1
|
Patrone LGA, Frias AT, Fantinatti GT, Stabile AM, Klein W, Bícego KC, Gargaglioni LH. Long-term effects on cardiorespiratory and behavioral responses in male and female rats prenatally exposed to cannabinoid. Am J Physiol Lung Cell Mol Physiol 2024; 327:L341-L358. [PMID: 39012058 DOI: 10.1152/ajplung.00042.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/20/2024] [Accepted: 06/22/2024] [Indexed: 07/17/2024] Open
Abstract
Development of the respiratory system can be affected by the use of drugs during pregnancy, as the prenatal phase is highly sensitive to pharmacological interventions, resulting in long-term consequences. The deleterious effects of external cannabinoids during gestation may be related to negative interference in central nervous system formation, cardiorespiratory system function, and behavioral disorders. Nevertheless, the impact of external cannabinoids on cardiorespiratory network development, chemosensitivity, and its future consequences in adulthood is still unclear. We evaluated the effects of prenatal exposure to a synthetic cannabinoid (WIN 55,212-2, 0.5 mg·kg-1·day-1) on the cardiorespiratory control and panic-like behavior of male and female rats in adulthood. Exogenous cannabinoid exposure during pregnancy resulted in a sex-dependent difference in breathing control. Specifically, males showed increased chemosensitivity to CO2 and O2, whereas females exhibited decreased sensitivity. Altered cardiovascular control was evident, with prenatally treated males and females being more susceptible to hypertension and tachycardia under adverse environmental conditions. Moreover, WIN-treated males exhibited higher fragmentation of sleep episodes, whereas females displayed anxiolytic and panicolytic behavioral responses to CO2. However, no changes were observed in the mechanical component of the respiratory system, and there were no neuroanatomical alterations, such as changes in the expression of CB1 receptors in the brainstem or in the quantification of catecholaminergic and serotonergic neurons. These findings highlight that external interference in cannabinoid signaling during fetal development causes sex-specific, long-lasting effects for the cardiorespiratory system and behavioral responses in adulthood.NEW & NOTEWORTHY The surge in recreational cannabis use and cannabinoid-based medication prescription among pregnant women has been notable in recent years, fueled by the misconception that natural products are inherently safe. Significant gaps persist regarding the potential risks of maternal consumption of cannabinoids and the long-term effects on the cardiorespiratory system of their offspring, which may be determined by sex. Accordingly, this research aims to diminish this lack of information and raise a note of caution.
Collapse
Affiliation(s)
- Luis Gustavo A Patrone
- Department of Animal Morphology and Physiology, São Paulo State University - UNESP/FCAV, Jaboticabal, Brazil
| | - Alana T Frias
- Department of Animal Morphology and Physiology, São Paulo State University - UNESP/FCAV, Jaboticabal, Brazil
| | - Gabriel T Fantinatti
- Department of Animal Morphology and Physiology, São Paulo State University - UNESP/FCAV, Jaboticabal, Brazil
| | - Angelita M Stabile
- Department of General and Specialized Nursing, School of Nursing of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Wilfried Klein
- Department of Biology, School of Philosophy, Sciences and Literature of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Kênia C Bícego
- Department of Animal Morphology and Physiology, São Paulo State University - UNESP/FCAV, Jaboticabal, Brazil
| | - Luciane H Gargaglioni
- Department of Animal Morphology and Physiology, São Paulo State University - UNESP/FCAV, Jaboticabal, Brazil
| |
Collapse
|
2
|
Casciato A, Bianchi L, Reverdy M, Joubert F, Delucenay-Clarke R, Parrot S, Ramanantsoa N, Sizun E, Matrot B, Straus C, Similowski T, Cayetanot F, Bodineau L. Serotonin and the ventilatory effects of etonogestrel, a gonane progestin, in a murine model of congenital central hypoventilation syndrome. Front Endocrinol (Lausanne) 2023; 14:1077798. [PMID: 36896185 PMCID: PMC9989262 DOI: 10.3389/fendo.2023.1077798] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 02/06/2023] [Indexed: 02/23/2023] Open
Abstract
INTRODUCTION Congenital Central Hypoventilation Syndrome, a rare disease caused by PHOX2B mutation, is associated with absent or blunted CO2/H+ chemosensitivity due to the dysfunction of PHOX2B neurons of the retrotrapezoid nucleus. No pharmacological treatment is available. Clinical observations have reported non-systematic CO2/H+ chemosensitivity recovery under desogestrel. METHODS Here, we used a preclinical model of Congenital Central Hypoventilation Syndrome, the retrotrapezoid nucleus conditional Phox2b mutant mouse, to investigate whether etonogestrel, the active metabolite of desogestrel, led to a restoration of chemosensitivity by acting on serotonin neurons known to be sensitive to etonogestrel, or retrotrapezoid nucleus PHOX2B residual cells that persist despite the mutation. The influence of etonogestrel on respiratory variables under hypercapnia was investigated using whole-body plethysmographic recording. The effect of etonogestrel, alone or combined with serotonin drugs, on the respiratory rhythm of medullary-spinal cord preparations from Phox2b mutants and wildtype mice was analyzed under metabolic acidosis. c-FOS, serotonin and PHOX2B were immunodetected. Serotonin metabolic pathways were characterized in the medulla oblongata by ultra-high-performance liquid chromatography. RESULTS We observed etonogestrel restored chemosensitivity in Phox2b mutants in a non-systematic way. Histological differences between Phox2b mutants with restored chemosensitivity and Phox2b mutant without restored chemosensitivity indicated greater activation of serotonin neurons of the raphe obscurus nucleus but no effect on retrotrapezoid nucleus PHOX2B residual cells. Finally, the increase in serotonergic signaling by the fluoxetine application modulated the respiratory effect of etonogestrel differently between Phox2b mutant mice and their WT littermates or WT OF1 mice, a result which parallels with differences in the functional state of serotonergic metabolic pathways between these different mice. DISCUSSION Our work thus highlights that serotonin systems were critically important for the occurrence of an etonogestrel-restoration, an element to consider in potential therapeutic intervention in Congenital Central Hypoventilation Syndrome patients.
Collapse
Affiliation(s)
- Alexis Casciato
- Sorbonne Université, Inserm, UMR_S1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Paris, France
| | - Lola Bianchi
- Sorbonne Université, Inserm, UMR_S1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Paris, France
| | - Manon Reverdy
- Sorbonne Université, Inserm, UMR_S1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Paris, France
| | - Fanny Joubert
- Sorbonne Université, Inserm, UMR_S1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Paris, France
| | - Roman Delucenay-Clarke
- Sorbonne Université, Inserm, UMR_S1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Paris, France
| | - Sandrine Parrot
- Centre de Recherche en Neurosciences, NeuroDialyTics, Bron, France
| | | | - Eléonore Sizun
- Université de Paris, NeuroDiderot, Inserm, Paris, France
| | - Boris Matrot
- Université de Paris, NeuroDiderot, Inserm, Paris, France
| | - Christian Straus
- Sorbonne Université, Inserm, UMR_S1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Paris, France
| | - Thomas Similowski
- Sorbonne Université, Inserm, UMR_S1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Paris, France
| | - Florence Cayetanot
- Sorbonne Université, Inserm, UMR_S1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Paris, France
| | - Laurence Bodineau
- Sorbonne Université, Inserm, UMR_S1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Paris, France
- *Correspondence: Laurence Bodineau,
| |
Collapse
|
3
|
de la Rosa T, Calvo VS, Gonçalves VC, Ferreira CB, Cabral LM, Souza FDC, Scerni DA, Scorza FA, Moreira TS, Takakura AC. Respiratory deficits in a female rat model of Parkinson's Disease. Exp Physiol 2022; 107:1349-1359. [PMID: 36030407 DOI: 10.1113/ep090378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 08/23/2022] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the central question of this study? How does 6-OHDA-induced Parkinson's Disease model affect the respiratory response in female rats? What effect does ovariectomy have on that response? What is the main finding and its importance? Our results suggest a protective effect of ovarian hormones in maintaining normal neuroanatomical integrity of the medullary respiratory nucleus in females. It was observed that ovariectomy alone reduced NK1r density in preBotc and BotC, and there was an incremental effect of 6-OHDA and ovariectomy on RTN neurons. ABSTRACT Emerging evidence indicates that Parkinson's disease (PD) courses with autonomic and respiratory deficiencies in addition to the classical motor symptoms. The prevalence of PD is lower in women, and it has been hypothesized that neuroprotection by ovarian hormones can explain this difference. While male PD animal models present changes in the central respiratory control areas, as well as ventilatory parameters under normoxia and hypercapnia, little is known about sex differences regarding respiratory deficits in this disease background. This study aimed to explore the neuroanatomical and functional respiratory changes in intact and ovariectomized female rats subjected to chemically induced PD via a bilateral intrastriatal injection of 6-hydroxydopamine (6-OHDA). The respiratory parameters were evaluated by whole-body plethysmography, and the neuroanatomy was monitored using immunohistochemistry. It was found that dopaminergic neurons in the substantia nigra and neurokinin-1 receptor (NK1r) density in the rostral ventrolateral respiratory group, Botzinger and pre-Botzinger complex were reduced in the chemically induced PD animals. Additionally, reduced numbers of Phox2b neurons were only observed in the retrotrapezoid nucleus of PD-ovariectomized rats. Concerning respiratory parameters, in ovariectomized rats, the resting and hypercapnia-induced tidal volume (VT ) is reduced, and ventilation (VE ) changes independently of 6-OHDA administration. Notably, there is a reduction in the number of RTN phox2b neurons and hypercapnia-induced respiratory changes in PD-ovariectomized animals due to a 6-OHDA and OVX interaction. These results suggest a protective effect induced by ovarian hormones in neuroanatomical changes observed in a female experimental PD model. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Tomás de la Rosa
- Neurology Department, Escola Paulista de Medicina Universidade Federal de São Paulo, São Paulo, Brazil.,Neuropsychopharmacology and Psychobiology Research Group, Department of Psychology, University of Cádiz, Cádiz, Spain.,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| | - Viviam S Calvo
- Neurology Department, Escola Paulista de Medicina Universidade Federal de São Paulo, São Paulo, Brazil
| | - Valeria C Gonçalves
- Neurology Department, Escola Paulista de Medicina Universidade Federal de São Paulo, São Paulo, Brazil
| | - Caroline B Ferreira
- Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, São Paulo, Brazil
| | - Lais M Cabral
- Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, São Paulo, Brazil
| | - Felipe da C Souza
- Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, São Paulo, Brazil
| | - Débora A Scerni
- Neurology Department, Escola Paulista de Medicina Universidade Federal de São Paulo, São Paulo, Brazil
| | - Fúlvio A Scorza
- Neurology Department, Escola Paulista de Medicina Universidade Federal de São Paulo, São Paulo, Brazil
| | - Thiago S Moreira
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, São Paulo, Brazil
| | - Ana C Takakura
- Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, São Paulo, Brazil
| |
Collapse
|
4
|
Nagraj VP, Lake DE, Kuhn L, Moorman JR, Fairchild KD. Central Apnea of Prematurity: Does Sex Matter? Am J Perinatol 2021; 38:1428-1434. [PMID: 32578186 DOI: 10.1055/s-0040-1713405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
OBJECTIVE Apnea is common among infants in the neonatal intensive care unit (NICU). Our group previously developed an automated algorithm to quantitate central apneas with associated bradycardia and desaturation (ABDs). Sex differences in lung disease are well described in preterm infants, but the influence of sex on apnea has not been established. STUDY DESIGN This study includes infants < 34 weeks' gestation admitted to the University of Virginia NICU from 2009 to 2014 with at least 1 day of bedside monitor data available when not on mechanical ventilation. Waveform and vital sign data were analyzed using a validated algorithm to detect ABD events of low variance in chest impedance signal lasting at least 10 seconds with associated drop in heart rate to < 100 beats/minute and drop in oxygen saturation to < 80%. Male and female infants were compared for prevalence of at least one ABD event during the NICU stay, treatment with caffeine, occurrence of ABDs at each week of postmenstrual age, and number of events per day. RESULTS Of 926 infants studied (median gestational age 30 weeks, 53% male), median days of data analyzed were 19 and 22 for males and females, respectively. There was no sex difference in prevalence of at least one ABD event during the NICU stay (males 62%, females 64%, p = 0.47) or in the percentage of infants treated with caffeine (males 64%, females 67%, p = 0.40). Cumulative prevalence of ABDs from postmenstrual ages 24 to 36 weeks was comparable between sexes. Males had 18% more ABDs per day of data, but this difference was not statistically significant (p = 0.16). CONCLUSION In this large cohort of infants < 34 weeks' gestation, we did not detect a sex difference in prevalence of central ABD events. There was a nonsignificant trend toward a greater number of ABDs per day in male infants. KEY POINTS · Central apnea is pervasive among preterm infants in the NICU, but potential disparities between males and females have not been thoroughly studied.. · Identification of risk factors for central apnea can lead to improved treatment protocols.. · The rate and prevalence of central apnea events accompanied by bradycardia and desaturation does not significantly differ between male and female preterm infants..
Collapse
Affiliation(s)
| | - Douglas E Lake
- Department of Medicine, University of Virginia, Charlottesville, Virginia
| | - Louise Kuhn
- Gertrude H. Sergievsky Center, Vagelos College of Physicians and Surgeons, and Department of Epidemiology, Mailman School of Public Health, Columbia University Irving Medical Center, New York, New York
| | - J Randall Moorman
- Department of Medicine, University of Virginia, Charlottesville, Virginia
| | - Karen D Fairchild
- Department of Pediatrics, University of Virginia, Charlottesville, Virginia
| |
Collapse
|
5
|
Porzionato A, Macchi V, De Caro R. Central and peripheral chemoreceptors in sudden infant death syndrome. J Physiol 2018; 596:3007-3019. [PMID: 29645275 PMCID: PMC6068209 DOI: 10.1113/jp274355] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 03/20/2018] [Indexed: 11/08/2022] Open
Abstract
The pathogenesis of sudden infant death syndrome (SIDS) has been ascribed to an underlying biological vulnerability to stressors during a critical period of development. This paper reviews the main data in the literature supporting the role of central (e.g. retrotrapezoid nucleus, serotoninergic raphe nuclei, locus coeruleus, orexinergic neurons, ventral medullary surface, solitary tract nucleus) and peripheral (e.g. carotid body) chemoreceptors in the pathogenesis of SIDS. Clinical and experimental studies indicate that central and peripheral chemoreceptors undergo critical development during the initial postnatal period, consistent with the age range of SIDS (<1 year). Most of the risk factors for SIDS (gender, genetic factors, prematurity, hypoxic/hyperoxic stimuli, inflammation, perinatal exposure to cigarette smoke and/or substance abuse) may structurally and functionally affect the developmental plasticity of central and peripheral chemoreceptors, strongly suggesting the involvement of these structures in the pathogenesis of SIDS. Morphometric and neurochemical changes have been found in the carotid body and brainstem respiratory chemoreceptors of SIDS victims, together with functional signs of chemoreception impairment in some clinical studies. However, the methodological problems of SIDS research will have to be addressed in the future, requiring large and highly standardized case series. Up-to-date autopsy protocols should be produced, involving substantial, and exhaustive sampling of all potentially involved structures (including peripheral arterial chemoreceptors). Morphometric approaches should include unbiased stereological methods with three-dimensional probes. Prospective clinical studies addressing functional tests and risk factors (including genetic traits) would probably be the gold standard, allowing markers of intrinsic or acquired vulnerability to be properly identified.
Collapse
Affiliation(s)
- Andrea Porzionato
- Section of Anatomy, Department of NeuroscienceUniversity of PadovaItaly
| | - Veronica Macchi
- Section of Anatomy, Department of NeuroscienceUniversity of PadovaItaly
| | - Raffaele De Caro
- Section of Anatomy, Department of NeuroscienceUniversity of PadovaItaly
| |
Collapse
|
6
|
Patrone LGA, Biancardi V, Marques DA, Bícego KC, Gargaglioni LH. Brainstem catecholaminergic neurones and breathing control during postnatal development in male and female rats. J Physiol 2018; 596:3299-3325. [PMID: 29479699 DOI: 10.1113/jp275731] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 02/21/2018] [Indexed: 01/23/2023] Open
Abstract
KEY POINTS The brainstem catecholaminergic (CA) modulation on ventilation changes with development. We determined the role of the brainstem CA system in ventilatory control under normocapnic and hypercapnic conditions during different phases of development [postnatal day (P)7-8, P14-15 and P20-21] in male and female Wistar rats. Brainstem CA neurones produce a tonic inhibitory drive that affects breathing frequency in P7-8 rats and provide an inhibitory drive during hypercapnic conditions in both males and females at P7-8 and P14-15. In pre-pubertal rats, brainstem CA neurones become excitatory for the CO2 ventilatory response in males but remain inhibitory in females. Diseases such as sudden infant death syndrome, congenital central hypoventilation syndrome and Rett syndrome have been associated with abnormalities in the functioning of CA neurones; therefore, the results of the present study contribute to a better understanding of this system. ABSTRACT The respiratory network undergoes significant development during the postnatal phase, including the maturation of the catecholaminergic (CA) system. However, postnatal development of this network and its effect on the control of pulmonary ventilation ( V̇E ) is not fully understood. We investigated the involvement of brainstem CA neurones in respiratory control during postnatal development [postnatal day (P)7-8, P14-15 and P20-21], in male and female rats, through chemical injury with conjugated saporin anti-dopamine β-hydroxylase (DβH-SAP). Thus, DβH-SAP (420 ng μL-1 ), saporin (SAP) or phosphate buffered solution (PBS) was injected into the fourth ventricle of neonatal Wistar rats of both sexes. V̇E and oxygen consumption were recorded 1 week after the injections in unanaesthetized neonatal and juvenile rats during room air and hypercapnia. The resting ventilation was higher in both male and female P7-8 lesioned rats by 33%, with a decrease in respiratory variability being observed in males. The hypercapnic ventilatory response (HCVR) was altered in male and female lesioned rats at all postnatal ages. At P7-8, the HCVR for males and females was increased by 37% and 30%, respectively. For both sexes at P14-15 rats, the increase in V̇E during hypercapnia was 37% higher for lesioned rats. A sex-specific difference in HCRV was observed at P20-21, with lesioned males showing a 33% decrease, and lesioned females showing an increase of 33%. We conclude that brainstem CA neurones exert a tonic inhibitory effect on V̇E in the early postnatal days of the life of a rat, increase variability in P7-8 males and modulate HCRV during the postnatal phase.
Collapse
Affiliation(s)
- Luis Gustavo A Patrone
- Department of Animal Morphology and Physiology, Sao Paulo State University - UNESP/FCAV at Jaboticabal, SP, Brazil
| | - Vivian Biancardi
- Department of Animal Morphology and Physiology, Sao Paulo State University - UNESP/FCAV at Jaboticabal, SP, Brazil
| | - Danuzia A Marques
- Department of Animal Morphology and Physiology, Sao Paulo State University - UNESP/FCAV at Jaboticabal, SP, Brazil
| | - Kênia C Bícego
- Department of Animal Morphology and Physiology, Sao Paulo State University - UNESP/FCAV at Jaboticabal, SP, Brazil
| | - Luciane H Gargaglioni
- Department of Animal Morphology and Physiology, Sao Paulo State University - UNESP/FCAV at Jaboticabal, SP, Brazil
| |
Collapse
|
7
|
de Carvalho D, Patrone LGA, Marques DA, Vicente MC, Szawka RE, Anselmo-Franci JA, Bícego KC, Gargaglioni LH. Participation of locus coeruleus in breathing control in female rats. Respir Physiol Neurobiol 2017; 245:29-36. [DOI: 10.1016/j.resp.2017.06.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 06/21/2017] [Accepted: 06/23/2017] [Indexed: 12/29/2022]
|
8
|
Greferath U, Anderson EE, Jobling AI, Vessey KA, Martinez G, de Iongh RU, Kalloniatis M, Fletcher EL. Inner retinal change in a novel rd1-FTL mouse model of retinal degeneration. Front Cell Neurosci 2015; 9:293. [PMID: 26283925 PMCID: PMC4518195 DOI: 10.3389/fncel.2015.00293] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 07/16/2015] [Indexed: 11/13/2022] Open
Abstract
While photoreceptor loss is the most devastating result of inherited retinal degenerations such as retinitis pigmentosa, inner retinal neurons also undergo significant alteration. Detailing these changes has become important as many vision restorative therapies target the remaining neurons. In this study, the rd1-Fos-Tau-LacZ (rd1-FTL) mouse model was used to explore inner retinal change at a late stage of retinal degeneration, after the loss of photoreceptor nuclei. The rd1-FTL model carries a mutation in the phosphodiesterase gene, Pde6b, and an axonally targeted transgenic beta galactosidase reporter system under the control of the c-fos promoter. Retinae of transgenic rd1-FTL mice and control FTL animals aged 2-12 months were processed for indirect fluorescence immunocytochemistry. At 2 months of age, a time when the majority of photoreceptor nuclei are lost, there was negligible c-fos reporter (FTL) expression, however, from 4 months, reporter expression was observed to increase within subpopulations of amacrine and ganglion cells within the central retina. These areas of inner retinal FTL expression coincided with regions that contained aberrant Müller cells. Specifically, these cells exhibited reduced glutamine synthetase and Kir4.1 immunolabelling, whilst showing evidence of proliferative gliosis (increased cyclinD1 and glial fibrillary acidic protein expression). These changes were limited to distinct regions where cone photoreceptor terminals were absent. Overall, these results highlight that distinct areas of the rd1-FTL central retina undergo significant glial alterations after cone photoreceptor loss. These areas coincide with up-regulation of the c-fos reporter in the inner retina, which may represent a change in neuronal function/plasticity. The rd1-FTL mouse is a useful model system to probe changes that occur in the inner retina at later stages of retinal degeneration.
Collapse
Affiliation(s)
- Ursula Greferath
- Department of Anatomy and Neuroscience, The University of Melbourne, Melbourne, VIC Australia
| | - Emily E Anderson
- Department of Anatomy and Neuroscience, The University of Melbourne, Melbourne, VIC Australia
| | - Andrew I Jobling
- Department of Anatomy and Neuroscience, The University of Melbourne, Melbourne, VIC Australia
| | - Kirstan A Vessey
- Department of Anatomy and Neuroscience, The University of Melbourne, Melbourne, VIC Australia
| | - Gemma Martinez
- Department of Anatomy and Neuroscience, The University of Melbourne, Melbourne, VIC Australia
| | - Robb U de Iongh
- Department of Anatomy and Neuroscience, The University of Melbourne, Melbourne, VIC Australia
| | - Michael Kalloniatis
- Department of Anatomy and Neuroscience, The University of Melbourne, Melbourne, VIC Australia ; Centre for Eye Health and School of Optometry and Vision Science, University of New South Wales, Sydney, NSW Australia
| | - Erica L Fletcher
- Department of Anatomy and Neuroscience, The University of Melbourne, Melbourne, VIC Australia
| |
Collapse
|
9
|
Wakai J, Takamura D, Morinaga R, Nakamuta N, Yamamoto Y. Differences in respiratory changes and Fos expression in the ventrolateral medulla of rats exposed to hypoxia, hypercapnia, and hypercapnic hypoxia. Respir Physiol Neurobiol 2015; 215:64-72. [PMID: 26001678 DOI: 10.1016/j.resp.2015.05.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 04/30/2015] [Accepted: 05/01/2015] [Indexed: 11/25/2022]
Abstract
Respiratory responses to hypoxia and/or hypercapnia, and their relationship to neural activity in the ventrolateral medulla (VLM), which includes the respiratory center, have not yet been elucidated in detail. We herein examined respiratory responses during exposure of 10% O2 (hypoxia), 10% CO2 (hypercapnia), and 10% O2-10% CO2 (hypercapnic hypoxia) using plethysmography. In addition to recording respiration, Fos expressions were examined in the VLM of the rat exposed to each gas to analyze neural activity. Respiratory frequency was increased in rats exposed to hypoxia, and Fos-positive neurons were observed in the caudal VLM (cVLM) and medial VLM (mVLM). Tidal volume was increased in rats exposed to hypercapnia, and Fos-positive neurons were observed in the rostral VLM (rVLM) includes the retrotrapezoid nucleus (RTN) and mVLM. Tidal volume was enhanced in rats exposed to hypercapnic hypoxia, similar to that in hypercapnia-exposed rats, and Fos-positive neurons were observed in the entire region of the VLM. In the mVLM and cVLM, double immunofluorescence showed Fos-immunoreactive nerve cells were also immunoreactive to dopamine β-hydroxylase, the marker for A1/C1 catecholaminergic neuron. These results suggested that hypoxia and hypercapnia modulated rhythmogenic microcircuits in the mVLM via A1/C1 neurons and the RTN, respectively.
Collapse
Affiliation(s)
- Jun Wakai
- Laboratory Animal Research Center, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Daichi Takamura
- Laboratory of Veterinary Biochemistry and Cell Biology, Faculty of Agriculture, Iwate University, Morioka, Japan
| | - Ryosuke Morinaga
- Laboratory of Veterinary Anatomy and Cell Biology, Faculty of Agriculture, Iwate University, Morioka, Japan
| | - Nobuaki Nakamuta
- Laboratory of Veterinary Anatomy and Cell Biology, Faculty of Agriculture, Iwate University, Morioka, Japan
| | - Yoshio Yamamoto
- Laboratory of Veterinary Anatomy and Cell Biology, Faculty of Agriculture, Iwate University, Morioka, Japan.
| |
Collapse
|
10
|
Identification of neurons specifically activated after recall of context fear conditioning. Neurobiol Learn Mem 2012; 98:139-47. [PMID: 22820091 DOI: 10.1016/j.nlm.2012.07.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2012] [Revised: 06/11/2012] [Accepted: 07/05/2012] [Indexed: 11/22/2022]
Abstract
The learning of new information and recall of that information presumably involves modification of and access to shared circuitry in the brain. However, learning and recall may involve the activation of distinct parts of that circuitry, according to the quite distinct functional differences between these two processes. Previously we examined neuronal activation following learning of context fear conditioning. Using the Fos-Tau-LacZ (FTL) transgenic mouse to label activated neurons, we identified a number of distinct populations of neurons in amygdala and hypothalamus which showed learning specific activation. These populations of neurons showed much less activation following recall. Here we ask what populations of neurons might be specifically activated following recall. We trained mice in context fear conditioning, and then looked at FTL activation following recall of context fear. We identified a number of populations of neurons which showed recall specific activation in nucleus accumbens shell, the anterio-medial bed nucleus of stria terminalis, the anterior commissural nucleus and the periventricular hypothalamic nucleus. These were all different populations of neurons compared with those activated following context fear learning. These different functional activation patterns occurring between learning and recall may reflect the different brain functions occurring between these two memory related processes.
Collapse
|