1
|
Rebholz H, Friedman E, Castello J. Alterations of Expression of the Serotonin 5-HT4 Receptor in Brain Disorders. Int J Mol Sci 2018; 19:ijms19113581. [PMID: 30428567 PMCID: PMC6274737 DOI: 10.3390/ijms19113581] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 11/03/2018] [Accepted: 11/06/2018] [Indexed: 01/12/2023] Open
Abstract
The serotonin 4 receptor, 5-HT₄R, represents one of seven different serotonin receptor families and is implicated in a variety of physiological functions and their pathophysiological variants, such as mood and depression or anxiety, food intake and obesity or anorexia, or memory and memory loss in Alzheimer's disease. Its central nervous system expression pattern in the forebrain, in particular in caudate putamen, the hippocampus and to lesser extent in the cortex, predispose it for a role in executive function and reward-related actions. In rodents, regional overexpression or knockdown in the prefrontal cortex or the nucleus accumbens of 5-HT₄R was shown to impact mood and depression-like phenotypes, food intake and hypophagia; however, whether expression changes are causally involved in the etiology of such disorders is not clear. In this context, more data are emerging, especially based on PET technology and the use of ligand tracers that demonstrate altered 5-HT₄R expression in brain disorders in humans, confirming data stemming from post-mortem tissue and preclinical animal models. In this review, we would like to present the current knowledge of 5-HT₄R expression in brain regions relevant to mood/depression, reward and executive function with a focus on 5-HT₄R expression changes in brain disorders or caused by drug treatment, at both the transcript and protein levels.
Collapse
Affiliation(s)
- Heike Rebholz
- Department of Molecular, Cellular and Biomedical Sciences, CUNY School of Medicine, New York, NY 10031, USA.
| | - Eitan Friedman
- Department of Molecular, Cellular and Biomedical Sciences, CUNY School of Medicine, New York, NY 10031, USA.
- Ph.D. Programs in Biochemistry and Biology, The Graduate Center, City University of New York, New York, NY 10031, USA.
| | - Julia Castello
- Department of Molecular, Cellular and Biomedical Sciences, CUNY School of Medicine, New York, NY 10031, USA.
- Ph.D. Programs in Biochemistry and Biology, The Graduate Center, City University of New York, New York, NY 10031, USA.
| |
Collapse
|
2
|
Lesuis SL, Hoeijmakers L, Korosi A, de Rooij SR, Swaab DF, Kessels HW, Lucassen PJ, Krugers HJ. Vulnerability and resilience to Alzheimer's disease: early life conditions modulate neuropathology and determine cognitive reserve. Alzheimers Res Ther 2018; 10:95. [PMID: 30227888 PMCID: PMC6145191 DOI: 10.1186/s13195-018-0422-7] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 08/15/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is a progressive neurodegenerative disorder with a high prevalence among the elderly and a huge personal and societal impact. Recent epidemiological studies have indicated that the incidence and age of onset of sporadic AD can be modified by lifestyle factors such as education, exercise, and (early) stress exposure. Early life adversity is known to promote cognitive decline at a later age and to accelerate aging, which are both primary risk factors for AD. In rodent models, exposure to 'negative' or 'positive' early life experiences was recently found to modulate various measures of AD neuropathology, such as amyloid-beta levels and cognition at later ages. Although there is emerging interest in understanding whether experiences during early postnatal life also modulate AD risk in humans, the mechanisms and possible substrates underlying these long-lasting effects remain elusive. METHODS We review literature and discuss the role of early life experiences in determining later age and AD-related processes from a brain and cognitive 'reserve' perspective. We focus on rodent studies and the identification of possible early determinants of later AD vulnerability or resilience in relation to early life adversity/enrichment. RESULTS Potential substrates and mediators of early life experiences that may influence the development of AD pathology and cognitive decline are: programming of the hypothalamic-pituitary-adrenal axis, priming of the neuroinflammatory response, dendritic and synaptic complexity and function, overall brain plasticity, and proteins such as early growth response protein 1 (EGR1), activity regulated cytoskeleton-associated protein (Arc), and repressor element-1 silencing transcription factor (REST). CONCLUSIONS We conclude from these rodent studies that the early postnatal period is an important and sensitive phase that influences the vulnerability to develop AD pathology. Yet translational studies are required to investigate whether early life experiences also modify AD development in human studies, and whether similar molecular mediators can be identified in the sensitivity to develop AD in humans.
Collapse
Affiliation(s)
- Sylvie L. Lesuis
- Brain Plasticity Group, SILS-CNS, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Lianne Hoeijmakers
- Brain Plasticity Group, SILS-CNS, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Aniko Korosi
- Brain Plasticity Group, SILS-CNS, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Susanne R. de Rooij
- Brain Plasticity Group, SILS-CNS, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
- Department of Clinical Epidemiology, Biostatistics & Bio informatics, Academic Medical Centre, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Dick F. Swaab
- The Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, KNAW, Meibergdreef 47, 1105 BA Amsterdam, The Netherlands
| | - Helmut W. Kessels
- The Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, KNAW, Meibergdreef 47, 1105 BA Amsterdam, The Netherlands
- Department of Cellular and Computational Neuroscience, SILS-CNS, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Paul J. Lucassen
- Brain Plasticity Group, SILS-CNS, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Harm J. Krugers
- Brain Plasticity Group, SILS-CNS, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
3
|
Lotfan M, Ali SA, Yadav ML, Choudhary S, Jena MK, Kumar S, Mohanty AK. Genome-wide gene expression analysis of 45 days pregnant fetal cotyledons vis-a-vis non-pregnant caruncles in buffalo ( Bubalus bubalis ). Gene 2018; 654:127-137. [DOI: 10.1016/j.gene.2018.02.038] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 01/28/2018] [Accepted: 02/12/2018] [Indexed: 01/09/2023]
|
4
|
Rakers F, Rupprecht S, Dreiling M, Bergmeier C, Witte OW, Schwab M. Transfer of maternal psychosocial stress to the fetus. Neurosci Biobehav Rev 2017; 117:S0149-7634(16)30719-9. [PMID: 28237726 DOI: 10.1016/j.neubiorev.2017.02.019] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 02/14/2017] [Accepted: 02/20/2017] [Indexed: 12/18/2022]
Abstract
Psychosocial maternal stress experienced during different vulnerable periods throughout gestation is thought to increase the individual's risk to develop neuropsychiatric, cardiovascular and metabolic disease in later life. Cortisol has generally been identified as the major mediator of maternal stress transfer to the fetus. Its lipophilic nature allows a trans-placental passage and thus excessive maternal cortisol could persistently impair the development of the fetal hypothalamic-pituitary-adrenal axis (HPAA). However, cortisol alone cannot fully explain all effects of maternal stress especially during early to mid pregnancy before maturation of the fetal HPAA has even begun and expression of fetal glucocorticoid receptors is limited. This review focuses on mediators of maternal fetal stress transfer that in addition to cortisol have been proposed as transmitters of maternal stress: catecholamines, cytokines, serotonin/tryptophan, reactive-oxygen-species and the maternal microbiota. We propose that the effects of psychosocial maternal stress on fetal development and health and disease in later life are not a consequence of a single pathway but are mediated by multiple stress-transfer mechanisms acting together in a synergistic manner.
Collapse
Affiliation(s)
- Florian Rakers
- Hans Berger Department of Neurology, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany.
| | - Sven Rupprecht
- Hans Berger Department of Neurology, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany.
| | - Michelle Dreiling
- Hans Berger Department of Neurology, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany.
| | - Christoph Bergmeier
- Hans Berger Department of Neurology, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany.
| | - Otto W Witte
- Hans Berger Department of Neurology, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany.
| | - Matthias Schwab
- Hans Berger Department of Neurology, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany.
| |
Collapse
|
5
|
Paquette AG, Marsit CJ. The developmental basis of epigenetic regulation of HTR2A and psychiatric outcomes. J Cell Biochem 2015; 115:2065-72. [PMID: 25043477 DOI: 10.1002/jcb.24883] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 07/09/2014] [Indexed: 12/21/2022]
Abstract
The serotonin receptor 5-HT2A (encoded by HTR2A) is an important regulator of fetal brain development and adult cognitive function. Environmental signals that induce epigenetic changes of serotonin response genes, including HTR2A, have been implicated in adverse mental health outcomes. The objective of this perspective article is to address the medical implications of HTR2A epigenetic regulation, which has been associated with both infant neurobehavioral outcomes and adult mental health. Ongoing research has identified a region of the HTR2A promoter that has been associated with a number of medical outcomes in adults and infants, including bipolar disorder, schizophrenia, chronic fatigue syndrome, borderline personality disorder, suicidality, and neurobehavioral outcomes. Epigenetic regulation of HTR2A has been studied in several different types of tissues, including the placenta. The placenta is an important source of serotonin during fetal neurodevelopment, and placental epigenetic variation of HTR2A has been associated with infant neurobehavioral outcomes, which may represent the basis of adult mental health disorders. Further analysis is needed to identify intrinsic and extrinsic factors that modulate HTR2A methylation, and the mechanism by which this epigenetic variation influences fetal growth and leads to altered brain development, manifesting in psychiatric disorders.
Collapse
Affiliation(s)
- Alison G Paquette
- Department of Pharmacology and Toxicology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire
| | | |
Collapse
|
6
|
Samuels BA, Mendez-David I, Faye C, David SA, Pierz KA, Gardier AM, Hen R, David DJ. Serotonin 1A and Serotonin 4 Receptors: Essential Mediators of the Neurogenic and Behavioral Actions of Antidepressants. Neuroscientist 2014; 22:26-45. [PMID: 25488850 DOI: 10.1177/1073858414561303] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Selective serotonin reuptake inhibitors are the mostly widely used treatment for major depressive disorders and also are prescribed for several anxiety disorders. However, similar to most antidepressants, selective serotonin reuptake inhibitors suffer from two major problems: They only show beneficial effects after 2 to 4 weeks and only about 33% of patients show remission to first-line treatment. Thus, there is a considerable need for development of more effective antidepressants. There is a growing body of evidence supporting critical roles of 5-HT1A and 5-HT4 receptor subtypes in mediating successful depression treatments. In addition, appropriate activation of these receptors may be associated with a faster onset of the therapeutic response. This review will examine the known roles of 5-HT1A and 5-HT4 receptors in mediating both the pathophysiology of depression and anxiety and the treatment of these mood disorders. At the end of the review, the role of these receptors in the regulation of adult hippocampal neurogenesis will also be discussed. Ultimately, we propose that novel antidepressant drugs that selectively target these serotonin receptors could be developed to yield improvements over current treatments for major depressive disorders.
Collapse
Affiliation(s)
- Benjamin Adam Samuels
- Research Foundation for Mental Hygiene, New York State Psychiatric Institute and Department of Psychiatry, Columbia University, New York, NY, USA
| | - Indira Mendez-David
- EA3544 "Pharmacologie des troubles anxio-depressifs et Neurogenese", Faculté de Pharmacie, Université Paris-Sud, 5 Rue J-B Clement, Tour D1, 2e etage, F-92296 Chatenay-Malabry, France
| | - Charlène Faye
- EA3544 "Pharmacologie des troubles anxio-depressifs et Neurogenese", Faculté de Pharmacie, Université Paris-Sud, 5 Rue J-B Clement, Tour D1, 2e etage, F-92296 Chatenay-Malabry, France
| | | | | | - Alain M Gardier
- EA3544 "Pharmacologie des troubles anxio-depressifs et Neurogenese", Faculté de Pharmacie, Université Paris-Sud, 5 Rue J-B Clement, Tour D1, 2e etage, F-92296 Chatenay-Malabry, France
| | - René Hen
- Research Foundation for Mental Hygiene, New York State Psychiatric Institute and Department of Psychiatry, Columbia University, New York, NY, USA
| | - Denis J David
- EA3544 "Pharmacologie des troubles anxio-depressifs et Neurogenese", Faculté de Pharmacie, Université Paris-Sud, 5 Rue J-B Clement, Tour D1, 2e etage, F-92296 Chatenay-Malabry, France
| |
Collapse
|
7
|
Abstract
The central noradrenergic neurone, like the peripheral sympathetic neurone, is characterized by a diffusely arborizing terminal axonal network. The central neurones aggregate in distinct brainstem nuclei, of which the locus coeruleus (LC) is the most prominent. LC neurones project widely to most areas of the neuraxis, where they mediate dual effects: neuronal excitation by α₁-adrenoceptors and inhibition by α₂-adrenoceptors. The LC plays an important role in physiological regulatory networks. In the sleep/arousal network the LC promotes wakefulness, via excitatory projections to the cerebral cortex and other wakefulness-promoting nuclei, and inhibitory projections to sleep-promoting nuclei. The LC, together with other pontine noradrenergic nuclei, modulates autonomic functions by excitatory projections to preganglionic sympathetic, and inhibitory projections to preganglionic parasympathetic neurones. The LC also modulates the acute effects of light on physiological functions ('photomodulation'): stimulation of arousal and sympathetic activity by light via the LC opposes the inhibitory effects of light mediated by the ventrolateral preoptic nucleus on arousal and by the paraventricular nucleus on sympathetic activity. Photostimulation of arousal by light via the LC may enable diurnal animals to function during daytime. LC neurones degenerate early and progressively in Parkinson's disease and Alzheimer's disease, leading to cognitive impairment, depression and sleep disturbance.
Collapse
Affiliation(s)
- Elemer Szabadi
- Division of Psychiatry, University of Nottingham, Nottingham, UK.
| |
Collapse
|