensin binding site in mouse forebrain membranes, followed by a two-step purification procedure based on the molecular size and isoelectric point of the photoradiolabeled binding protein. Purified samples were subjected to two-dimensional gel electrophoresis followed by mass spectrometry identification of proteins in the two-dimensional gel sections containing radioactivity. LC-MS/MS analysis revealed eight protein candidates, of which the four most abundant were immunoprecipitated after photoradiolabeling. Immunoprecipitation studies indicated that the angiotensin binding site might be the membrane-bound variant of metalloendopeptidase neurolysin (EC 3.4.24.16). To verify these observations, radioligand binding and photoradiolabeling experiments were conducted in membrane preparations of HEK293 cells overexpressing mouse neurolysin or thimet oligopeptidase (EC 3.4.24.15), a closely related metalloendopeptidase of the same family. These experiments also identified neurolysin as the non-AT1, non-AT2 angiotensin binding site. Finally, brain membranes of mice lacking neurolysin were nearly devoid of the non-AT1, non-AT2 angiotensin binding site, further establishing membrane-bound neurolysin as the binding site. Future studies will focus on the functional significance of this highly specific, high affinity interaction between neurolysin and angiotensins.
Collapse
Affiliation(s)
- Naomi J Wangler
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, Texas, 79106
| | - Kira L Santos
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, Florida 33328
| | - Ines Schadock
- Max-Delbrück-Center for Molecular Medicine, Berlin 13092, Germany
| | - Fred K Hagen
- Proteomics Center, Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, New York 14642
| | - Emanuel Escher
- Department of Pharmacology, Université de Sherbrooke, Sherbrooke, Quebec J1H5N4, Canada
| | - Michael Bader
- Max-Delbrück-Center for Molecular Medicine, Berlin 13092, Germany
| | - Robert C Speth
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, Florida 33328; Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, Florida 32611
| | - Vardan T Karamyan
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, Texas, 79106; Vascular Drug Research Center, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas 79106.
| |
Collapse
|
12
|
Huber DA, Schreihofer AM. Altered regulation of the rostral ventrolateral medulla in hypertensive obese Zucker rats. Am J Physiol Heart Circ Physiol 2011; 301:H230-40. [PMID: 21536848 DOI: 10.1152/ajpheart.00075.2011] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Obese Zucker rats (OZR) have elevated sympathetic nerve activity (SNA) and mean arterial pressure (MAP) compared with lean Zucker rats (LZR). We examined whether altered tonic glutamatergic, angiotensinergic, or GABAergic inputs to the rostral ventrolateral medulla (RVLM) contribute to elevated SNA and MAP in OZR. Male rats (14-18 wk) were anesthetized with urethane (1.5 g/kg iv), ventilated, and paralyzed to record splanchnic SNA, heart rate (HR), and MAP. Inhibition of the RVLM by microinjections of muscimol eliminated SNA and evoked greater decreases in MAP in OZR vs. LZR (P < 0.05). Antagonism of angiotensin AT(1) receptors in RVLM with losartan yielded modest decreases in SNA and MAP in OZR but not LZR (P < 0.05). However, antagonism of ionotropic glutamate receptors in RVLM with kynurenate produced comparable decreases in SNA, HR, and MAP in OZR and LZR. Antagonism of GABA(A) receptors in RVLM with gabazine evoked smaller rises in SNA, HR, and MAP in OZR vs. LZR (P < 0.05), whereas responses to microinjections of GABA into RVLM were comparable. Inhibition of the caudal ventrolateral medulla, a major source of GABA to the RVLM, evoked attenuated rises in SNA and HR in OZR (P <0.05). Likewise, inhibition of nucleus tractus solitarius, the major excitatory input to caudal ventrolateral medulla, produced smaller rises in SNA and HR in OZR. These results suggest the elevated SNA and MAP in OZR is derived from the RVLM and that enhanced angiotensinergic activation and reduced GABAergic inhibition of the RVLM may contribute to the elevated SNA and MAP in the OZR.
Collapse
Affiliation(s)
- Domitila A Huber
- Dept. of Integrative Physiology, Univ. of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX 76107, USA
| | | |
Collapse
|
13
|
Allen AM. Role of angiotensin in the rostral ventrolateral medulla in the development and maintenance of hypertension. Curr Opin Pharmacol 2011; 11:117-23. [PMID: 21269877 DOI: 10.1016/j.coph.2010.12.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Revised: 12/13/2010] [Accepted: 12/23/2010] [Indexed: 02/07/2023]
Abstract
Whilst crucial for behavioural and homeostatic responses to environmental challenges, chronic elevation of sympathetic nervous system activity to specific vascular beds is associated with hypertension. Indeed such elevated activity may drive the increase in blood pressure seen in some people and in some experimental models of hypertension. This review discusses the neural circuitry involved in generating and modulating sympathetic efferent nerve activity, focusing on the premotor neurons of the rostral ventrolateral medulla. Neurons in the rostral ventrolateral medulla show altered responses to angiotensin II in experimental models of hypertension, suggesting that this might be an important node for interaction between these two systems that are crucial for regulation of blood pressure.
Collapse
Affiliation(s)
- Andrew M Allen
- Department of Physiology and Florey Neurosciences Institutes, University of Melbourne, Vic., 3010, Australia.
| |
Collapse
|
14
|
Gao L, Zucker IH. AT2 receptor signaling and sympathetic regulation. Curr Opin Pharmacol 2010; 11:124-30. [PMID: 21159555 DOI: 10.1016/j.coph.2010.11.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Revised: 11/19/2010] [Accepted: 11/22/2010] [Indexed: 11/28/2022]
Abstract
There is a growing consensus that the balance between Angiotensin Type 1 (AT1R) and Angiotensin Type 2 (AT2R) signaling in many tissues may determine the magnitude and, in some cases the direction, of the biological response. Sympatho-excitation in cardiovascular diseases is mediated by a variety of factors and is, in part, dependent on Angiotensin II signaling in the central nervous system. Recent data have provided evidence that the AT2R can modulate sympatho-excitation in animals with hypertension and heart failure. The evidence for this concept is reviewed and a model is put forward to support the rationale that therapeutic targeting of the central AT2R may be beneficial in the setting of chronic heart failure.
Collapse
Affiliation(s)
- Lie Gao
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198-5850, USA
| | | |
Collapse
|