1
|
Shen Y, Li H, Zhao J, Tang S, Zhao Y, Gu Y, Chen X. Genomic and expression characterization of aquaporin genes from Siniperca chuatsi. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2021; 38:100819. [PMID: 33652294 DOI: 10.1016/j.cbd.2021.100819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/13/2021] [Accepted: 02/21/2021] [Indexed: 01/07/2023]
Abstract
Aquaporins (AQPs) are major intrinsic proteins that form pores in the membranes of biological cells. We first cloned the full-length sequences of aqp0, 1, 3, 4, 7, 8, 9, 10, 11, and 12 genes in Siniperca chuatsi. The 10 S. chuatsi aqp (Sc-aqp) genes included complete open reading frames and exhibited different exon-intron organizations. Sc-aqp1, 3, 8, 9, 10, and 11 were mostly expressed in the gallbladder, gills, gastric cecum, liver, ovaries, and spleen, respectively; Sc-aqp0 and 4 were mostly expressed in larvae at 1 day after hatching and in gastrula; Sc-aqp7 and 12 were mostly expressed in 2K-cell embryos. The expression levels of Sc-aqp1, 3, 7, 8, 9, and 10 after 10 part per thousand (ppt) salt treatment had significantly changed compared with those after 0 ppt salt treatment. Real-time quantitative PCR analysis further showed that in the intestines, the mRNA levels of Sc-aqp1 and 10 significantly decreased by approximately 2.07- and 2.85-fold, respectively, whereas those of Sc-aqp8 and 9 significantly increased by approximately 7.08- and 4.14-fold, respectively. Sc-aqp1, 8, 9, and 10 showed no significant differences in the gills. Sc-aqp3 significantly decreased by approximately 1.51- and 1.67-fold in the gills and intestines, respectively. Sc-aqp7 significantly increased by approximately 4.18- and 7.04-fold in the gills and intestines, respectively. This study was the first to investigate the tissue expression profiles and response to salt stress of aqp genes in S. chuatsi. Moreover, altering diet and suffering from immune stress could cause changes in the expression level of aqps. This study provided valuable reference information for AQPs' roles in osmoregulation in freshwater fish.
Collapse
Affiliation(s)
- Yawei Shen
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Huiyang Li
- Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 201306, China
| | - Jinliang Zhao
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China.
| | - Shoujie Tang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Yan Zhao
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Yifeng Gu
- The First Affiliated Hospital, College of Medicine, Zhejiang University, China
| | - Xiaowu Chen
- Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
2
|
Pannicke T, Ivo Chao T, Reisenhofer M, Francke M, Reichenbach A. Comparative electrophysiology of retinal Müller glial cells-A survey on vertebrate species. Glia 2016; 65:533-568. [PMID: 27767232 DOI: 10.1002/glia.23082] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 09/15/2016] [Accepted: 09/28/2016] [Indexed: 12/13/2022]
Abstract
Müller cells are the dominant macroglial cells in the retina of all vertebrates. They fulfill a variety of functions important for retinal physiology, among them spatial buffering of K+ ions and uptake of glutamate and other neurotransmitters. To this end, Müller cells express inwardly rectifying K+ channels and electrogenic glutamate transporters. Moreover, a lot of voltage- and ligand-gated ion channels, aquaporin water channels, and electrogenic transporters are expressed in Müller cells, some of them in a species-specific manner. For example, voltage-dependent Na+ channels are found exclusively in some but not all mammalian species. Whereas a lot of data exist from amphibians and mammals, the results from other vertebrates are sparse. It is the aim of this review to present a survey on Müller cell electrophysiology covering all classes of vertebrates. The focus is on functional studies, mainly performed using the whole-cell patch-clamp technique. However, data about the expression of membrane channels and transporters from immunohistochemistry are also included. Possible functional roles of membrane channels and transporters are discussed. Obviously, electrophysiological properties involved in the main functions of Müller cells developed early in vertebrate evolution. GLIA 2017;65:533-568.
Collapse
Affiliation(s)
- Thomas Pannicke
- Paul-Flechsig-Institut für Hirnforschung, Abteilung Pathophysiologie der Neuroglia, Universität Leipzig, Germany
| | - T Ivo Chao
- Institute of Anatomy and Cell Biology, Medical School Göttingen, Germany
| | - Miriam Reisenhofer
- Department of Chemistry, University of Zürich, Switzerland
- Department of Ophthalmology, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Mike Francke
- Paul-Flechsig-Institut für Hirnforschung, Abteilung Pathophysiologie der Neuroglia, Universität Leipzig, Germany
- Sächsischer Inkubator für klinische Translation (SIKT), Universität Leipzig, Germany
| | - Andreas Reichenbach
- Paul-Flechsig-Institut für Hirnforschung, Abteilung Pathophysiologie der Neuroglia, Universität Leipzig, Germany
| |
Collapse
|
3
|
Gleiser C, Wagner A, Fallier-Becker P, Wolburg H, Hirt B, Mack AF. Aquaporin-4 in Astroglial Cells in the CNS and Supporting Cells of Sensory Organs-A Comparative Perspective. Int J Mol Sci 2016; 17:E1411. [PMID: 27571065 PMCID: PMC5037691 DOI: 10.3390/ijms17091411] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 08/22/2016] [Accepted: 08/23/2016] [Indexed: 01/28/2023] Open
Abstract
The main water channel of the brain, aquaporin-4 (AQP4), is one of the classical water-specific aquaporins. It is expressed in many epithelial tissues in the basolateral membrane domain. It is present in the membranes of supporting cells in most sensory organs in a specifically adapted pattern: in the supporting cells of the olfactory mucosa, AQP4 occurs along the basolateral aspects, in mammalian retinal Müller cells it is highly polarized. In the cochlear epithelium of the inner ear, it is expressed basolaterally in some cells but strictly basally in others. Within the central nervous system, aquaporin-4 (AQP4) is expressed by cells of the astroglial family, more specifically, by astrocytes and ependymal cells. In the mammalian brain, AQP4 is located in high density in the membranes of astrocytic endfeet facing the pial surface and surrounding blood vessels. At these locations, AQP4 plays a role in the maintenance of ionic homeostasis and volume regulation. This highly polarized expression has not been observed in the brain of fish where astroglial cells have long processes and occur mostly as radial glial cells. In the brain of the zebrafish, AQP4 immunoreactivity is found along the radial extent of astroglial cells. This suggests that the polarized expression of AQP4 was not present at all stages of evolution. Thus, a polarized expression of AQP4 as part of a control mechanism for a stable ionic environment and water balanced occurred at several locations in supporting and glial cells during evolution. This initially basolateral membrane localization of AQP4 is shifted to highly polarized expression in astrocytic endfeet in the mammalian brain and serves as a part of the neurovascular unit to efficiently maintain homeostasis.
Collapse
Affiliation(s)
- Corinna Gleiser
- Institute of Clinical Anatomy and Cell Analysis, Eberhard Karls Universität Tübingen, 72074 Tübingen, Germany.
| | - Andreas Wagner
- Institute of Clinical Anatomy and Cell Analysis, Eberhard Karls Universität Tübingen, 72074 Tübingen, Germany.
| | - Petra Fallier-Becker
- Institute of Pathology and Neuropathology, Eberhard Karls Universität Tübingen, 72076 Tubingen, Germany.
| | - Hartwig Wolburg
- Institute of Pathology and Neuropathology, Eberhard Karls Universität Tübingen, 72076 Tubingen, Germany.
| | - Bernhard Hirt
- Institute of Clinical Anatomy and Cell Analysis, Eberhard Karls Universität Tübingen, 72074 Tübingen, Germany.
| | - Andreas F Mack
- Institute of Clinical Anatomy and Cell Analysis, Eberhard Karls Universität Tübingen, 72074 Tübingen, Germany.
| |
Collapse
|
4
|
Jang SY, Lee ES, Ohn YH, Park TK. Expression of Aquaporin-6 in Rat Retinal Ganglion Cells. Cell Mol Neurobiol 2016; 36:965-970. [PMID: 26526333 DOI: 10.1007/s10571-015-0283-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 10/03/2015] [Indexed: 11/24/2022]
Abstract
Several aquaporins (AQPs) have been identified to be present in the eyes, and it has been suggested that they are involved in the movement of water and small solutes. AQP6, which has low water permeability and transports mainly anions, was recently discovered in the eyes. In the present study, we investigate the localization of AQP6 in the rat retina and show that AQP6 is selectively localized to the ganglion cell layer and the outer plexiform layer. Along with the gradual decrease in retinal ganglion cells after a crushing injury of optic nerve, immunofluorescence signals of AQP6 gradually decreased. Confocal microscope images confirmed AQP6 expression in retinal ganglion cells and Müller cells in vitro. Therefore, AQP6 might participate in water and anion transport in these cells.
Collapse
Affiliation(s)
- Sun Young Jang
- Department of Ophthalmology, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine, 170 Jomaru-ro, Wonmi-gu, Bucheon, 420-767, Korea
| | - Eung Suk Lee
- Department of Ophthalmology, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine, 170 Jomaru-ro, Wonmi-gu, Bucheon, 420-767, Korea
| | - Young-Hoon Ohn
- Department of Ophthalmology, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine, 170 Jomaru-ro, Wonmi-gu, Bucheon, 420-767, Korea
| | - Tae Kwann Park
- Department of Ophthalmology, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine, 170 Jomaru-ro, Wonmi-gu, Bucheon, 420-767, Korea.
- Laboratory for Translational Research on Retinal and Macular Degeneration, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine, Bucheon, Korea.
| |
Collapse
|
5
|
Pavón-Muñoz T, Bejarano-Escobar R, Blasco M, Martín-Partido G, Francisco-Morcillo J. Retinal development in the gilthead seabream Sparus aurata. JOURNAL OF FISH BIOLOGY 2016; 88:492-507. [PMID: 26507100 DOI: 10.1111/jfb.12802] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 09/04/2015] [Indexed: 06/05/2023]
Abstract
The retinal development of the gilthead seabream Sparus aurata has been analysed from late embryonic development to juvenile stages using classical histological and immunohistological methods. Five significant phases were established. Phases 1 and 2 comprise the late embryonic and hatching stages, respectively. The results indicate that during these early stages the retina is composed of a single neuroblastic layer that consists of undifferentiated retinal progenitor cells. Phase 3 (late prolarval stage) is characterized by the emergence of the retinal layers and the appearance of neurochemical profiles in differentiating photoreceptors, amacrine and ganglion cells. Phases 4 and 5 comprise the late larval and juvenile stages. In these stages, all the retinal cell types can be detected immunohistochemically. All the maturational events described are first detected in the central retina and, as development progresses, spread to the rest of the retina following a central-to-peripheral gradient. The results of this study suggest that S. aurata is an altricial teleost species that hatches with a morphologically undifferentiated retina. The most relevant processes involved in retinogenesis occur during the late prolarval stage (phase 3).
Collapse
Affiliation(s)
- T Pavón-Muñoz
- Departamento de Biología Celular, Facultad de Ciencias, Universidad de Extremadura, 06071, Badajoz, Spain
| | - R Bejarano-Escobar
- Departamento de Biología Celular, Facultad de Ciencias, Universidad de Extremadura, 06071, Badajoz, Spain
| | - M Blasco
- Departamento de Biología Celular, Facultad de Ciencias, Universidad de Extremadura, 06071, Badajoz, Spain
| | - G Martín-Partido
- Departamento de Biología Celular, Facultad de Ciencias, Universidad de Extremadura, 06071, Badajoz, Spain
| | - J Francisco-Morcillo
- Departamento de Biología Celular, Facultad de Ciencias, Universidad de Extremadura, 06071, Badajoz, Spain
| |
Collapse
|
6
|
Jha KA, Nag TC, Kumar V, Kumar P, Kumar B, Wadhwa S, Roy TS. Differential Expression of AQP1 and AQP4 in Avascular Chick Retina Exposed to Moderate Light of Variable Photoperiods. Neurochem Res 2015; 40:2153-66. [PMID: 26285902 DOI: 10.1007/s11064-015-1698-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Revised: 08/01/2015] [Accepted: 08/12/2015] [Indexed: 11/28/2022]
Abstract
Aquaporins (AQPs) are integral membrane proteins which maintain cellular water and ion homeostasis. Alterations in AQP expression have been reported in rod-dominated rodent retinas exposed to light. In rodents and also in birds, light of moderate intensities (700-2000 lux) damages the retina, though detailed changes were not examined in birds. The aim of our study was to see if light affects cone dominated retinas, which would be reflected in expression levels of AQPs. We examined AQP1 and AQP4 expressions in chick retina exposed to 2000 lux under 12 h light:12 h dark (12L:12D; normal photoperiod), 18L:6D (prolonged photoperiod) and 24L:0D (constant light). Additionally, morphological changes, apoptosis (by TUNEL) and levels of glutamate and GFAP (a marker of injury) in the retina were examined to correlate these with AQP expressions. Constant light caused damage in outer and inner nuclear layer (ONL, INL) and ganglion cell layer (GCL). Also, there were associated increases in GFAP and glutamate levels in retinal extracts. In normal photoperiod, AQP1 was expressed in GCL, outer part of INL and photoreceptor inner segments of. AQP4 was additionally expressed in nerve fiber layer. Immunohistochemistry and Western blotting revealed over all decreased AQP1 and AQP4 expression in constant light condition compared to those in other two groups. The elevated GFAP and glutamate levels might be involved in the reduction of AQPs in constant light group. Such decreases in AQP expressions are perhaps linked with retinal cell damage seen in constant light condition, while their relatively enhanced expression in two other conditions may help in maintaining a normal retinal architecture, indicating their neuroprotective potential.
Collapse
Affiliation(s)
- Kumar Abhiram Jha
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Tapas Chandra Nag
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, 110029, India.
| | - Vivek Kumar
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Pankaj Kumar
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Binit Kumar
- Ocular Pharmacology Lab, Department of Pharmacology, DIPSAR, New Delhi, 110017, India
| | - Shashi Wadhwa
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Tara Sankar Roy
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, 110029, India
| |
Collapse
|
7
|
|
8
|
Retinal neurodegenerative changes in the adult insulin receptor substrate-2 deficient mouse. Exp Eye Res 2014; 124:1-10. [PMID: 24792588 DOI: 10.1016/j.exer.2014.04.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Revised: 04/17/2014] [Accepted: 04/22/2014] [Indexed: 11/23/2022]
Abstract
Insulin receptor substrate-2 (Irs2) mediates peripheral insulin action and is essential for retinal health. Previous investigations have reported severe photoreceptor degeneration and abnormal visual function in Irs2-deficient mice. However, molecular changes in the Irs2(-)(/)(-) mouse retina have not been described. In this study, we examined retinal degenerative changes in neuronal and glial cells of adult (9- and 12-week old) Irs2(-)(/)(-) mice by immunohistochemistry. 9-week old Irs2(-)(/)(-) mice showed significant thinning of outer retinal layers, concomitant to Müller and microglial cell activation. Photoreceptor cells displayed different signs of degeneration, such as outer/inner segment atrophy, redistribution of rod- and cone-opsins and spatial disorganization of cone cells. This was accompanied by synaptic changes at the outer plexiform layer, including the retraction of rod-spherules, reduction of photoreceptor synaptic ribbons and synaptic remodeling in second order neurons (i.e. loss and sprouting of dendritic processes in rod bipolar and horizontal cells). By 12 weeks of age, the thickness of inner retinal layers was severely affected. Although inner plexiform layer stratification remained unchanged at this stage, rod bipolar cell axon terminals were significantly depleted. Significant loss of Brn3a(+) retinal ganglion cells occurred in 12-week old Irs2(-)(/)(-) mice, in contrast to younger ages. Adult Irs2(-)(/)(-) mice showed clear hallmarks of neurodegeneration and disruption of the inner retina with increasing age. Pharmacological stimulation of Irs2 signaling pathway may provide additional neuroprotection in certain degenerative retinopathies.
Collapse
|
9
|
Ortak H, Cayli S, Ocaklı S, Söğüt E, Ekici F, Tas U, Demir S. Age-related changes of aquaporin expression patterns in the postnatal rat retina. Acta Histochem 2013; 115:382-8. [PMID: 23131425 DOI: 10.1016/j.acthis.2012.09.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2012] [Revised: 09/25/2012] [Accepted: 09/27/2012] [Indexed: 12/24/2022]
Abstract
Previous studies revealed that the rat retina contains numerous membrane-located water channels, the aquaporins (AQPs). Protein expression patterns of AQP1-4, 6 and 9 were examined by immunohistochemistry. In the present study, we investigated the immunolocalization of AQP1-4, 6 and 9 during postnatal development in the rat retina and examined the effect of age on the tissue distribution of these channels. AQP1, 3, 4, 6 and 9 showed gradually increased expression in rat retinas from postnatal week 1 to week 12, and decreased in the 40-week-old rat retinas. AQP2 expression was barely seen in the first week in rat retinas and displayed a significant increase from week 1 to week 4, however no significant alteration of AQP2 was observed after 4weeks of development. AQP1 and 4 immunoreactivities were present in the inner limiting membrane (ILM), the ganglion cell layer (GCL), inner nuclear layer (INL) and retinal pigment epithelium (RPE) in the 4-, 12- and 40-week-old rat retinas. The RPE, OLM and ILM showed a remarkable expression of AQP1-4, 6 and 9 in the 4, 12 and 40-week-old rat retinas. The reduced expression of AQPs in aged rat retinas may indicate the involvement of AQPs in the pathogenesis of age-related retinal diseases.
Collapse
Affiliation(s)
- Huseyin Ortak
- Department of Ophthalmology, Gaziosmanpasa University Faculty of Medicine, Tokat, Turkey.
| | | | | | | | | | | | | |
Collapse
|