1
|
Di Santo C, Siniscalchi A, La Russa D, Tonin P, Bagetta G, Amantea D. Brain Ischemic Tolerance Triggered by Preconditioning Involves Modulation of Tumor Necrosis Factor-α-Stimulated Gene 6 (TSG-6) in Mice Subjected to Transient Middle Cerebral Artery Occlusion. Curr Issues Mol Biol 2024; 46:9970-9983. [PMID: 39329947 PMCID: PMC11430743 DOI: 10.3390/cimb46090595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/08/2024] [Accepted: 09/09/2024] [Indexed: 09/28/2024] Open
Abstract
Ischemic preconditioning (PC) induced by a sub-lethal cerebral insult triggers brain tolerance against a subsequent severe injury through diverse mechanisms, including the modulation of the immune system. Tumor necrosis factor (TNF)-α-stimulated gene 6 (TSG-6), a hyaluronate (HA)-binding protein, has recently been involved in the regulation of the neuroimmune response following ischemic stroke. Thus, we aimed at assessing whether the neuroprotective effects of ischemic PC involve the modulation of TSG-6 in a murine model of transient middle cerebral artery occlusion (MCAo). The expression of TSG-6 was significantly elevated in the ischemic cortex of mice subjected to 1 h MCAo followed by 24 h reperfusion, while this effect was further potentiated (p < 0.05 vs. MCAo) by pre-exposure to ischemic PC (i.e., 15 min MCAo) 72 h before. By immunofluorescence analysis, we detected TSG-6 expression mainly in astrocytes and myeloid cells populating the lesioned cerebral cortex, with a more intense signal in tissue from mice pre-exposed to ischemic PC. By contrast, levels of TSG-6 were reduced after 24 h of reperfusion in plasma (p < 0.05 vs. SHAM), but were dramatically elevated when severe ischemia (1 h MCAo) was preceded by ischemic PC (p < 0.001 vs. MCAo) that also resulted in significant neuroprotection. In conclusion, our data demonstrate that neuroprotection exerted by ischemic PC is associated with the elevation of TSG-6 protein levels both in the brain and in plasma, further underscoring the beneficial effects of this endogenous modulator of the immune system.
Collapse
Affiliation(s)
- Chiara Di Santo
- Section of Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (C.D.S.)
| | - Antonio Siniscalchi
- Department of Neurology and Stroke Unit, Annunziata Hospital, 87100 Cosenza, Italy
| | - Daniele La Russa
- Section of Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (C.D.S.)
| | - Paolo Tonin
- Regional Center for Serious Brain Injuries, S. Anna Institute, 88900 Crotone, Italy
| | - Giacinto Bagetta
- Section of Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (C.D.S.)
| | - Diana Amantea
- Section of Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (C.D.S.)
| |
Collapse
|
2
|
Di Santo C, La Russa D, Greco R, Persico A, Zanaboni AM, Bagetta G, Amantea D. Characterization of the Involvement of Tumour Necrosis Factor (TNF)-α-Stimulated Gene 6 (TSG-6) in Ischemic Brain Injury Caused by Middle Cerebral Artery Occlusion in Mouse. Int J Mol Sci 2023; 24:ijms24065800. [PMID: 36982872 PMCID: PMC10051687 DOI: 10.3390/ijms24065800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/03/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
The identification of novel targets to modulate the immune response triggered by cerebral ischemia is crucial to promote the development of effective stroke therapeutics. Since tumour necrosis factor (TNF)-α-stimulated gene 6 (TSG-6), a hyaluronate (HA)-binding protein, is involved in the regulation of immune and stromal cell functions in acute neurodegeneration, we aimed to characterize its involvement in ischemic stroke. Transient middle cerebral artery occlusion (1 h MCAo, followed by 6 to 48 of reperfusion) in mice resulted in a significant elevation in cerebral TSG-6 protein levels, mainly localized in neurons and myeloid cells of the lesioned hemisphere. These myeloid cells were clearly infiltrating from the blood, strongly suggesting that brain ischemia also affects TSG-6 in the periphery. Accordingly, TSG-6 mRNA expression was elevated in peripheral blood mononuclear cells (PBMCs) from patients 48 h after ischemic stroke onset, and TSG-6 protein expression was higher in the plasma of mice subjected to 1 h MCAo followed by 48 h of reperfusion. Surprisingly, plasma TSG-6 levels were reduced in the acute phase (i.e., within 24 h of reperfusion) when compared to sham-operated mice, supporting the hypothesis of a detrimental role of TSG-6 in the early reperfusion stage. Accordingly, systemic acute administration of recombinant mouse TSG-6 increased brain levels of the M2 marker Ym1, providing a significant reduction in the brain infarct volume and general neurological deficits in mice subjected to transient MCAo. These findings suggest a pivotal role of TSG-6 in ischemic stroke pathobiology and underscore the clinical relevance of further investigating the mechanisms underlying its immunoregulatory role.
Collapse
Affiliation(s)
- Chiara Di Santo
- Section of Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy
| | - Daniele La Russa
- Section of Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy
| | - Rosaria Greco
- IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, PV, Italy
| | | | | | - Giacinto Bagetta
- Section of Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy
| | - Diana Amantea
- Section of Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy
| |
Collapse
|
3
|
La Russa D, Di Santo C, Lizasoain I, Moraga A, Bagetta G, Amantea D. Tumor Necrosis Factor (TNF)-α-Stimulated Gene 6 (TSG-6): A Promising Immunomodulatory Target in Acute Neurodegenerative Diseases. Int J Mol Sci 2023; 24:ijms24021162. [PMID: 36674674 PMCID: PMC9865344 DOI: 10.3390/ijms24021162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/26/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Tumor necrosis factor (TNF)-α-stimulated gene 6 (TSG-6), the first soluble chemokine-binding protein to be identified in mammals, inhibits chemotaxis and transendothelial migration of neutrophils and attenuates the inflammatory response of dendritic cells, macrophages, monocytes, and T cells. This immunoregulatory protein is a pivotal mediator of the therapeutic efficacy of mesenchymal stem/stromal cells (MSC) in diverse pathological conditions, including neuroinflammation. However, TSG-6 is also constitutively expressed in some tissues, such as the brain and spinal cord, and is generally upregulated in response to inflammation in monocytes/macrophages, dendritic cells, astrocytes, vascular smooth muscle cells and fibroblasts. Due to its ability to modulate sterile inflammation, TSG-6 exerts protective effects in diverse degenerative and inflammatory diseases, including brain disorders. Emerging evidence provides insights into the potential use of TSG-6 as a peripheral diagnostic and/or prognostic biomarker, especially in the context of ischemic stroke, whereby the pathobiological relevance of this protein has also been demonstrated in patients. Thus, in this review, we will discuss the most recent data on the involvement of TSG-6 in neurodegenerative diseases, particularly focusing on relevant anti-inflammatory and immunomodulatory functions. Furthermore, we will examine evidence suggesting novel therapeutic opportunities that can be afforded by modulating TSG-6-related pathways in neuropathological contexts and, most notably, in stroke.
Collapse
Affiliation(s)
- Daniele La Russa
- Section of Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy
| | - Chiara Di Santo
- Section of Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy
| | - Ignacio Lizasoain
- Unidad de Investigación Neurovascular, Departamento de Farmacología y Toxicología, Facultad de Medicina, Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense de Madrid, and Instituto de Investigación Hospital 12 de Octubre (Imas12), 28040 Madrid, Spain
| | - Ana Moraga
- Unidad de Investigación Neurovascular, Departamento de Farmacología y Toxicología, Facultad de Medicina, Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense de Madrid, and Instituto de Investigación Hospital 12 de Octubre (Imas12), 28040 Madrid, Spain
| | - Giacinto Bagetta
- Section of Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy
| | - Diana Amantea
- Section of Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy
- Correspondence:
| |
Collapse
|
4
|
Amantea D, La Russa D, Frisina M, Giordano F, Di Santo C, Panno ML, Pignataro G, Bagetta G. Ischemic Preconditioning Modulates the Peripheral Innate Immune System to Promote Anti-Inflammatory and Protective Responses in Mice Subjected to Focal Cerebral Ischemia. Front Immunol 2022; 13:825834. [PMID: 35359933 PMCID: PMC8962743 DOI: 10.3389/fimmu.2022.825834] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/21/2022] [Indexed: 11/26/2022] Open
Abstract
The development of tolerance triggered by a sublethal ischemic episode (preconditioning, PC) involves a complex crosstalk between neurons, astrocytes and microglia, although the role of the peripheral immune system in this context is largely unexplored. Here, we report that severe cerebral ischemia caused by transient middle cerebral artery occlusion (MCAo) in adult male mice elevates blood counts of inflammatory neutrophils and monocytes, and plasma levels of miRNA-329-5p. These inflammatory responses are prevented by ischemic PC induced by 15 min MCAo, 72h before the severe insult (1h MCAo). As compared with sham-operated animals, mice subjected to either ischemic PC, MCAo or a combination of both (PC+MCAo) display spleen contraction. However, protein levels of Ym1 (a marker of polarization of myeloid cells towards M2/N2 protective phenotypes) are elevated only in spleen from the experimental groups PC and PC+MCAo, but not MCAo. Conversely, Ym1 protein levels only increase in circulating leukocytes from mice subjected to 1h MCAo, but not in preconditioned animals, which is coincident with a dramatic elevation of Ym1 expression in the ipsilateral cortex. By immunofluorescence analysis, we observe that expression of Ym1 occurs in amoeboid-shaped myeloid cells, mainly representing inflammatory monocytes/macrophages and neutrophils. As a result of its immune-regulatory functions, ischemic PC prevents elevation of mRNA levels of the pro-inflammatory cytokine interleukin (IL)-1β in the ipsilateral cortex, while not affecting IL-10 mRNA increase induced by MCAo. Overall, the elevated anti-inflammatory/pro-inflammatory ratio observed in the brain of mice pre-exposed to PC is associated with reduced brain infarct volume and ischemic edema, and with amelioration of functional outcome. These findings reaffirm the crucial and dualistic role of the innate immune system in ischemic stroke pathobiology, extending these concepts to the context of ischemic tolerance and underscoring their relevance for the identification of novel therapeutic targets for effective stroke treatment.
Collapse
Affiliation(s)
- Diana Amantea
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende (CS), Italy
| | - Daniele La Russa
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende (CS), Italy
| | - Marialaura Frisina
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende (CS), Italy
| | - Francesca Giordano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende (CS), Italy
| | - Chiara Di Santo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende (CS), Italy
| | - Maria Luisa Panno
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende (CS), Italy
| | - Giuseppe Pignataro
- Department of Neuroscience, Reproductive and Odontostomatological Sciences, “Federico II” University, Naples, Italy
| | - Giacinto Bagetta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende (CS), Italy
| |
Collapse
|
5
|
La Russa D, Frisina M, Secondo A, Bagetta G, Amantea D. Modulation of Cerebral Store-operated Calcium Entry-regulatory Factor (SARAF) and Peripheral Orai1 Following Focal Cerebral Ischemia and Preconditioning in Mice. Neuroscience 2020; 441:8-21. [PMID: 32569806 DOI: 10.1016/j.neuroscience.2020.06.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 06/11/2020] [Accepted: 06/14/2020] [Indexed: 12/26/2022]
Abstract
Store-operated Ca2+ entry (SOCE) contributes to Ca2+ refilling of endoplasmic reticulum (ER), but also provides Ca2+ influx involved in physiological and pathological signalling functions. Upon depletion of Ca2+ store, the sensor protein stromal interaction molecule (STIM) activates Orai1, forming an ion-conducting pore highly selective for Ca2+. SOCE-associated regulatory factor (SARAF) associates with STIM1 to facilitate a slow form of Ca2+-dependent inactivation of SOCE or interacts with Orai1 to stimulate SOCE in STIM1-independent manner. We have investigated whether cerebral ischemic damage and neuroprotection conferred by ischemic preconditioning (PC) in mouse are associated with changes in the expression of the molecular components of SOCE. Ischemic PC induced by 15-min occlusion of the middle cerebral artery (MCAo) resulted in significant amelioration of histological and functional outcomes produced, 72 h later, by a more severe ischemia (1 h MCAo). Neither ischemia, nor PC affected the expression of Orai1 in the frontoparietal cortex. However, the number of Orai1-immunopositive cells, mostly corresponding to Ly-6G+ neutrophils, was significantly elevated in the blood after the ischemic insult, regardless of previous PC. The expression of Stim1 and SARAF, mainly localised in NeuN-immunopositive neurons, was reduced in the ischemic cortex. Interestingly, neuroprotection by ischemic PC prevented the reduction of SARAF expression in the lesioned cortex and this could be interpreted as a compensatory mechanism to restore ER Ca2+ refilling in neurons in the absence of STIM1. Thus, preventing SARAF downregulation may represent a pivotal mechanism implicated in neuroprotection provided by ischemic PC and should be exploited as an original target for novel stroke therapies.
Collapse
Affiliation(s)
- Daniele La Russa
- Section of Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Italy
| | - Marialaura Frisina
- Section of Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Italy
| | - Agnese Secondo
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatological Sciences, "Federico II" University of Naples, Italy
| | - Giacinto Bagetta
- Section of Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Italy
| | - Diana Amantea
- Section of Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Italy.
| |
Collapse
|
6
|
Zhang H, Yang X, Li X, Cheng Y, Zhang H, Chang L, Sun M, Zhang Z, Wang Z, Niu Q, Wang T. Oxidative and nitrosative stress in the neurotoxicity of polybrominated diphenyl ether-153: possible mechanism and potential targeted intervention. CHEMOSPHERE 2020; 238:124602. [PMID: 31545211 DOI: 10.1016/j.chemosphere.2019.124602] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/30/2019] [Accepted: 08/15/2019] [Indexed: 06/10/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) have been known to exhibit neurotoxicity in rats; however, the underlying mechanism remains unknown and there is no available intervention. In this study, we aimed to investigate the role of oxidative and nitrosative stress in the neurotoxicity in the cerebral cortex and primary neurons in rats following the BDE-153 treatment. Compared to the untreated group, BDE-153 treatment significantly induced the neurotoxic effects in rats, as manifested by the increased lactate dehydrogenase (LDH) activities and cell apoptosis rates, and the decreased neurotrophic factor contents and cholinergic enzyme activities in rats' cerebral cortices and primary neurons. When compared to the untreated group, the oxidative and nitrosative stress had occurred in the cerebral cortex or primary neurons in rats following the BDE-153 treatment, as manifested by the increments in levels of reactive oxygenspecies (ROS), malondialdehyde (MDA), nitric oxide (NO), and neuronal nitric oxide synthase (nNOS) mRNA and protein expressions, along with the decline in levels of superoxide dismutase (SOD) activity, glutathione (GSH) content, and peroxiredoxin I (Prx I) and Prx II mRNA and protein expressions. In addition, the ROS scavenger N-acetyl-l-cysteine (NAC) or NO scavenger NG-Nitro-l-arginine (L-NNA) significantly rescued the LDH leakage and cell survival, reversed the neurotrophin contents and cholinergic enzymes, mainly via regaining balance between oxidation/nitrosation and antioxidation. Overall, our findings suggested that oxidative and nitrosative stresses are involved in the neurotoxicity induced by BDE-153, and that the antioxidation is a potential targeted intervention.
Collapse
Affiliation(s)
- Hongmei Zhang
- Department of Environmental Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Xiaorong Yang
- National Key Disciplines, Key Laboratory for Cellular Physiology of Ministry of Education, Department of Neurobiology, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Xin Li
- Center of Disease Control and Prevention, Taiyuan Iron and Steel Company, Taiyuan, 030003, Shanxi, China
| | - Yan Cheng
- Department of Nuclear Medicine, First Affiliated Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Huajun Zhang
- Department of Environmental Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Lijun Chang
- Department of Environmental Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Min Sun
- Department of Environmental Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Zhihong Zhang
- Department of Environmental Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Zemin Wang
- Department of Environmental Health, Indiana University School of Public Health, Bloomington, IN, 47408, USA
| | - Qiao Niu
- Department of Occupational Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China.
| | - Tong Wang
- Department of Health Statistics, Shanxi Medical University, Taiyuan, 030001, Shanxi, China.
| |
Collapse
|
7
|
Wu ZY, Li H, Tang YJ. Effect of simvastatin on the SIRT2/NF-κB pathway in rats with acute pulmonary embolism. PHARMACEUTICAL BIOLOGY 2018; 56:511-518. [PMID: 31070532 PMCID: PMC6282435 DOI: 10.1080/13880209.2018.1508239] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 06/07/2018] [Accepted: 06/26/2018] [Indexed: 06/09/2023]
Abstract
CONTEXT Statins have been widely used in acute pulmonary embolism (APE), while simvastatin has been well-established for the prevention of pulmonary hypertension, which was supposed to be an attractive recommendation for APE treatment. OBJECTIVE The current article studies the effect of simvastatin on the SIRT2/NF-κB pathway in rats with APE. MATERIALS AND METHODS Sprague-Dawley rats were divided into four groups (n = 24 per group): control group, rats were treated with saline once daily for 14 days before administration of saline (sham group) or a suspension of autologous emboli (APE group), or rats were treated with simvastatin (10 mg/kg) for 14 days before administration of autologous emboli (APE + simvastatin) group. The RVSP, mPAP and the arterial blood gas was analyzed. Besides, plasma inflammatory cytokines and MMPs levels, as well as the expression of SIRT2/NF-κB pathway were determined. RESULTS Compared with the control and sham groups, the levels of mPAP (31.06 ± 3.47 mmHg), RVSP (35.12 ± 6.02 mmHg), A-aDO2 (33.14 ± 6.16 mmHg) and MMP-9 (6.89 ± 0.84 ng/mL) activity were significantly elevated, but PaO2 (66.87 ± 7.85 mmHg) was highly decreased in rats from APE group at 24 h after APE. Meanwhile, the inflammatory changes were aggravated by the enhanced levels of TNF-α (138.85 ± 22.69 pg/mL), IL-1β (128.47 ± 22.14 pg/mL), IL-6 (103.16 ± 13.58 pg/mL) and IL-8 (179.28 ± 25.79 pg/mL), as well as increased NF-κB (5.29 ± 0.47 fold), but reduced SIRT2 (59 ± 6% reduction), and eNOS (61 ± 5% reduction) mRNA in APE rats. APE rats treated with simvastatin led to a significant opposite trend of the above indexes. CONCLUSIONS Simvastatin protects against APE-induced pulmonary artery pressure, hypoxemia and inflammatory changes probably due to the regulation of SIRT2/NF-κB signalling pathway, which suggest that simvastatin may have promising protective effects in patients with APE.
Collapse
Affiliation(s)
- Zhi-Yao Wu
- Department of Respiratory Medicine (Department of Respiratory and Critical Care Medicine), National Key Clinical Specialty, Xiangya Hospital, Central South University, Changsha, China
| | - Hui Li
- Department of Respiratory Medicine (Department of Respiratory and Critical Care Medicine), National Key Clinical Specialty, Xiangya Hospital, Central South University, Changsha, China
| | - Yong-Jun Tang
- Department of Respiratory Medicine (Department of Respiratory and Critical Care Medicine), National Key Clinical Specialty, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
8
|
Abstract
Ticagrelor is a direct acting and reversibly binding P2Y12 antagonist approved for the prevention of thromboembolic events. Its potential benefits in ischemic stroke have not been investigated sufficiently. Mice were subjected to 2 hours of transient middle cerebral artery occlusion (MCAO). Mice were orally treated with ticagrelor (10 or 30 mg/kg), aspirin (60 mg/kg), or vehicle at 3 and 24 hours before MCAO and 0 and 6 hours after reperfusion. The infarct volume and neurological deficits 22 hours after reperfusion were evaluated. Cerebral blood flow (CBF) within 24 hours after MCAO was monitored. We performed western blotting and in vitro analysis using oxygen-glucose deprivation (OGD) stress in human brain microvessel endothelial cells (HBMVECs) to investigate the protective effects of ticagrelor. Ticagrelor (30 mg/kg) improved neurological deficits, reduced the infarct volume, and improved CBF. It promoted the phosphorylation of endothelial nitric oxide synthase (eNOS) and extracellular signal-regulated kinase 1/2 (ERK1/2) during the early phase after reperfusion. Increased phosphorylation of eNOS and ERK1/2 were also observed in HBMVECs after OGD stress. Ticagrelor attenuate ischemia reperfusion injury possibly via phosphorylation of eNOS and ERK1/2 in endothelial cells. This suggests that ticagrelor has neuroprotective effects via mechanisms other than its antiplatelet action.
Collapse
|
9
|
Greco R, Demartini C, Zanaboni AM, Blandini F, Amantea D, Tassorelli C. Endothelial nitric oxide synthase inhibition triggers inflammatory responses in the brain of male rats exposed to ischemia-reperfusion injury. J Neurosci Res 2017; 96:151-159. [PMID: 28609584 DOI: 10.1002/jnr.24101] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 05/17/2017] [Accepted: 05/20/2017] [Indexed: 01/12/2023]
Abstract
Nitric oxide (NO) derived from endothelial NO synthase (eNOS) plays a role in preserving and maintaining the brain's microcirculation, inhibiting platelet aggregation, leukocyte adhesion, and migration. Inhibition of eNOS activity results in exacerbation of neuronal injury after ischemia by triggering diverse cellular mechanisms, including inflammatory responses. To examine the relative contribution of eNOS in stroke-induced neuroinflammation, we analyzed the effects of systemic treatment with l-N-(1-iminoethyl)ornithine (L-NIO), a relatively selective eNOS inhibitor, on the expression of MiR-155-5p, a key mediator of innate immunity regulation and endothelial dysfunction, in the cortex of male rats subjected to transient middle cerebral artery occlusion (tMCAo) followed by 24 hr of reperfusion. Inducible NO synthase (iNOS) and interleukin-10 (IL-10) mRNA expression were evaluated by real-time polymerase chain reaction in cortical homogenates and in resident and infiltrating immune cells isolated from ischemic cortex. These latter cells were also analyzed for their expression of CD40, a marker of M1 polarization of microglia/macrophages.tMCAo produced a significant elevation of miR155-5p and iNOS expression in the ischemic cortex as compared with sham surgery. eNOS inhibition by L-NIO treatment further elevated the cortical expression of these inflammatory mediators, while not affecting IL-10 mRNA levels. Interestingly, modulation of iNOS occurred in resident and infiltrating immune cells of the ischemic hemisphere. Accordingly, L-NIO induced a significant increase in the percentage of CD40+ events in CD68+ microglia/macrophages of the ischemic cortex as compared with vehicle-injected animals. These findings demonstrate that inflammatory responses may underlie the detrimental effects due to pharmacological inhibition of eNOS in cerebral ischemia.
Collapse
Affiliation(s)
- Rosaria Greco
- Laboratory of Neurophysiology of Integrative Autonomic Systems, Headache Science Centre, "C. Mondino" National Neurological Institute, Pavia, Italy
| | - Chiara Demartini
- Laboratory of Neurophysiology of Integrative Autonomic Systems, Headache Science Centre, "C. Mondino" National Neurological Institute, Pavia, Italy.,Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
| | - Anna Maria Zanaboni
- Laboratory of Neurophysiology of Integrative Autonomic Systems, Headache Science Centre, "C. Mondino" National Neurological Institute, Pavia, Italy.,Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
| | - Fabio Blandini
- Center for Research in Neurodegenerative Diseases, C. Mondino National Neurological Institute, Pavia, Italy
| | - Diana Amantea
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Italy
| | - Cristina Tassorelli
- Laboratory of Neurophysiology of Integrative Autonomic Systems, Headache Science Centre, "C. Mondino" National Neurological Institute, Pavia, Italy.,Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
| |
Collapse
|
10
|
Greco R, Demartini C, Zanaboni AM, Blandini F, Amantea D, Tassorelli C. Modulation of cerebral RAGE expression following nitric oxide synthase inhibition in rats subjected to focal cerebral ischemia. Eur J Pharmacol 2017; 800:16-22. [PMID: 28188764 DOI: 10.1016/j.ejphar.2017.02.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 02/06/2017] [Accepted: 02/07/2017] [Indexed: 12/21/2022]
|
11
|
Amantea D, Micieli G, Tassorelli C, Cuartero MI, Ballesteros I, Certo M, Moro MA, Lizasoain I, Bagetta G. Rational modulation of the innate immune system for neuroprotection in ischemic stroke. Front Neurosci 2015; 9:147. [PMID: 25972779 PMCID: PMC4413676 DOI: 10.3389/fnins.2015.00147] [Citation(s) in RCA: 160] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 04/09/2015] [Indexed: 01/08/2023] Open
Abstract
The innate immune system plays a dualistic role in the evolution of ischemic brain damage and has also been implicated in ischemic tolerance produced by different conditioning stimuli. Early after ischemia, perivascular astrocytes release cytokines and activate metalloproteases (MMPs) that contribute to blood–brain barrier (BBB) disruption and vasogenic oedema; whereas at later stages, they provide extracellular glutamate uptake, BBB regeneration and neurotrophic factors release. Similarly, early activation of microglia contributes to ischemic brain injury via the production of inflammatory cytokines, including tumor necrosis factor (TNF) and interleukin (IL)-1, reactive oxygen and nitrogen species and proteases. Nevertheless, microglia also contributes to the resolution of inflammation, by releasing IL-10 and tumor growth factor (TGF)-β, and to the late reparative processes by phagocytic activity and growth factors production. Indeed, after ischemia, microglia/macrophages differentiate toward several phenotypes: the M1 pro-inflammatory phenotype is classically activated via toll-like receptors or interferon-γ, whereas M2 phenotypes are alternatively activated by regulatory mediators, such as ILs 4, 10, 13, or TGF-β. Thus, immune cells exert a dualistic role on the evolution of ischemic brain damage, since the classic phenotypes promote injury, whereas alternatively activated M2 macrophages or N2 neutrophils prompt tissue remodeling and repair. Moreover, a subdued activation of the immune system has been involved in ischemic tolerance, since different preconditioning stimuli act via modulation of inflammatory mediators, including toll-like receptors and cytokine signaling pathways. This further underscores that the immuno-modulatory approach for the treatment of ischemic stroke should be aimed at blocking the detrimental effects, while promoting the beneficial responses of the immune reaction.
Collapse
Affiliation(s)
- Diana Amantea
- Section of Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria Rende, Italy
| | | | - Cristina Tassorelli
- C. Mondino National Neurological Institute Pavia, Italy ; Department of Brain and Behavioral Sciences, University of Pavia Pavia, Italy
| | - María I Cuartero
- Unidad de Investigación Neurovascular, Departamento de Farmacología, Facultad de Medicina, Universidad Complutense de Madrid and Instituto de Investigación Hospital 12 de Octubre Madrid, Spain
| | - Iván Ballesteros
- Unidad de Investigación Neurovascular, Departamento de Farmacología, Facultad de Medicina, Universidad Complutense de Madrid and Instituto de Investigación Hospital 12 de Octubre Madrid, Spain
| | - Michelangelo Certo
- Section of Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria Rende, Italy
| | - María A Moro
- Unidad de Investigación Neurovascular, Departamento de Farmacología, Facultad de Medicina, Universidad Complutense de Madrid and Instituto de Investigación Hospital 12 de Octubre Madrid, Spain
| | - Ignacio Lizasoain
- Unidad de Investigación Neurovascular, Departamento de Farmacología, Facultad de Medicina, Universidad Complutense de Madrid and Instituto de Investigación Hospital 12 de Octubre Madrid, Spain
| | - Giacinto Bagetta
- Section of Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria Rende, Italy ; Section of Neuropharmacology of Normal and Pathological Neuronal Plasticity, University Consortium for Adaptive Disorders and Head Pain, University of Calabria Rende, Italy
| |
Collapse
|
12
|
Van Slooten AR, Sun Y, Clarkson AN, Connor BJ. L-NIO as a novel mechanism for inducing focal cerebral ischemia in the adult rat brain. J Neurosci Methods 2015; 245:44-57. [PMID: 25745859 DOI: 10.1016/j.jneumeth.2015.02.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 02/23/2015] [Accepted: 02/25/2015] [Indexed: 01/30/2023]
Abstract
BACKGROUND Ischemic stroke is the most frequent cause of persistent neurological disability in Western societies. New treatment strategies are required and effective in vivo models are crucial to their development. NEW METHOD The current study establishes a novel in vivo rat model of focal striatal ischemia using the vasoconstrictive agent N5-(1-iminoethyl)-L-ornithine (L-NIO). Adult male Sprague Dawley rats received a unilateral intrastriatal infusion of L-NIO in combination with jugular vein occlusion. RESULTS L-NIO infusion was associated with zero mortality, low surgical complexity and a reproducible infarct, providing advantages over established models of focal ischemia. The mean infarct volume of 8.5±5.3% of the volume of the contralateral striatum resulted in blood-brain barrier dysfunction, neuronal hypoxia and ongoing neurodegeneration. Further characteristics of ischemic stroke were exhibited, including robust microglia/macrophage and astroglial responses lasting at least 35 days post-ischemia, in addition to chronic motor function impairment. COMPARISON WITH EXISTING METHODS When compared to other models such as the MCAo models, the consistency in regions affected, high success rate, zero mortality, reduced surgical complexity and minimal welfare requirements of the L-NIO model make it ideal for initial high-throughput investigations into preclinical efficacy and proof of principle studies of acute ischemic stroke interventions. CONCLUSION We propose that the L-NIO rat model of focal striatal ischemia does not replace the use of other ischemic stroke models. Rather it provides a new, complementary tool for initial preclinical investigations into the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Amelia R Van Slooten
- Department of Pharmacology and Clinical Pharmacology, Centre for Brain Research, School of Medical Science, FMHS, University of Auckland, Auckland, New Zealand
| | - Yuhui Sun
- Department of Pharmacology and Clinical Pharmacology, Centre for Brain Research, School of Medical Science, FMHS, University of Auckland, Auckland, New Zealand
| | - Andrew N Clarkson
- Department of Anatomy, Brain Health Research Centre, University of Otago, Dunedin, New Zealand; Department of Psychology, Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| | - Bronwen J Connor
- Department of Pharmacology and Clinical Pharmacology, Centre for Brain Research, School of Medical Science, FMHS, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
13
|
Protective Actions of Ghrelin on Global Cerebral Ischemia-Induced Memory Deficits. NEUROPHYSIOLOGY+ 2014. [DOI: 10.1007/s11062-014-9454-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
14
|
Greco R, Tassorelli C, Mangione AS, Levandis G, Certo M, Nappi G, Bagetta G, Blandini F, Amantea D. Neuroprotection by the PARP inhibitor PJ34 modulates cerebral and circulating RAGE levels in rats exposed to focal brain ischemia. Eur J Pharmacol 2014; 744:91-7. [PMID: 25446913 DOI: 10.1016/j.ejphar.2014.10.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 10/03/2014] [Accepted: 10/06/2014] [Indexed: 12/30/2022]
Abstract
The receptor for advanced glycation end products (RAGE) has a potential role as a damage-sensing molecule; however, to date, its involvement in the pathophysiology of stroke and its modulation following neuroprotective treatment are not completely understood. We have previously demonstrated that expression of distinct RAGE isoforms, recognized by different antibodies, is differentially modulated in the brain of rats subjected to focal cerebral ischemia. Here, we focus on the full-length membrane-bound RAGE isoform, showing that its expression is significantly elevated in the striatum, whereas it is reduced in the cortex of rats subjected to transient middle cerebral artery occlusion (MCAo). Notably, the reduction of cortical levels of full-length RAGE detected 24 h after reperfusion is abolished by systemic administration of a neuroprotective dose of the poly(ADP-ribose) polymerase (PARP) inhibitor, N-(6-oxo-5,6-dihydrophenanthridin-2-yl)-N,N-dimethylacetamide (PJ34). More interestingly, a significant reduction of plasma soluble RAGE (sRAGE) occurs 24 h after reperfusion and this effect is reverted by a neuroprotective dose of PJ34. Soluble forms of RAGE, generated either by alternative splicing or by proteolysis of the full-length form, effectively bind advanced glycation end products, thereby competing with the cell surface full-length RAGE, thus providing a 'decoy' function that may counteract the adverse effects of receptor signaling in neurons and may possibly exert cytoprotective effects. Thus, our data confirm the important role of RAGE in ischemic cerebral damage and, more interestingly, suggest the potential use of sRAGE as a blood biomarker of stroke severity and of neuroprotective treatment efficacy.
Collapse
Affiliation(s)
- Rosaria Greco
- Laboratory of Neurophysiology of Integrative Autonomic Systems, Headache Science Centre, "C. Mondino" National Neurological Institute, Pavia, Italy.
| | - Cristina Tassorelli
- Laboratory of Neurophysiology of Integrative Autonomic Systems, Headache Science Centre, "C. Mondino" National Neurological Institute, Pavia, Italy; Department of Brain and Behavior, University of Pavia, Italy
| | - Antonina Stefania Mangione
- Laboratory of Neurophysiology of Integrative Autonomic Systems, Headache Science Centre, "C. Mondino" National Neurological Institute, Pavia, Italy
| | - Giovanna Levandis
- Laboratory of Functional Neurochemistry, Center for Research in Neurodegenerative Diseases, "C. Mondino" National Neurological Institute, Pavia, Italy
| | - Michelangelo Certo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende (CS), Italy
| | - Giuseppe Nappi
- Laboratory of Neurophysiology of Integrative Autonomic Systems, Headache Science Centre, "C. Mondino" National Neurological Institute, Pavia, Italy
| | - Giacinto Bagetta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende (CS), Italy
| | - Fabio Blandini
- Laboratory of Functional Neurochemistry, Center for Research in Neurodegenerative Diseases, "C. Mondino" National Neurological Institute, Pavia, Italy
| | - Diana Amantea
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende (CS), Italy
| |
Collapse
|
15
|
Amantea D, Certo M, Russo R, Bagetta G, Corasaniti MT, Tassorelli C. Early reperfusion injury is associated to MMP2 and IL-1β elevation in cortical neurons of rats subjected to middle cerebral artery occlusion. Neuroscience 2014; 277:755-63. [PMID: 25108165 DOI: 10.1016/j.neuroscience.2014.07.064] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 07/14/2014] [Accepted: 07/29/2014] [Indexed: 12/27/2022]
Abstract
The pathophysiological processes implicated in ischemic brain damage are strongly affected by an inflammatory reaction characterized by activation of immune cells and release of soluble mediators, including cytokines and chemokines. The pro-inflammatory cytokine interleukin (IL)-1β has been implicated in ischemic brain injury, however, to date, the mechanisms involved in the maturation of this cytokine in the ischemic brain have not been completely elucidated. We have previously suggested that matrix metalloproteinases (MMPs) may be implicated in cytokine production under pathological conditions. Here, we demonstrate that significant elevation of IL-1β occurs in the cortex as early as 1h after the beginning of reperfusion in rats subjected to 2-h middle cerebral artery occlusion (MCAo). At this early stage, we observe increased expression of IL-1β in pericallosal astroglial cells and in cortical neurons and this latter signal colocalizes with elevated gelatinolytic activity. By gel zymography, we demonstrate that the increased gelatinolytic signal at 1-h reperfusion is mainly ascribed to MMP2. Thus, MMP2 seems to contribute to early brain elevation of IL-β after transient ischemia and this mechanism may promote damage since pharmacological inhibition of gelatinases by the selective MMP2/MMP9 inhibitor V provides neuroprotection in rats subjected to transient MCAo.
Collapse
Affiliation(s)
- D Amantea
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Italy.
| | - M Certo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Italy
| | - R Russo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Italy
| | - G Bagetta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Italy
| | - M T Corasaniti
- Department of Health Sciences, University Magna Graecia of Catanzaro, Italy
| | - C Tassorelli
- IRCCS National Neurological Institute C. Mondino Foundation, Pavia, Italy
| |
Collapse
|
16
|
Cox-Limpens KEM, Vles JSH, LA van den Hove D, Zimmermann LJI, Gavilanes AWD. Fetal asphyctic preconditioning alters the transcriptional response to perinatal asphyxia. BMC Neurosci 2014; 15:67. [PMID: 24885038 PMCID: PMC4050392 DOI: 10.1186/1471-2202-15-67] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 05/21/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Genomic reprogramming is thought to be, at least in part, responsible for the protective effect of brain preconditioning. Unraveling mechanisms of this endogenous neuroprotection, activated by preconditioning, is an important step towards new clinical strategies for treating asphyctic neonates.Therefore, we investigated whole-genome transcriptional changes in the brain of rats which underwent perinatal asphyxia (PA), and rats where PA was preceded by fetal asphyctic preconditioning (FAPA). Offspring were sacrificed 6 h and 96 h after birth, and whole-genome transcription was investigated using the Affymetrix Gene1.0ST chip. Microarray data were analyzed with the Bioconductor Limma package. In addition to univariate analysis, we performed Gene Set Enrichment Analysis (GSEA) in order to derive results with maximum biological relevance. RESULTS We observed minimal, 25% or less, overlap of differentially regulated transcripts across different experimental groups which leads us to conclude that the transcriptional phenotype of these groups is largely unique. In both the PA and FAPA group we observe an upregulation of transcripts involved in cellular stress. Contrastingly, transcripts with a function in the cell nucleus were mostly downregulated in PA animals, while we see considerable upregulation in the FAPA group. Furthermore, we observed that histone deacetylases (HDACs) are exclusively regulated in FAPA animals. CONCLUSIONS This study is the first to investigate whole-genome transcription in the neonatal brain after PA alone, and after perinatal asphyxia preceded by preconditioning (FAPA). We describe several genes/pathways, such as ubiquitination and proteolysis, which were not previously linked to preconditioning-induced neuroprotection. Furthermore, we observed that the majority of upregulated genes in preconditioned animals have a function in the cell nucleus, including several epigenetic players such as HDACs, which suggests that epigenetic mechanisms are likely to play a role in preconditioning-induced neuroprotection.
Collapse
Affiliation(s)
- Kimberly E M Cox-Limpens
- School for Mental Health and Neuroscience (MHeNS), Maastricht University, Universiteitssingel 50, Room 1,152, Maastricht 6229 MD, The Netherlands.
| | | | | | | | | |
Collapse
|
17
|
Nitric oxide is a mediator of antiproliferative effects induced by proinflammatory cytokines on pancreatic beta cells. Mediators Inflamm 2013; 2013:905175. [PMID: 23840099 PMCID: PMC3694487 DOI: 10.1155/2013/905175] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 05/21/2013] [Accepted: 05/23/2013] [Indexed: 01/02/2023] Open
Abstract
Nitric oxide (NO) is involved in several biological processes. In type 1 diabetes mellitus (T1DM), proinflammatory cytokines activate an inducible isoform of NOS (iNOS) in β cells, thus increasing NO levels and inducing apoptosis. The aim of the current study is to determine the role of NO (1) in the antiproliferative effect of proinflammatory cytokines IL-1β, IFN-γ, and TNF-α on cultured islet β cells and (2) during the insulitis stage prior to diabetes onset using the Biobreeding (BB) rat strain as T1DM model. Our results indicate that NO donors exert an antiproliferative effect on β cell obtained from cultured pancreatic islets, similar to that induced by proinflammatory cytokines. This cytokine-induced antiproliferative effect can be reversed by L-NMMA, a general NOS inhibitor, and is independent of guanylate cyclase pathway. Assays using NOS isoform specific inhibitors suggest that the NO implicated in the antiproliferative effect of proinflammatory cytokines is produced by inducible NOS, although not in an exclusive way. In BB rats, early treatment with L-NMMA improves the initial stage of insulitis. We conclude that NO is an important mediator of antiproliferative effect induced by proinflammatory cytokines on cultured β cell and is implicated in β-cell proliferation impairment observed early from initial stage of insulitis.
Collapse
|
18
|
Wang H, Zuo X, Wang Q, Yu Y, Xie L, Wang H, Wu H, Xie W. Nicorandil inhibits hypoxia-induced apoptosis in human pulmonary artery endothelial cells through activation of mitoKATP and regulation of eNOS and the NF-κB pathway. Int J Mol Med 2013; 32:187-94. [PMID: 23670355 DOI: 10.3892/ijmm.2013.1379] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Accepted: 03/12/2013] [Indexed: 11/05/2022] Open
Abstract
Apoptosis of human pulmonary artery endothelial cells (HPAECs) is the initial step and triggering event for pulmonary hypertension (PH). However, little is known about the actions of nicorandil on HPAECs in vitro. In the present study, we investigated the anti-apoptotic effect of nicorandil on HPAECs exposed to hypoxia, and explored the underlying mechanism(s) of action. Cell viability was assessed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT). Annexin V and propidium iodide staining, and Hoechst 33342 staining assay were employed to detect apoptosis. In addition, the protein expression of Bax, Bcl-2, caspase-9 and -3, endothelial nitric oxide synthase (eNOS), nuclear factor-κB (NF-κB) and IκBα were determined by western blotting to investigate the possible mechanisms. We found that exposure to hypoxia for 24 h significantly decreased cell viability and increased cell apoptosis. Pretreatment with nicorandil (100 µM) effectively abolished the influence of hypoxia on HPAECs. However, these protective effects of nicorandil were significantly inhibited by an antagonist of mitochondrial adenosine triphosphate-sensitive potassium (mitoKATP) channels, 5-hydroxydecanoate (5-HD, 500 µM), and by an eNOS inhibitor, NG-nitro-L-arginine methyl ester (L-NAME, 300 µM). We further observed that nicorandil could upregulate the decreased protein expression of eNOS and IκBα, and downregulate the increased protein expression of NF-κB, induced by hypoxia. In addition, nicorandil inhibited the enhancement of caspase-3 and -9 expression, and the increase in the Bax/Bcl-2 expression ratio, induced by hypoxia. However, these effects were also abolished by 5-HD and L-NAME. Collectively, these findings suggest that nicorandil inhibits hypoxia-induced apoptosis of HPAECs through activation of mitoKATP channels and increased eNOS expression, which in turn inhibits the NF-κB pathway and the mitochondrial apoptotic pathway.
Collapse
Affiliation(s)
- Hui Wang
- Department of Respiratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Nitric oxide donors as neuroprotective agents after an ischemic stroke-related inflammatory reaction. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:297357. [PMID: 23691263 PMCID: PMC3649699 DOI: 10.1155/2013/297357] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 02/26/2013] [Accepted: 02/27/2013] [Indexed: 12/17/2022]
Abstract
Cerebral ischemia initiates a cascade of detrimental events including glutamate-associated excitotoxicity, intracellular calcium accumulation, formation of Reactive oxygen species (ROS), membrane lipid degradation, and DNA damage, which lead to the disruption of cellular homeostasis and structural damage of ischemic brain tissue. Cerebral ischemia also triggers acute inflammation, which exacerbates primary brain damage. Therefore, reducing oxidative stress (OS) and downregulating the inflammatory response are options that merit consideration as potential therapeutic targets for ischemic stroke. Consequently, agents capable of modulating both elements will constitute promising therapeutic solutions because clinically effective neuroprotectants have not yet been discovered and no specific therapy for stroke is available to date. Because of their ability to modulate both oxidative stress and the inflammatory response, much attention has been focused on the role of nitric oxide donors (NOD) as neuroprotective agents in the pathophysiology of cerebral ischemia-reperfusion injury. Given their short therapeutic window, NOD appears to be appropriate for use during neurosurgical procedures involving transient arterial occlusions, or in very early treatment of acute ischemic stroke, and also possibly as complementary treatment for neurodegenerative diseases such as Parkinson or Alzheimer, where oxidative stress is an important promoter of damage. In the present paper, we focus on the role of NOD as possible neuroprotective therapeutic agents for ischemia/reperfusion treatment.
Collapse
|
20
|
Ström JO, Ingberg E, Theodorsson A, Theodorsson E. Method parameters' impact on mortality and variability in rat stroke experiments: a meta-analysis. BMC Neurosci 2013; 14:41. [PMID: 23548160 PMCID: PMC3637133 DOI: 10.1186/1471-2202-14-41] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 03/22/2013] [Indexed: 12/14/2022] Open
Abstract
Background Even though more than 600 stroke treatments have been shown effective in preclinical studies, clinically proven treatment alternatives for cerebral infarction remain scarce. Amongst the reasons for the discrepancy may be methodological shortcomings, such as high mortality and outcome variability, in the preclinical studies. A common approach in animal stroke experiments is that A) focal cerebral ischemia is inflicted, B) some type of treatment is administered and C) the infarct sizes are assessed. However, within this paradigm, the researcher has to make numerous methodological decisions, including choosing rat strain and type of surgical procedure. Even though a few studies have attempted to address the questions experimentally, a lack of consensus regarding the optimal methodology remains. Methods We therefore meta-analyzed data from 502 control groups described in 346 articles to find out how rat strain, procedure for causing focal cerebral ischemia and the type of filament coating affected mortality and infarct size variability. Results The Wistar strain and intraluminal filament procedure using a silicone coated filament was found optimal in lowering infarct size variability. The direct and endothelin methods rendered lower mortality rate, whereas the embolus method increased it compared to the filament method. Conclusions The current article provides means for researchers to adjust their middle cerebral artery occlusion (MCAo) protocols to minimize infarct size variability and mortality.
Collapse
Affiliation(s)
- Jakob O Ström
- Department of Clinical and Experimental Medicine, Clinical Chemistry, Faculty of Health Sciences, Linköping University, County Council of Östergötland, Linköping, Sweden.
| | | | | | | |
Collapse
|
21
|
Abd El-Aal SA, El-Sawalhi MM, Seif-El-Nasr M, Kenawy SA. Effect of celecoxib and L-NAME on global ischemia-reperfusion injury in the rat hippocampus. Drug Chem Toxicol 2013; 36:385-95. [PMID: 23298270 DOI: 10.3109/01480545.2012.749270] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Transient global ischemia continues to be an important clinical problem with limited treatment options. The present study aimed to investigate the possible protective effects of celecoxib [a selective cyclooxygenase (COX-2) inhibitor] and N-omega-nitro-L-arginine methyl ester (L-NAME) [a nonselective nitric oxide synthase (NOS) inhibitor] against global ischemia-reperfusion (IR) induced biochemical and histological alterations in the rat hippocampus. Global ischemia was induced by bilateral clamping of the common carotid arteries for 60 minutes. Hippocampal cysteinyl aspartate-specific protease-3 (caspase-3) activity, nitrite/nitrate contents (NOX), as well as COX-2 immunoreactivity in the hippocampal Cornu Ammonis 1 (CA1) subregion were dramatically increased 24 hours after global ischemia. After 72-hour of reperfusion, ischemia induced a selective, extensive neuronal loss in the hippocampus CA1 subregion. Celecoxib (3 and 5 mg/kg, intraperitoneally; i.p.), administered 30 minutes before ischemia and at 6, 12, and 22 hours of 24-hour reperfusion, caused significant reductions in hippocampal caspase-3 activity as well as the number of COX-2 immunoreactive (COX-2 ir) neurons in the CA1 subregion. Further, celecoxib (3 or 5 mg/kg, i.p.), administered 30 minutes before ischemia and at 6, 12, 22, and 48 hours of 72-hour reperfusion, provided a notable histological protection of hippocampal CA1 neurons. Meanwhile, L-NAME (3 mg/kg, i.p.), administered twice (immediately after ischemia and 45 minutes after starting the reperfusion period), effectively reduced the elevated NOX level, decreased hippocampal caspase-3 activity and COX-2 immumoreactivity, and ameliorated ischemia-induced damage in the hippocampal CA1 subregion. The present study indicates that celecoxib and L-NAME might be neuroprotective agents of potential benefit in the treatment of cerebral ischemia.
Collapse
Affiliation(s)
- Sarah A Abd El-Aal
- Pharmacology and Toxicology Department, Faculty of Pharmacy, October 6 University, Sixth of October, Egypt
| | | | | | | |
Collapse
|
22
|
Weinstock LB, Walters AS, Paueksakon P. Restless legs syndrome--theoretical roles of inflammatory and immune mechanisms. Sleep Med Rev 2012; 16:341-54. [PMID: 22258033 DOI: 10.1016/j.smrv.2011.09.003] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Revised: 09/22/2011] [Accepted: 09/26/2011] [Indexed: 12/13/2022]
Abstract
Theories for restless legs syndrome (RLS) pathogenesis include iron deficiency, dopamine dysregulation and peripheral neuropathy. Increased prevalence of small intestinal bacterial overgrowth (SIBO) in controlled studies in RLS and case reports of post-infectious RLS suggest potential roles for inflammation and immunological alterations. A literature search for all conditions associated with RLS was performed. These included secondary RLS disorders and factors that may exacerbate RLS. All of these conditions were reviewed with respect to potential pathogenesis including reports of iron deficiency, neuropathy, SIBO, inflammation and immune changes. A condition was defined as highly-associated if there was a prevalence study that utilized an appropriate control group. Small case reports were recorded but not included as definite RLS-associated conditions. Fifty four diseases, syndromes and conditions have been reported to cause and/or exacerbate RLS. Of these, 38 have been reported to have a higher prevalence than age-matched controls, 9 have adequate sized reports and have general acceptance as RLS-associated conditions and 7 have been reported in case report form. Overall, 42 of the 47 RLS-associated conditions (89%) have also been associated with inflammatory and/or immune changes. In addition, 43% have been associated with peripheral iron deficiency, 40% with peripheral neuropathy and 32% with SIBO. Most of the remaining conditions have yet to be studied for these factors. The fact that 95% of the 38 highly-associated RLS conditions are also associated with inflammatory/immune changes suggests the possibility that RLS may be mediated or affected through these mechanisms. Inflammation can be responsible for iron deficiency and hypothetically could cause central nervous system iron deficiency-induced RLS. Alternatively, an immune reaction to gastrointestinal bacteria or other antigens may hypothetically cause RLS by a direct immunological attack on the central or peripheral nervous system.
Collapse
Affiliation(s)
- Leonard B Weinstock
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | | | | |
Collapse
|
23
|
Kim YC, Park TY, Baik E, Lee SH. Fructose-1,6-bisphosphate attenuates induction of nitric oxide synthase in microglia stimulated with lipopolysaccharide. Life Sci 2011; 90:365-72. [PMID: 22227475 DOI: 10.1016/j.lfs.2011.12.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Revised: 11/21/2011] [Accepted: 12/13/2011] [Indexed: 11/28/2022]
Abstract
AIMS Fructose-1,6-bisphosphate (FBP) is a glycolytic intermediate with neuroprotective action in various brain injury models. However, the mechanism underlying the neuroprotection of FBP has not been fully defined. In this study, we investigated whether FBP inhibits endotoxin-induced nitric oxide (NO) production and inducible nitric oxide synthase (iNOS) expression in microglial cells and explored the possible mechanisms of the effects of FBP. MAIN METHODS Murine microglial cell line BV2 and primary cultured murine microglial cells were used. NO production and iNOS expression were determined by Griess reaction, RT-PCR and Western blot. Luciferase assay using iNOS promoter-luciferase (iNOS-Luc) construct was adopted for measuring transcriptional activity. KEY FINDINGS FBP dose-dependently suppressed lipopolysaccharide (LPS)-induced NO production, along with reducing the expression of iNOS at both the protein and mRNA level in primary cultured murine microglia and BV2 cells. FBP significantly inhibited iNOS promoter activity but stabilized iNOS mRNA. Among transcription factors known to be related to iNOS expression, activator protein (AP-1) activation was significantly blocked by FBP. FBP suppressed LPS-induced phosphorylation of three MAPK subtypes-p38 MAPK, JNK and ERK. FBP inhibited LPS-induced production of reactive oxygen species (ROS) and decreased intracellular GSSG/GSH ratio. SIGNIFICANCE Our findings suggest that FBP attenuates the LPS-induced iNOS expression through inhibition of JNK and p38 MAPK, which might be related to ROS downregulation.
Collapse
Affiliation(s)
- Young-Chae Kim
- Department of Physiology, School of Medicine, Ajou University, Suwon, Republic of Korea
| | | | | | | |
Collapse
|
24
|
Campelo MWS, Oriá RB, Lopes LGDF, Brito GADC, Santos AAD, Vasconcelos RCD, Silva FOND, Nobrega BN, Bento-Silva MT, Vasconcelos PRLD. Preconditioning with a novel metallopharmaceutical NO donor in anesthetized rats subjected to brain ischemia/reperfusion. Neurochem Res 2011; 37:749-58. [PMID: 22160748 DOI: 10.1007/s11064-011-0669-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Revised: 11/19/2011] [Accepted: 11/29/2011] [Indexed: 01/07/2023]
Abstract
Rut-bpy is a novel nitrosyl-ruthenium complex releasing NO into the vascular system. We evaluated the effect of Rut-bpy (100 mg/kg) on a rat model of brain stroke. Forty rats were assigned to four groups (Saline solution [SS], Rut-bpy, SS+ischemia-reperfusion [SS+I/R] and Rut-bpy+ischemia-reperfusion [Rut-bpy+I/R]) with their mean arterial pressure (MAP) continuously monitored. The groups were submitted (SS+I/R and Rut-bpy+I/R) or not (SS and Rut-bpy) to incomplete global brain ischemia by occlusion of the common bilateral carotid arteries during 30 min followed by reperfusion for further 60 min. Thirty minutes before ischemia, rats were treated pairwise by intraperitoneal injection of saline solution or Rut-bpy. At the end of experiments, brain was removed for triphenyltetrazolium chloride staining in order to quantify the total ischemic area. In a subset of rats, hippocampus was obtained for histopathology scoring, nitrate and nitrite measurements, immunostaining and western blotting of the nuclear factor- κB (NF-κB). Rut-bpy pre-treatment decreased MAP variations during the transition from brain ischemia to reperfusion and decreased the fractional injury area. Rut-bpy pre-treatment reduced NF-κB hippocampal immunostaining and protein expression with improved histopathology scoring as compared to the untreated operated control. In conclusion, Rut-bpy improved the total brain infarction area and hippocampal neuronal viability in part by inhibiting NF-κB signaling and helped to stabilize the blood pressure during the transition from ischemia to reperfusion.
Collapse
Affiliation(s)
- Marcio Wilker Soares Campelo
- Department of Surgery, Federal University of Ceará, R. Professor Costa Mendes, 1608/3º Andar, Fortaleza, CE, CEP:60430-140, Brazil.
| | | | | | | | | | | | | | | | | | | |
Collapse
|