1
|
Zhu K, Wang H, Ye K, Chen G, Zhang Z. Netrin-1 signaling pathway mechanisms in neurodegenerative diseases. Neural Regen Res 2025; 20:960-972. [PMID: 38989931 PMCID: PMC11438344 DOI: 10.4103/nrr.nrr-d-23-01573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 03/16/2024] [Indexed: 07/12/2024] Open
Abstract
Netrin-1 and its receptors play crucial roles in inducing axonal growth and neuronal migration during neuronal development. Their profound impacts then extend into adulthood to encompass the maintenance of neuronal survival and synaptic function. Increasing amounts of evidence highlight several key points: (1) Diminished Netrin-1 levels exacerbate pathological progression in animal models of Alzheimer's disease and Parkinson's disease, and potentially, similar alterations occur in humans. (2) Genetic mutations of Netrin-1 receptors increase an individuals' susceptibility to neurodegenerative disorders. (3) Therapeutic approaches targeting Netrin-1 and its receptors offer the benefits of enhancing memory and motor function. (4) Netrin-1 and its receptors show genetic and epigenetic alterations in a variety of cancers. These findings provide compelling evidence that Netrin-1 and its receptors are crucial targets in neurodegenerative diseases. Through a comprehensive review of Netrin-1 signaling pathways, our objective is to uncover potential therapeutic avenues for neurodegenerative disorders.
Collapse
Affiliation(s)
- Kedong Zhu
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Hualong Wang
- Department of Neurology, The First Hospital of Hebei Medical University; Brain Aging and Cognitive Neuroscience Laboratory of Heibei Province, Shijiazhuang, Hebei Province, China
| | - Keqiang Ye
- Faculty of Life and Health Sciences, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong Province, China
| | - Guiqin Chen
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Zhaohui Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| |
Collapse
|
2
|
Aly EK, Mahmoud HS, Alkhalifah DHM, Shehab GMG, Abuelsaad ASA, Abdel-Rehiem ES, Abdul-Hamid M. Bee venom ameliorates oxidative stress and histopathological changes of hippocampus, liver and testis during status epileptics. Neuropeptides 2023; 101:102368. [PMID: 37562116 DOI: 10.1016/j.npep.2023.102368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/12/2023]
Abstract
The unrelenting progression of neurodegenerative diseases has a negative impact on affected individuals, their families, and society. Recurrent epileptic seizures are the hallmark of epilepsy, and treating it effectively remains difficult. Clarify and understanding effects of the antiepileptic drugs (AEDs) in epilepsy by comparing the therapeutic effects between rats receiving valproic acid (VPA) and Bee venom (BV) was aimed throughout the present study. Four male Wistar rat groups were included: control, epileptic group receiving pilocarpine (PILO), epileptic group treated with VPA and BV respectively. Cognitive functions were assessed by evaluating latency time in hot plate, despair swim test, grooming, rearing and ambulation frequency in the open field. BV has ameliorative effect on electrolytes balancing, assured by decreasing lipid peroxidation, nitric oxide and increasing catalase, superoxide dismutase and glutathione peroxidase activities. BV enhanced restoration of liver functions indicated by alanine transaminase (ALT) and aspartate transaminase (AST), total proteins, and albumin; hormonal parameters total and free testosterone, follicle stimulating hormone (FSH) and Luteinizing hormone (LH) were preserved by BV with great recovery of hippocampus, liver and testicular histopathology and ultrastructure comparing with the epileptic rats. The present findings suggested that BV and its active components offer fresh options for controlling epilepsy and prospective methods via minimize or manage the severe consequences.
Collapse
Affiliation(s)
- Esraa K Aly
- Cell Biology & Histology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62521, Egypt
| | - Hanan S Mahmoud
- Ecology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62521, Egypt
| | - Dalal Hussien M Alkhalifah
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Gaber M G Shehab
- Department of Biochemistry, College of Medicine, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Abdelaziz S A Abuelsaad
- Immunology Division, Department of Zoology, Faculty of Science, Beni-Suef University, 62511 Beni-Suef, Egypt
| | - Eman S Abdel-Rehiem
- Molecular Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62521, Egypt
| | - Manal Abdul-Hamid
- Cell Biology & Histology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62521, Egypt.
| |
Collapse
|
3
|
BDNF and Netrin-1 repression by C/EBPβ in the gut triggers Parkinson's disease pathologies, associated with constipation and motor dysfunctions. Prog Neurobiol 2020; 198:101905. [PMID: 32911010 DOI: 10.1016/j.pneurobio.2020.101905] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 08/13/2020] [Accepted: 08/24/2020] [Indexed: 11/21/2022]
Abstract
Chronic constipation is one of the most prominent prodromal symptoms in Parkinson's disease (PD), and Lewy bodies, enriched with aggregated α-Synuclein (α-Syn), propagation from the gut into the brain has been proposed to play a key role in PD etiopathogenesis. BDNF (Brain-derived neurotrophic factor) and Netrin-1 promote both neuronal survival and regulate the gut functions. We hypothesize that C/EBPβ represses BDNF and Netrin-1 in peripheral nervous system and central nervous system, contributing to GI tract and brain malfunctions in PD. To test the hypothesis, we performed the studies in both human PD gut tissues and BDNF or Netrin-1 gut conditional KO mice models. Lewy bodies with α-Syn aggregation and neuro-inflammation were measured in the colon and brain samples from PD patients and healthy controls and rotenone or vehicle-treated WT and CEBPβ (+/-) mice. We show that both BDNF and Netrin-1 are strongly decreased in the brain and the gut of PD patients, and conditional KO of these trophic factors in the gut elicits dopaminergic neuronal loss, constipation and motor dysfunctions. Interestingly, the inflammation and oxidative stress-induced transcription factor C/EBPβ acts as a robust repressor for both BDNF and Netrin-1 and suppresses the expression of trophic factors, and its levels inversely correlate with BDNF and Netrin-1 in PD patients. Our findings support that gut inflammation induces C/EBPβ activation that leads to both BDNF and Netrin-1 reduction and triggers PD non-motor and motor symptoms. Possibly, C/EBPβ-mediated biological events might be early diagnostic biomarkers for PD.
Collapse
|
4
|
Effect of Riluzole, a Glutamate Release Inhibitor, on Synaptic Plasticity in the Intrahippocampal Aβ Rat Model of Alzheimer’s Disease. NEUROPHYSIOLOGY+ 2019. [DOI: 10.1007/s11062-019-09820-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
5
|
Fries GR, Lima CNC, Valvassori SS, Zunta-Soares G, Soares JC, Quevedo J. Preliminary investigation of peripheral extracellular vesicles' microRNAs in bipolar disorder. J Affect Disord 2019; 255:10-14. [PMID: 31125858 DOI: 10.1016/j.jad.2019.05.020] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/10/2019] [Accepted: 05/12/2019] [Indexed: 02/08/2023]
Abstract
BACKGROUND The search for biomarkers of bipolar disorder (BD), including epigenetic alterations, has heavily relied on peripheral investigations that do not necessarily reflect brain-specific mechanisms. In this study we aimed to assess peripheral extracellular vesicles (EVs)' microRNAs and determine their use as a novel source of biomarkers in BD. METHODS We assessed peripheral blood EVs' microRNAs from 20 patients with BD type I and 21 age- and sex-matched healthy controls by microarray, and further explored the predicted biological functions of significantly differentially expressed microRNAs. RESULTS Our results identified 33 nominally significant microRNAs (p < 0.05 and fold-change >1.5) altered in BD patients, including miRNAs previously reported to be altered in post-mortem tissues of patients. Pathway analyses identified some brain-relevant mechanisms enriched in these miRNAs, including axon guidance by netrin and the serotonin receptor pathway. LIMITATIONS Relatively small sample size, potential confounding effects of mood states, medication use, and comorbidities, analysis of total rather than brain-specific EVs, and lack of validation of significant miRNAs by other methods. CONCLUSIONS This study provides important preliminary evidence of the potential use of EVs as a novel source of biomarkers in BD. Overall, our findings of brain-relevant mechanisms in these vesicles suggest their potential use in living patients as a peripheral window to the brain.
Collapse
Affiliation(s)
- Gabriel R Fries
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), 1941 East Rd, Houston, TX, United States.
| | - Camila N C Lima
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), 1941 East Rd, Houston, TX, United States; Neuropharmacology Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - Samira S Valvassori
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Giovana Zunta-Soares
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), 1941 East Rd, Houston, TX, United States; Center of Excellence in Mood Disorders, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, United States
| | - Jair C Soares
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), 1941 East Rd, Houston, TX, United States; Center of Excellence in Mood Disorders, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, United States; Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States
| | - Joao Quevedo
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), 1941 East Rd, Houston, TX, United States; Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil; Center of Excellence in Mood Disorders, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, United States; Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States
| |
Collapse
|
6
|
Dong ZSW, Cao ZP, Shang YJ, Liu QY, Wu BY, Liu WX, Li CH. Neuroprotection of cordycepin in NMDA-induced excitotoxicity by modulating adenosine A 1 receptors. Eur J Pharmacol 2019; 853:325-335. [PMID: 30978320 DOI: 10.1016/j.ejphar.2019.04.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 04/03/2019] [Accepted: 04/05/2019] [Indexed: 12/24/2022]
Abstract
Cerebral ischemia impairs physiological form of synaptic plasticity such as long-term potentiation (LTP). Clinical symptoms of cognitive dysfunction resulting from cerebral ischemia are associated with neuron loss and synaptic function impairment in hippocampus. It has been widely reported that cordycepin displays neuroprotective effect on ameliorating cognitive dysfunction induced by cerebral ischemia. Therefore, it is necessary to study whether cordycepin recovers cognitive function after brain ischemia through improving LTP induction. However, there has been very little discussion about the effects of cordycepin on LTP of cerebral ischemia so far. In the present study, we investigated the effects of cordycepin on LTP impairment and neuron loss induced by cerebral ischemia and excitotoxicity, using electrophysiological recording and Nissl staining techniques. The models were obtained by bilateral common carotid artery occlusion (BCCAO) and intrahippocampal NMDA microinjection. We also explored whether adenosine A1 receptors involve in the neuroprotection of cordycepin by using western blot. We found that cordycepin remarkably alleviated LTP impairment and protected pyramidal cell of hippocampal CA1 region against cerebral ischemia and excitotoxicity. Meanwhile, cordycepin prevented the reduction on adenosine A1 receptor level caused by ischemia but did not alter the adenosine A2A receptor level in hippocampal CA1 area. The improvement of LTP in the excitotoxic rats after cordycepin treatment could be blocked by DPCPX, a selective antagonist of adenosine A1 receptor. In summary, our findings provided new insights into the mechanisms of cordycepin neuroprotection in excitotoxic diseases, which is through regulating adenosine A1 receptor to improve LTP formation and neuronal survival.
Collapse
Affiliation(s)
| | | | | | | | - Bao-Yan Wu
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, PR China
| | | | | |
Collapse
|
7
|
Kalani A, Chaturvedi P, Kalani K, Kamat PK, Chaturvedi P. A high methionine, low folate and vitamin B 6/B 12 containing diet can be associated with memory loss by epigenetic silencing of netrin-1. Neural Regen Res 2019; 14:1247-1254. [PMID: 30804256 PMCID: PMC6425846 DOI: 10.4103/1673-5374.251333] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Memory-epigenetics which is the loss of memory due to epigenetic modifications can be due to the silencing of genes involved in cognitive functions and this is the basis of the current study. We hypothesize that a diet containing high methionine and low vitamins can lead to memory impairment by increasing global DNA methylation and therefore, silencing the netrin-1 gene, which encodes the glycoprotein involved in neurogenesis, axonal guidance and maintenance of the synaptic plasticity. Wild type (C57BL/6J) mice were fed with a diet containing excess methionine (1.2%), low-folate (0.08 mg/kg), vitamin B6 (0.01 mg/kg), and B12 (10.4 mg/kg) for 6 weeks. Mice were examined weekly for the long-term memory function, using a passive avoidance test, which determined loss of fear-motivated long-term memory starting from the fourth week of diet. Similarly, an increase in brain %5-methyl cytosine was observed starting from the 4th week of diet in mice. Mice fed with a high methionine, low folate and vitamins containing diet showed a decrease in netrin-1 protein expression and an increase in netrin-1 gene promotor methylation, as determined by methylation-sensitive restriction enzyme-polymerase chain reaction analysis. The increase in methylation of netrin-1 gene was validated by high-resolution melting and sequencing analysis. Furthermore, the association of netrin-1 with memory was established by administering netrin that considerably restored long-term fear motivated memory. Taken together, these results suggest that a diet rich in methionine and lacking in folate and vitamin B6/B12 can induce defects in learning and memory. Furthermore, the data indicates that decrease in netrin-1 expression due to hyper-methylation of its gene can be associated with memory loss. The animal procedures were approved by the Institutional Animal Care and Use Committee, University of Louisville, USA (No. A3586-01) on February 2, 2018.
Collapse
Affiliation(s)
- Anuradha Kalani
- Department of Physiology, School of Medicine, University of Louisville, Louisville, KY, USA
| | - Pankaj Chaturvedi
- Department of Physiology, School of Medicine, University of Louisville, Louisville, KY, USA
| | - Komal Kalani
- Medicinal Chemistry Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India; Pharmacology Department and Toxicology, Higuchi Biosciences Center, University of Kansas, Lawrence, KS, USA
| | - Pradip K Kamat
- Department of Physiology, School of Medicine, University of Louisville, Louisville, KY, USA
| | - Poonam Chaturvedi
- Department of Neurology, Dr. Ram Manohar Lohia Institute of Medical Sciences, Lucknow, India
| |
Collapse
|
8
|
Yu L, Duan Y, Zhao Z, He W, Xia M, Zhang Q, Cao X. Hydroxysafflor Yellow A (HSYA) Improves Learning and Memory in Cerebral Ischemia Reperfusion-Injured Rats via Recovering Synaptic Plasticity in the Hippocampus. Front Cell Neurosci 2018; 12:371. [PMID: 30405354 PMCID: PMC6200869 DOI: 10.3389/fncel.2018.00371] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Accepted: 09/28/2018] [Indexed: 12/31/2022] Open
Abstract
Hydroxysafflor yellow A (HSYA) is the major active chemical component of the safflower plant flower, which is widely used in Chinese medicine for cerebrovascular and cardiovascular disease treatment. Recent studies have demonstrated that HSYA exerts neuroprotective effect on cerebral ischemia, such as neuronal anti-apoptosis, antioxidant activity and oxygen free radical-scavenging. However, whether and how HSYA has a protective effect on cognitive impairment induced by cerebral ischemia reperfusion remains elusive. In the present study, by using the middle cerebral artery occlusion (MCAO) model, we found that 8 mg/kg and 16 mg/kg HSYA administration by common carotid artery (CCA) injection improved impaired cognitive function in Morris water maze (MWM) and passive avoidance tasks, but not 4 mg/kg HSYA treatment, suggesting that HSYA treatment in a certain concentration can improve cognitive impairment in MCAO rats. Furthermore, we found that 8 mg/kg HSYA treatment rescued the impaired long-term potentiation (LTP) in hippocampus of MCAO rats. Taken together, these results for the first time demonstrate that HSYA has the capacity to protect cognitive function and synaptic plasticity against cerebral ischemia-reperfusion injury, and provide a new insight that HSYA may be a promising alternative for recovery of cognitive dysfunction after brain ischemic injury.
Collapse
Affiliation(s)
- Lu Yu
- Comprehensive Department of Traditional Chinese Medicine, Putuo Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yanhong Duan
- Shanghai Key Laboratory of Brain Functional Genomics, Ministry of Education, School of Life Sciences, East China Normal University, Shanghai, China
| | - Zheng Zhao
- Shanghai Key Laboratory of Brain Functional Genomics, Ministry of Education, School of Life Sciences, East China Normal University, Shanghai, China
| | - Wendi He
- Shanghai Key Laboratory of Brain Functional Genomics, Ministry of Education, School of Life Sciences, East China Normal University, Shanghai, China
| | - Ming Xia
- Comprehensive Department of Traditional Chinese Medicine, Putuo Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qiujuan Zhang
- Department of Neurology, Yueyang Hospital of Integrated Chinese and Western Medicine Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaohua Cao
- Shanghai Key Laboratory of Brain Functional Genomics, Ministry of Education, School of Life Sciences, East China Normal University, Shanghai, China
| |
Collapse
|
9
|
He X, Liu Y, Lin X, Yuan F, Long D, Zhang Z, Wang Y, Xuan A, Yang GY. Netrin-1 attenuates brain injury after middle cerebral artery occlusion via downregulation of astrocyte activation in mice. J Neuroinflammation 2018; 15:268. [PMID: 30227858 PMCID: PMC6145326 DOI: 10.1186/s12974-018-1291-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 08/26/2018] [Indexed: 12/21/2022] Open
Abstract
Background Netrin-1 functions largely via combined receptors and downstream effectors. Evidence has shown that astrocytes express netrin-1 receptors, including DCC and UNC5H2. However, whether netrin-1 influences the function of astrocytes was previously unknown. Methods Lipopolysaccharide was used to stimulate the primary cultured astrocytes; interleukin release was used to track astrocyte activation. In vivo, shRNA and netrin-1 protein were injected in the mouse brain. Infarct volume, astrocyte activation, and interleukin release were used to observe the function of netrin-1 in neuroinflammation and brain injury after middle cerebral artery occlusion. Results Our results demonstrated that netrin-1 reduced lipopolysaccharide-induced interleukin-1β and interleukin-12β release in cultured astrocytes, and blockade of the UNC5H2 receptor with an antibody reversed this effect. Additionally, netrin-1 increased p-AKT and PPAR-γ expression in primary cultured astrocytes. In vivo studies showed that knockdown of netrin-1 increased astrocyte activation in the mouse brain after middle cerebral artery occlusion (p < 0.05). Moreover, injection of netrin-1 attenuated GFAP expression (netrin-1 0.27 ± 0.06 vs. BSA 0.62 ± 0.04, p < 0.001) and the release of interleukins and reduced infarct volume after brain ischemia (netrin-1 0.27 ± 0.06 vs. BSA 0.62 ± 0.04 mm3, p < 0.05). Conclusion Our results indicate that netrin-1 is an important molecule in regulating astrocyte activation and neuroinflammation in cerebral ischemia and provides a potential target for ischemic stroke therapy. Electronic supplementary material The online version of this article (10.1186/s12974-018-1291-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiaosong He
- Key Laboratory of Neuroscience, the Second Affiliated Hospital Guangzhou Medical University, Guangzhou, China.,Department of Anatomy, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Yanqun Liu
- Department of Neurology, Changhai Hospital, Naval Military Medical University, Shanghai, China
| | - Xiaohong Lin
- Key Laboratory of Neuroscience, the Second Affiliated Hospital Guangzhou Medical University, Guangzhou, China.,Department of Anatomy, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Falei Yuan
- Hailisheng Biomarine Research Institute, Zhoushan, China
| | - Dahong Long
- Key Laboratory of Neuroscience, the Second Affiliated Hospital Guangzhou Medical University, Guangzhou, China.,Department of Anatomy, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Zhijun Zhang
- Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yongting Wang
- Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Aiguo Xuan
- Key Laboratory of Neuroscience, the Second Affiliated Hospital Guangzhou Medical University, Guangzhou, China. .,Department of Anatomy, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China. .,Department of Anatomy, Guangzhou Medical college, Guangzhou, 511546, China.
| | - Guo-Yuan Yang
- Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China. .,Department of Neurology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China. .,Med-X Research Institute and School of Biomedical Engineering, 1954 Hua-shan Road, Shanghai, 200030, China.
| |
Collapse
|
10
|
Zamani E, Parviz M, Roghani M, Mohseni‐moghaddam P. Key mechanisms underlying netrin‐1 prevention of impaired spatial and object memory in Aβ
1‐42
CA1‐injected rats. Clin Exp Pharmacol Physiol 2018; 46:86-93. [DOI: 10.1111/1440-1681.13020] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 07/04/2018] [Accepted: 07/18/2018] [Indexed: 12/18/2022]
Affiliation(s)
- Elham Zamani
- Department of PhysiologySchool of MedicineTehran University of Medical Sciences Tehran Iran
- Electrophysiology Research CenterNeuroscience InstituteTehran University of Medical Sciences Tehran Iran
| | - Mohsen Parviz
- Department of PhysiologySchool of MedicineTehran University of Medical Sciences Tehran Iran
- Electrophysiology Research CenterNeuroscience InstituteTehran University of Medical Sciences Tehran Iran
| | - Mehrdad Roghani
- Neurophysiology Research CenterShahed University Tehran Iran
| | | |
Collapse
|
11
|
MicroRNA Expression Profiling in the Prefrontal Cortex: Putative Mechanisms for the Cognitive Effects of Adolescent High Fat Feeding. Sci Rep 2018; 8:8344. [PMID: 29844565 PMCID: PMC5974184 DOI: 10.1038/s41598-018-26631-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 05/15/2018] [Indexed: 02/06/2023] Open
Abstract
The medial prefrontal cortex (mPFC), master regulator of higher-order cognitive functions, is the only brain region that matures until late adolescence. During this period, the mPFC is sensitive to stressful events or suboptimal nutrition. For instance, high-fat diet (HFD) feeding during adolescence markedly impairs prefrontal-dependent cognition. It also provokes multiple changes at the cellular and synaptic scales within the mPFC, suggesting that major transcriptional events are elicited by HFD during this maturational period. The nature of this transcriptional reprogramming remains unknown, but may include epigenetic processes, in particular microRNAs, known to directly regulate synaptic functions. We used high–throughput screening in the adolescent mouse mPFC and identified 38 microRNAs differentially regulated by HFD, in particular mir-30e-5p. We used a luciferase assay to confirm the functional effect of mir-30e-5p on a chosen target: Ephrin-A3. Using global pathway analyses of predicted microRNA targets, we identified biological pathways putatively affected by HFD. Axon guidance was the top-1 pathway, validated by identifying gene expression changes of axon guidance molecules following HFD. Our findings delineate major microRNA transcriptional reprogramming within the mPFC induced by adolescent HFD. These results will help understanding the contribution of microRNAs in the emergence of cognitive deficits following early-life environmental events.
Collapse
|
12
|
Zheng M, Chen R, Chen H, Zhang Y, Chen J, Lin P, Lan Q, Yuan Q, Lai Y, Jiang X, Pan X, Liu N. Netrin-1 Promotes Synaptic Formation and Axonal Regeneration via JNK1/c-Jun Pathway after the Middle Cerebral Artery Occlusion. Front Cell Neurosci 2018; 12:13. [PMID: 29487502 PMCID: PMC5816818 DOI: 10.3389/fncel.2018.00013] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Accepted: 01/09/2018] [Indexed: 11/20/2022] Open
Abstract
As a secreted axon guidance molecule, Netrin-1 has been documented to be a neuroprotective factor, which can reduce infarct volume, promote angiogenesis and anti-apoptosis after stroke in rodents. However, its role in axonal regeneration and synaptic formation after cerebral ischemic injury, and the related underlying mechanisms remain blurred. In this study, we used Adeno-associated vectors carrying Netrin-1 gene (AAV-NT-1) to up-regulate the expression level of Netrin-1 in rats’ brain after middle cerebral artery occlusion (MCAO). We found that the up-regulated level of Netrin-1 and its receptor DCC promoted axonal regeneration and synaptic formation; the overexpression of Netrin-1 activated the JNK1 signaling pathway; these effects were partially reduced when JNK1 signaling pathway was inhibited by SP600125 (JNK specific inhibitor). Taken together, these findings suggest that Netrin-1 can facilitate the synaptic formation and axonal regeneration via the JNK1 signaling pathway after cerebral ischemia, thus promoting the recovery of neural functions.
Collapse
Affiliation(s)
- Mouwei Zheng
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China.,Institute of Cerebral Vascular Disease of Fujian Province, Fuzhou, China.,Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Ronghua Chen
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China.,Institute of Cerebral Vascular Disease of Fujian Province, Fuzhou, China.,Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Hongbin Chen
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China.,Institute of Cerebral Vascular Disease of Fujian Province, Fuzhou, China.,Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Yixian Zhang
- Institute of Cerebral Vascular Disease of Fujian Province, Fuzhou, China.,Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China.,Department of Rehabilitation, Fujian Medical University Union Hospital, Fuzhou, China
| | - Jianhao Chen
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China.,Institute of Cerebral Vascular Disease of Fujian Province, Fuzhou, China.,Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Peiqiang Lin
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China.,Institute of Cerebral Vascular Disease of Fujian Province, Fuzhou, China.,Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Quan Lan
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China.,Institute of Cerebral Vascular Disease of Fujian Province, Fuzhou, China.,Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Qilin Yuan
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China.,Institute of Cerebral Vascular Disease of Fujian Province, Fuzhou, China.,Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Yongxing Lai
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China.,Institute of Cerebral Vascular Disease of Fujian Province, Fuzhou, China.,Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Xinhong Jiang
- Institute of Cerebral Vascular Disease of Fujian Province, Fuzhou, China.,Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China.,Department of Rehabilitation, Fujian Medical University Union Hospital, Fuzhou, China
| | - Xiaodong Pan
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China.,Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Nan Liu
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China.,Institute of Cerebral Vascular Disease of Fujian Province, Fuzhou, China.,Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China.,Department of Rehabilitation, Fujian Medical University Union Hospital, Fuzhou, China
| |
Collapse
|
13
|
Lu Y, Hsiang F, Chang JH, Yao XQ, Zhao H, Zou HY, Wang L, Zhang QX. Houshiheisan and its components promote axon regeneration after ischemic brain injury. Neural Regen Res 2018; 13:1195-1203. [PMID: 30028327 PMCID: PMC6065233 DOI: 10.4103/1673-5374.235031] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Houshiheisan, a classic prescription in traditional Chinese medicine, contains Flos Chrysanthemi, Radix Saposhnikoviae, Ramulus Cinnamomi, Rhizoma Chuanxiong, Radix et Rhizoma Asari, Radix Platycodonis, Rhizoma Atractylodis macrocephalae, Poria, Rhizoma Zingiberis, Radix Angelicae sinensis, Radix et Rhizoma Ginseng, Radix Scutellariae and Concha Ostreae. According to traditional Chinese medicine theory, Flos Chrysanthemi, Radix Saposhnikoviae, Ramulus Cinnamomi, Rhizoma Chuanxiong, Radix et Rhizoma Asari and Radix Platycodonis are wind-dispelling drugs; Rhizoma Atractylodis macrocephalae, Poria, Rhizoma Zingiberis, Radix Angelicae sinensis and Radix et Rhizoma Ginseng are deficiency-nourishing drugs. A large number of randomized controlled trials have shown that Houshiheisan is effective in treating stroke, but its mechanism of action is unknown. Axonal remodeling is an important mechanism in neural protection and regeneration. Therefore, this study explored the effect and mechanism of action of Houshiheisan on the repair of axons after cerebral ischemia. Rat models of focal cerebral ischemia were established by ligating the right middle cerebral artery. At 6 hours after model establishment, rats were intragastrically administered 10.5 g/kg Houshiheisan or 7.7 g/kg wind-dispelling drug or 2.59 g/kg deficiency-nourishing drug. These medicines were intragastrically administered as above every 24 hours for 7 consecutive days. Houshiheisan, and its wind-dispelling and deficiency-nourishing components reduced the neurological deficit score and ameliorated axon and neuron lesions after cerebral ischemia. Furthermore, Houshiheisan, and its wind-dispelling and deficiency-nourishing components decreased the expression of proteins that inhibit axonal remodeling: amyloid precursor protein, neurite outgrowth inhibitor protein A (Nogo-A), Rho family small GTPase A (RhoA) and Rho-associated kinase 2 (Rock2), and increased the expression of growth associated protein-43, microtubule-associated protein-2, netrin-1, Ras-related C3 botulinum toxin substrate 1 (Rac1) and cell division cycle 42 (Cdc42). The effect of Houshiheisan was stronger than wind-dispelling drugs or deficiency-nourishing drugs alone. In conclusion, Houshiheisan, and wind-dispelling and deficiency-nourishing drugs promote the repair of axons and nerve regeneration after cerebral ischemia through Nogo-A/RhoA/Rock2 and Netrin-1/Rac1/Cdc42 signaling pathways. These effects are strongest with Houshiheisan.
Collapse
Affiliation(s)
- Yue Lu
- School of Traditional Chinese Medicine, Capital Medical University; Beijing Key Lab of TCM Collateral Disease Theory Research, Beijing, China
| | - Flora Hsiang
- School of Traditional Chinese Medicine, Capital Medical University; Beijing Key Lab of TCM Collateral Disease Theory Research, Beijing, China
| | - Jia-Hui Chang
- School of Traditional Chinese Medicine, Capital Medical University; Beijing Key Lab of TCM Collateral Disease Theory Research, Beijing, China
| | - Xiao-Quan Yao
- School of Traditional Chinese Medicine, Capital Medical University; Beijing Key Lab of TCM Collateral Disease Theory Research, Beijing, China
| | - Hui Zhao
- School of Traditional Chinese Medicine, Capital Medical University; Beijing Key Lab of TCM Collateral Disease Theory Research, Beijing, China
| | - Hai-Yan Zou
- School of Traditional Chinese Medicine, Capital Medical University; Beijing Key Lab of TCM Collateral Disease Theory Research, Beijing, China
| | - Lei Wang
- School of Traditional Chinese Medicine, Capital Medical University; Beijing Key Lab of TCM Collateral Disease Theory Research, Beijing, China
| | - Qiu-Xia Zhang
- School of Traditional Chinese Medicine, Capital Medical University; Beijing Key Lab of TCM Collateral Disease Theory Research, Beijing, China
| |
Collapse
|
14
|
Xie Z, Enkhjargal B, Reis C, Huang L, Wan W, Tang J, Cheng Y, Zhang JH. Netrin-1 Preserves Blood-Brain Barrier Integrity Through Deleted in Colorectal Cancer/Focal Adhesion Kinase/RhoA Signaling Pathway Following Subarachnoid Hemorrhage in Rats. J Am Heart Assoc 2017; 6:JAHA.116.005198. [PMID: 28526701 PMCID: PMC5524080 DOI: 10.1161/jaha.116.005198] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
BACKGROUND Netrin-1 (NTN-1) has been established to be a novel intrinsic regulator of blood-brain barrier (BBB) maintenance. This study was carried out to investigate the potential roles of exogenous NTN-1 in preserving BBB integrity after experimental subarachnoid hemorrhage (SAH) as well as the underlying mechanisms of its protective effects. METHODS AND RESULTS A total of 309 male Sprague-Dawley rats were subjected to an endovascular perforation model of SAH. Recombinant NTN-1 was administered intravenously 1 hour after SAH induction. NTN-1 small interfering RNA or Deleted in Colorectal Cancer small interfering RNA was administered intracerebroventricular at 48 hours before SAH. Focal adhesion kinase inhibitor was administered by intraperitoneal injection at 1 hour prior to SAH. Neurological scores, brain water content, BBB permeability, RhoA activity, Western blot, and immunofluorescence staining were evaluated. The expression of endogenous NTN-1 and its receptor Deleted in Colorectal Cancer were increased after SAH. Administration of exogenous NTN-1 significantly reduced brain water content and BBB permeability and ameliorated neurological deficits at 24 and 72 hours after SAH. Exogenous NTN-1 treatment significantly promoted phosphorylated focal adhesion kinase activation and inhibited RhoA activity, as well as upregulated the expression of ZO-1 and Occludin. Conversely, depletion of endogenous NTN-1 aggravated BBB breakdown and neurological impairments at 24 hours after SAH. The protective effects of NTN-1 at 24 hours after SAH were also abolished by pretreatment with Deleted in Colorectal Cancer small interfering RNA and focal adhesion kinase inhibitor. CONCLUSIONS NTN-1 treatment preserved BBB integrity and improved neurological functions through a Deleted in Colorectal Cancer/focal adhesion kinase/RhoA signaling pathway after SAH. Thus, NTN-1 may serve as a promising treatment to alleviate early brain injury following SAH.
Collapse
Affiliation(s)
- Zongyi Xie
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA.,Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Budbazar Enkhjargal
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA
| | - Cesar Reis
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA
| | - Lei Huang
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA.,Department of Anesthesiology, School of Medicine, Loma Linda University, Loma Linda, CA
| | - Weifeng Wan
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA
| | - Jiping Tang
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA
| | - Yuan Cheng
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - John H Zhang
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA .,Department of Anesthesiology, School of Medicine, Loma Linda University, Loma Linda, CA.,Department of Neurosurgery, School of Medicine, Loma Linda University, Loma Linda, CA
| |
Collapse
|
15
|
Netrin-1 improves the amyloid-β-mediated suppression of memory and synaptic plasticity. Brain Res Bull 2017; 131:107-116. [DOI: 10.1016/j.brainresbull.2017.03.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 03/14/2017] [Accepted: 03/29/2017] [Indexed: 11/24/2022]
|
16
|
He X, Lu Y, Lin X, Jiang L, Tang Y, Tang G, Chen X, Zhang Z, Wang Y, Yang GY. Optical inhibition of striatal neurons promotes focal neurogenesis and neurobehavioral recovery in mice after middle cerebral artery occlusion. J Cereb Blood Flow Metab 2017; 37:837-847. [PMID: 27055780 PMCID: PMC5363463 DOI: 10.1177/0271678x16642242] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Striatal neurons regulate the activity of neural progenitor cells in the subventricular zone, but the effect of striatal neuronal activity on neurogenesis after ischemic stroke is unclear. In this study, we used optogenetic tools to investigate the impact of striatal neuronal activity on the neurogenesis and functional recovery after cerebral ischemia. We transfected striatal neurons with channelrhodopsin-2 or halorhodopsin from Natronomonas so that they can be excited by 473 nm laser or inhibited by 594 nm laser, respectively. Neural inhibition but not excitation at 4-7 days after middle cerebral artery occlusion resulted in reduced atrophy volume (6.8 ± 0.7 vs 8.5 ± 1.2 mm3, p < 0.05) and better performance represented by longer sustaining time on rotarod (99.3 ± 9 vs 80.1 ± 11 s, p < 0.01) and faster moving speed (7.7 ± 2 vs 5.7 ± 1.1 cm/s, p < 0.05) in open field tests. Furthermore, neural inhibition increased the number of nestin+, BrdU+/doublecortin+ and BrdU+/NeuN+ cells ( p < 0.001) in the subventricular zone and peri-focal region, and the expression level of axon guidance factor Netrin-1 (0.39 ± 0.16 vs 0.16 ± 0.02, p < 0.05) in the peri-focal region. These data suggest that striatal neuronal activity plays an important role in regulating neurogenesis and neural-behavioral outcomes, and that inhibiting striatal neurons by optogenetics promotes the recovery after ischemic stroke in mice.
Collapse
Affiliation(s)
- Xiaosong He
- 1 Department of Human Anatomy, Guangzhou Medical University, Guangzhou, China.,2 Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yifan Lu
- 2 Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaojie Lin
- 2 Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Lu Jiang
- 2 Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yaohui Tang
- 2 Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Guanghui Tang
- 2 Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoyan Chen
- 2 Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Zhijun Zhang
- 2 Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yongting Wang
- 2 Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.,3 Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Guo-Yuan Yang
- 2 Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.,4 Shanghai Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
17
|
Bai L, Mei X, Shen Z, Bi Y, Yuan Y, Guo Z, Wang H, Zhao H, Zhou Z, Wang C, Zhu K, Li G, Lv G. Netrin-1 Improves Functional Recovery through Autophagy Regulation by Activating the AMPK/mTOR Signaling Pathway in Rats with Spinal Cord Injury. Sci Rep 2017; 7:42288. [PMID: 28186165 PMCID: PMC5301251 DOI: 10.1038/srep42288] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 01/04/2017] [Indexed: 01/08/2023] Open
Abstract
Autophagy is an process for the degradation of cytoplasmic aggregated proteins and damaged organelles and plays an important role in the development of SCI. In this study, we investigated the therapeutic effect of Netrin-1 and its potential mechanism for autophagy regulation after SCI. A rat model of SCI was established and used for analysis. Results showed that administration of Netrin-1 not only significantly enhanced the phosphorylation of AMP-activated protein kinase (AMPK) but also reduced the phosphorylation of mammalian target of rapamycin (mTOR) and P70S6K. In addition, the expression of Beclin-1 and the ratio of the light-chain 3B-II (LC3B-II)/LC3B-I in the injured spinal cord significantly increased in Netrin-1 group than those in SCI group. Moreover, the ratio of apoptotic neurons in the anterior horn of the spinal cord and the cavity area of spinal cord significantly decreased in Netrin-1 group compared with those in SCI group. In addition, Netrin-1 not only preserved motor neurons but also significantly improved motor fuction of injured rats. These results suggest that Netrin-1 improved functional recovery through autophagy stimulation by activating the AMPK/mTOR signaling pathway in rats with SCI. Thus, Netrin-1 treatment could be a novel therapeutic strategy for SCI.
Collapse
Affiliation(s)
- Liangjie Bai
- Department of Orthopedics, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xifan Mei
- Department of Orthopedics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou Liaoning, China
| | - Zhaoliang Shen
- Department of Orthopedics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou Liaoning, China
| | - Yunlong Bi
- Department of Orthopedics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou Liaoning, China
| | - Yajiang Yuan
- Department of Orthopedics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou Liaoning, China
| | - Zhanpeng Guo
- Department of Orthopedics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou Liaoning, China
| | - Hongyu Wang
- Department of Orthopedics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou Liaoning, China
| | - Haosen Zhao
- Department of Orthopedics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou Liaoning, China
| | - Zipeng Zhou
- Department of Orthopedics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou Liaoning, China
| | - Chen Wang
- Department of Orthopedics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou Liaoning, China
| | - Kunming Zhu
- Department of Orthopedics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou Liaoning, China
| | - Gang Li
- Department of Orthopedics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou Liaoning, China
| | - Gang Lv
- Department of Orthopedics, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
18
|
Hosseini N, Alaei H, Reisi P, Radahmadi M. The effects of NBM- lesion on synaptic plasticity in rats. Brain Res 2017; 1655:122-127. [DOI: 10.1016/j.brainres.2016.11.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 10/20/2016] [Accepted: 11/11/2016] [Indexed: 01/01/2023]
|
19
|
Fingolimod (FTY720) improves hippocampal synaptic plasticity and memory deficit in rats following focal cerebral ischemia. Brain Res Bull 2016; 124:95-102. [PMID: 27066884 DOI: 10.1016/j.brainresbull.2016.04.004] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 04/06/2016] [Accepted: 04/07/2016] [Indexed: 11/23/2022]
Abstract
Fingolimod (FTY720) is a known sphingosine-1-phosphate (S1P) receptor agonist. Several studies have shown the therapeutic efficacy of FTY720 in neurodegenerative disorders. However, the neuroprotective mechanisms in brain ischemia have not been adequately studied. Therefore, the present study aimed to investigate the effects of FTY720 on the impairment of learning and memory and hippocampal synaptic plasticity induced by middle cerebral artery occlusion (MCAO) in ischemic brain injury. Twenty eight male rats were randomly divided into four groups of control (n=7), sham (n=8), ischemic-reperfusion+vehicle (I/R+V; n=7), and I/R+FTY720 (n=6). After 1h of the occlusion of artery, the filament was gently withdrawn to allow reperfusion for the next 7 days. The animals first received a dose of FTY720 (0.5mg/Kg) or its vehicle (intra-peritoneal) twenty-four hours before surgery in I/R+FTY720 and I/R+V groups, respectively. The administration of FTY720 or its vehicle continued every other day. The passive avoidance test and field potential recording were used for evaluation of learning, memory and synaptic plasticity. The brain infarct volume was measured by triphenyltetrazolim hydrochloride (TTC) staining. MCAO caused infarct damage in the rat's brain tissue. The administration of FTY720 significantly reduced the size of the lesion, improved the memory impairment of MCAO rats, and increased the STL time. In addition, the field potential recording demonstrated a marked reduction in induction of long-term potentiation of MCAO animals. However, administration of FTY720 recovers the magnitude of the LTP without any effects on presynaptic plasticity and neurotransmitter release probability. The results of this study demonstrated that MCAO in rats impairs the retention of passive avoidance tasks and multiple injection of FTY720 improved the memory performance after MCAO by LTP induction via post-synaptic mechanisms.
Collapse
|
20
|
Almeida MR, Mabasa L, Crane C, Park CS, Venâncio VP, Bianchi MLP, Antunes LMG. Maternal vitamin B6deficient or supplemented diets on expression of genes related to GABAergic, serotonergic, or glutamatergic pathways in hippocampus of rat dams and their offspring. Mol Nutr Food Res 2016; 60:1615-24. [DOI: 10.1002/mnfr.201500950] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 02/17/2016] [Accepted: 02/19/2016] [Indexed: 12/17/2022]
Affiliation(s)
- Mara Ribeiro Almeida
- School of Pharmaceutical Sciences of Ribeirão Preto; University of São Paulo; São Paulo Brazil
- Department of Animal Sciences; North Dakota State University; Fargo North Dakota USA
| | - Lawrence Mabasa
- Department of Animal Sciences; North Dakota State University; Fargo North Dakota USA
| | - Courtney Crane
- Department of Animal Sciences; North Dakota State University; Fargo North Dakota USA
| | - Chung S Park
- Department of Animal Sciences; North Dakota State University; Fargo North Dakota USA
| | - Vinícius Paula Venâncio
- School of Pharmaceutical Sciences of Ribeirão Preto; University of São Paulo; São Paulo Brazil
| | | | | |
Collapse
|
21
|
Ghofrani S, Joghataei MT, Mohseni S, Baluchnejadmojarad T, Bagheri M, Khamse S, Roghani M. Naringenin improves learning and memory in an Alzheimer's disease rat model: Insights into the underlying mechanisms. Eur J Pharmacol 2015; 764:195-201. [PMID: 26148826 DOI: 10.1016/j.ejphar.2015.07.001] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 06/29/2015] [Accepted: 07/01/2015] [Indexed: 02/02/2023]
Abstract
Alzheimer's disease (AD) is one of the prevalent neurological disorders of the central nervous system hallmarked by increased beta-amyloid (Aβ) deposition and ensuing learning and memory deficit. In the present study, the beneficial effect of naringenin on improvement of learning and memory was evaluated in an Alzheimer's disease rat model. The Aβ-injected rats showed a lower alternation score in Y-maze task, impairment of retention and recall capability in passive avoidance test, and lower correct choices and higher errors in radial arm maze (RAM) task as compared to sham group in addition to enhanced oxidative stress and apoptosis. Naringenin, but not a combination of naringenin and fulvestrant (an estrogenic receptor antagonist) significantly improved the performance of Aβ-injected rats in passive avoidance and RAM tasks. Naringenin pretreatment of Aβ-injected rats also lowered hippocampal malondialdehyde (MDA) with no significant effect on nitrite and superoxide dismutase (SOD) activity in addition to lowering apoptosis. These results suggest naringenin pretreatment attenuates Aβ-induced impairment of learning and memory through mitigation of lipid peroxidation and apoptosis and its beneficial effect is somewhat mediated via estrogenic pathway.
Collapse
Affiliation(s)
- Saeed Ghofrani
- Department of Clinical and Experimental Medicine, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden; Cellular and Molecular Research Center and Department of Neuroscience, School of Advanced Technology, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad-Taghi Joghataei
- Cellular and Molecular Research Center and Department of Neuroscience, School of Advanced Technology, Iran University of Medical Sciences, Tehran, Iran
| | - Simin Mohseni
- Department of Clinical and Experimental Medicine, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | | | - Maryam Bagheri
- Department of Clinical and Experimental Medicine, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden; Department of Physiology, School of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Safoura Khamse
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehrdad Roghani
- Neurophysiology Research Center, Shahed University, Tehran, Iran.
| |
Collapse
|
22
|
Chen T, Chen D, Li F, Tan Z. Netrin-1 with stem cells promote angiogenesis in limb ischemic rats. J Surg Res 2014; 192:664-9. [PMID: 25240286 DOI: 10.1016/j.jss.2014.07.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 06/08/2014] [Accepted: 07/01/2014] [Indexed: 01/22/2023]
Abstract
BACKGROUND Recent findings have elucidated that netrin-1 has ability of promoting angiogenesis besides the functions in nervous system. Autologous mesenchymal stem cells (MSCs) transplantation is now proved to be an effective method to treat peripheral arterial disease. However there are still many patients who cannot complete full treatments. Therefore it is necessary to improve the effectiveness. This study estimated the curative effects in chronic limb ischemia when MSCs allied with netrin-1. MATERIALS AND METHODS Thirty-six rats were made into chronic limb ischemia models. They were randomly assigned to four groups, netrin-1 + MSCs group (treated with netrin-1 and MSCs derived from peripheral blood), MSCs group (treated with MSCs individually), netrin-1 group (treated with netrin-1 individually), and control group (treated with saline). Measurements of murine behaviors, vascular endothelial growth factor expression, and capillary density in ischemia limb were performed on days 7, 14, and 28 after treatments; measurements of contraction force in ischemia limb was performed on day 28 after treatments to compare differences among the groups. RESULTS Netrin-1 allied with MSCs significantly increased Tarlov score, vascular endothelial growth factor expression, capillary density, and muscular strength in ischemia limb. CONCLUSIONS Netrin-1 allied with MSCs derived from peripheral blood significantly promoted angiogenesis in aged rats with chronic limb ischemia. It may be a promising method of treating peripheral arterial disease in the future.
Collapse
Affiliation(s)
- Tao Chen
- Department of Vascular Surgery, Zhongnan Hospital of Wuhan University, Zhongnan Hospital, Wuhan city, Hubei province, China; Department of Vascular Surgery, Affiliated Xiangyang Central Hospital of Hubei University of Arts and Science, Xiangyang Center Hospital, Xiangyang city, Hubei province, China
| | - Dejie Chen
- Department of Vascular Surgery, Affiliated Xiangyang Central Hospital of Hubei University of Arts and Science, Xiangyang Center Hospital, Xiangyang city, Hubei province, China
| | - Fangfang Li
- Department of Pharmacy, Affiliated Xiangyang Central Hospital of Hubei University of Arts and Science, Xiangyang Center Hospital, Xiangyang city, Hubei province, China
| | - Zui Tan
- Department of Vascular Surgery, Zhongnan Hospital of Wuhan University, Zhongnan Hospital, Wuhan city, Hubei province, China.
| |
Collapse
|
23
|
Ding Q, Liao SJ, Yu J. Axon guidance factor netrin-1 and its receptors regulate angiogenesis after cerebral ischemia. Neurosci Bull 2014; 30:683-91. [PMID: 24875332 DOI: 10.1007/s12264-013-1441-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 01/11/2014] [Indexed: 12/17/2022] Open
Abstract
Neurogenesis and angiogenesis play important roles in functional recovery after ischemic stroke. When cerebral ischemia occurs, axon regeneration can compensate for the loss of apoptotic neurons in the ischemic area. The formation of new blood vessels ameliorates the local decrease in blood supply, enhancing the supply of oxygen and nutrients to newly-formed neurons. New blood vessels also act as a scaffold for the migration of neuroblasts to the infarct area after ischemic stroke. In light of this, researchers have been actively searching for methods to treat cerebral infarction. Netrins were first identified as a family of proteins that mediate axon guidance and direct axon migration during embryogenesis. Later studies have revealed other functions of this protein family. In this review, we focus on netrin-1, which has been shown to be involved in axon migration and angiogenesis, which are required for recovery after cerebral ischemia. Thus, therapies targeting netrin-1 may be useful for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Qiao Ding
- Department of Neurology, Guangdong Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department, National Key Discipline, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
| | | | | |
Collapse
|
24
|
Pai B, Siripornmongcolchai T, Berentsen B, Pakzad A, Vieuille C, Pallesen S, Pajak M, Simpson TI, Armstrong JD, Wibrand K, Bramham CR. NMDA receptor-dependent regulation of miRNA expression and association with Argonaute during LTP in vivo. Front Cell Neurosci 2014; 7:285. [PMID: 24454279 PMCID: PMC3888942 DOI: 10.3389/fncel.2013.00285] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 12/19/2013] [Indexed: 01/02/2023] Open
Abstract
microRNAs (miRNAs) are major regulators of protein synthesis in the brain. A major goal is to identify changes in miRNA expression underlying protein synthesis-dependent forms of synaptic plasticity such as long-term potentiation (LTP). Previous analyses focused on changes in miRNA levels in total lysate samples. Here, we asked whether changes in total miRNA accurately reflect changes in the amount of miRNA bound to Argonaute protein within the miRNA-induced silencing complex (miRISC). Ago2 immunoprecipitation was used to isolate RISC-associated miRNAs following high-frequency stimulation (HFS)-induced LTP in the dentate gyrus of anesthetized rats. Using locked-nucleic acid-based PCR cards for high-throughput screening and independent validation by quantitative TaqMan RT-PCR, we identified differential regulation of Ago2-associated and total miRNA expression. The ratio of Ago2/total miRNA expression was regulated bidirectionally in a miRNA-specific manner and was largely dependent on N-methyl-D-aspartate receptor (NMDA) activation during LTP induction. The present results identify miRNA association with Ago2 as a potential control point in activity-dependent synaptic plasticity in the adult brain. Finally, novel computational analysis for targets of the Ago2-associated miRNAs identifies 21 pathways that are enriched and differentially targeted by the miRNAs including axon guidance, mTOR, MAPK, Ras, and LTP.
Collapse
Affiliation(s)
- Balagopal Pai
- Department of Biomedicine and K.G. Jebsen Centre for Research on Neuropsychiatric Disorders, University of Bergen Bergen, Norway
| | - Taweeporn Siripornmongcolchai
- Department of Biomedicine and K.G. Jebsen Centre for Research on Neuropsychiatric Disorders, University of Bergen Bergen, Norway
| | - Birgitte Berentsen
- Department of Biomedicine and K.G. Jebsen Centre for Research on Neuropsychiatric Disorders, University of Bergen Bergen, Norway
| | - Ashraf Pakzad
- Department of Biomedicine and K.G. Jebsen Centre for Research on Neuropsychiatric Disorders, University of Bergen Bergen, Norway
| | - Christel Vieuille
- Department of Biomedicine and K.G. Jebsen Centre for Research on Neuropsychiatric Disorders, University of Bergen Bergen, Norway
| | - Ståle Pallesen
- Department of Psychosocial Science, University of Bergen Bergen, Norway
| | - Maciej Pajak
- Institute for Adaptive and Neural Computation, School of Informatics, University of Edinburgh Edinburgh, UK
| | - T Ian Simpson
- Institute for Adaptive and Neural Computation, School of Informatics, University of Edinburgh Edinburgh, UK ; Biomathematics and Statistics Scotland JCMB, Edinburgh, UK
| | - J Douglas Armstrong
- Institute for Adaptive and Neural Computation, School of Informatics, University of Edinburgh Edinburgh, UK
| | - Karin Wibrand
- Department of Biomedicine and K.G. Jebsen Centre for Research on Neuropsychiatric Disorders, University of Bergen Bergen, Norway
| | - Clive R Bramham
- Department of Biomedicine and K.G. Jebsen Centre for Research on Neuropsychiatric Disorders, University of Bergen Bergen, Norway
| |
Collapse
|
25
|
He X, Li Y, Lu H, Zhang Z, Wang Y, Yang GY. Netrin-1 overexpression promotes white matter repairing and remodeling after focal cerebral ischemia in mice. J Cereb Blood Flow Metab 2013; 33:1921-7. [PMID: 23963365 PMCID: PMC3851901 DOI: 10.1038/jcbfm.2013.150] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2013] [Revised: 07/19/2013] [Accepted: 07/19/2013] [Indexed: 01/03/2023]
Abstract
Damage of oligodendrocytes after ischemia has negative impact on white matter integrity and neuronal function. In this work, we explore whether Netrin-1 (NT-1) overexpression facilitates white matter repairing and remodeling. Adult CD-1 mice received stereotactic injection of adeno-associated virus carrying NT-1 gene (AAV-NT-1). One week after gene transfer, mice underwent 60 minutes of middle cerebral artery occlusion. The effect of NT-1 on neural function was evaluated by neurobehavioral tests. Proliferated oligodendrocyte progenitor cells (OPCs), newly matured oligodendrocytes, and remyelination were semi-quantified by immunohistochemistry. The role of NT-1 in oligodendrogenesis was further explored by examining specific NT-1 receptors and their function. Netrin-1 overexpression was detected in neurons and astrocytes 2 weeks after AAV-NT-1 gene transfer and significantly improved the neurobehavioral outcomes compared with the control (P<0.05). In comparison with the control, proliferated OPCs, newly matured oligodendrocytes, and remyelination were greatly increased in the ipsilateral hemisphere of AAV-NT-1-transduced mice. Furthermore, both NT-1 receptors deleted in colorectal carcinoma and UNC5H2 were expressed on OPCs whereas only UNC5H2 was expressed in myelinated axons. Our study indicated that NT-1 promoted OPC proliferation, differentiation, and increased remyelination, suggesting that NT-1 is a promising factor for white matter repairing and remodeling after ischemia.
Collapse
Affiliation(s)
- Xiaosong He
- Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | | | | | | | | | | |
Collapse
|
26
|
Poon VY, Choi S, Park M. Growth factors in synaptic function. Front Synaptic Neurosci 2013; 5:6. [PMID: 24065916 PMCID: PMC3776238 DOI: 10.3389/fnsyn.2013.00006] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 08/29/2013] [Indexed: 12/15/2022] Open
Abstract
Synapses are increasingly recognized as key structures that malfunction in disorders like schizophrenia, mental retardation, and neurodegenerative diseases. The importance and complexity of the synapse has fuelled research into the molecular mechanisms underlying synaptogenesis, synaptic transmission, and plasticity. In this regard, neurotrophic factors such as netrin, Wnt, transforming growth factor-β (TGF-β), tumor necrosis factor-α (TNF-α), and others have gained prominence for their ability to regulate synaptic function. Several of these factors were first implicated in neuroprotection, neuronal growth, and axon guidance. However, their roles in synaptic development and function have become increasingly clear, and the downstream signaling pathways employed by these factors have begun to be elucidated. In this review, we will address the role of these factors and their downstream effectors in synaptic function in vivo and in cultured neurons.
Collapse
Affiliation(s)
- Vivian Y Poon
- Neuroscience and Behavioral Disorders Program, Duke-NUS Graduate Medical School Singapore, Singapore
| | | | | |
Collapse
|
27
|
Son TW, Yun SP, Yong MS, Seo BN, Ryu JM, Youn HY, Oh YM, Han HJ. Netrin-1 protects hypoxia-induced mitochondrial apoptosis through HSP27 expression via DCC- and integrin α6β4-dependent Akt, GSK-3β, and HSF-1 in mesenchymal stem cells. Cell Death Dis 2013; 4:e563. [PMID: 23538444 PMCID: PMC3615739 DOI: 10.1038/cddis.2013.94] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Netrin (Ntn) has the potential to be successfully applied as an anti-apoptotic agent with a high affinity for tissue, for therapeutic strategies of umbilical cord blood-derived mesenchymal stem cells (UCB-MSC), although the mechanism by which Ntn-1 protects hypoxic injury has yet to be identified. Therefore, the present study examined the effect of Ntn-1 on hypoxia-induced UCB-MSC apoptosis, as well as the potential underlying mechanisms of its protective effect. Hypoxia (72 h) reduced cell viability (MTT reduction, and [3H]-thymidine incorporation) and cell number, and induced apoptosis (annexin and/or PI positive), which were reversed by Ntn-1 (10 ng/ml). Moreover, Ntn-1 decreased the increase of hypoxia-induced Bax, cleaved caspase-9, and -3, but blocked the decrease of hypoxia-reduced Bcl-2. Next, in order to examine the Ntn-1-related signaling cascade in the protection of hypoxic injury, we analyzed six Ntn receptors in UCB-MSC. We identified deleted in colorectal cancer (DCC) and integrin (IN) α6β4, except uncoordinated family member (UNC) 5A–C, and neogenin. Among them, IN α6β4 only was detected in lipid raft fractions. In addition, Ntn-1 induced the dissociation of DCC and APPL-1 complex, thereby stimulating the formation of APPL-1 and Akt2 complex. Ntn-1 also reversed the hypoxia-induced decrease of Akt and glycogen synthase kinase 3β (GSK-3β) phosphorylation, which is involved in heat shock factor-1 (HSF-1) expression. Ntn-1-induced phospho-Akt and -GSK-3β were inhibited by DCC function-blocking antibody, IN a6b4 function-blocking antibody, and the Akt inhibitor. Hypoxia and/or Ntn-1 stimulated heat shock protein (HSP)27 expression, which was blocked by HSF-1-specific small interfering RNA (siRNA). Furthermore, HSP27-specific siRNA reversed the Ntn-1-induced increase of phospho-Akt. Additionally, HSP27-specific siRNA attenuated the Ntn-1-reduced loss of mitochondrial membrane injury via the inhibition of cytochrome c (cyt c) release and formation of cyt c and HSP27 complex. Moreover, the inhibition of each signaling protein attenuated Ntn-1-induced blockage of apoptosis. In conclusion, Ntn-1-induced HSP27 protected hypoxic injury-related UCB-MSC apoptosis through DCC- and IN α6β4-dependent Akt, GSK-3β, and HSF-1 signaling pathways.
Collapse
Affiliation(s)
- T W Son
- Department of Veterinary Internal Medicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Korea
| | | | | | | | | | | | | | | |
Collapse
|