1
|
Greene ES, Tabler TW, Orlowski SK, Dridi S. Effect of heat stress on the hypothalamic expression of water channel- and noncoding RNA biogenesis-related genes in modern broilers and their ancestor red jungle fowl. Brain Res 2024; 1830:148810. [PMID: 38365130 DOI: 10.1016/j.brainres.2024.148810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 02/18/2024]
Abstract
Genetic selection for high growth rate has resulted in spectacular progress in feed efficiency in chickens. As feed intake and water consumption (WC) are associated and both are affected by environmental conditions, we evaluated WC and its hypothalamic regulation in three broiler-based research lines and their ancestor jungle fowl (JF) under heat stress (HS) conditions. Slow growing ACRB, moderate growing 95RB, fast growing MRB, and JF were exposed to daily chronic cyclic HS (36 °C, 9 h/d) or thermoneutral temperature (24 °C). HS increased WC in the MRB only. Arginine vasopressin (AVP) mRNA levels were decreased by HS in the MRB. Within the renin-angiotensin-aldosterone system (RAAS) system, renin expression was increased by HS in the JF, ACRB, and 95RB, while angiotensin I-converting enzyme (ACE), angiotensin II receptors (type 1, AT1, and type 2, AT2) were affected by line. The expression of aquaporin (AQP2, 7, 9, 10, 11, and 12) genes was upregulated by HS, whereas AQP4 and AQP5 expressions were influenced by line. miRNA processing components (Dicer1, Ago2, Drosha) were significantly different among the lines, but were unaffected by HS. In summary, this is the first report showing the effect of HS on hypothalamic water channel- and noncoding RNA biogenesis-related genes in modern chicken populations and their ancestor JF. These results provide a novel framework for future research to identify new molecular mechanisms and signatures involved in water homeostasis and adaptation to HS.
Collapse
Affiliation(s)
- Elizabeth S Greene
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Travis W Tabler
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Sara K Orlowski
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Sami Dridi
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States.
| |
Collapse
|
2
|
Barile B, Mola MG, Formaggio F, Saracino E, Cibelli A, Gargano CD, Mogni G, Frigeri A, Caprini M, Benfenati V, Nicchia GP. AQP4-independent TRPV4 modulation of plasma membrane water permeability. Front Cell Neurosci 2023; 17:1247761. [PMID: 37720545 PMCID: PMC10500071 DOI: 10.3389/fncel.2023.1247761] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/14/2023] [Indexed: 09/19/2023] Open
Abstract
Despite of the major role of aquaporin (AQP) water channels in controlling transmembrane water fluxes, alternative ways for modulating water permeation have been proposed. In the Central Nervous System (CNS), Aquaporin-4 (AQP4) is reported to be functionally coupled with the calcium-channel Transient-Receptor Potential Vanilloid member-4 (TRPV4), which is controversially involved in cell volume regulation mechanisms and water transport dynamics. The present work aims to investigate the selective role of TRPV4 in regulating plasma membrane water permeability in an AQP4-independent way. Fluorescence-quenching water transport experiments in Aqp4-/- astrocytes revealed that cell swelling rate is significantly increased upon TRPV4 activation and in the absence of AQP4. The biophysical properties of TRPV4-dependent water transport were therefore assessed using the HEK-293 cell model. Calcein quenching experiments showed that chemical and thermal activation of TRPV4 overexpressed in HEK-293 cells leads to faster swelling kinetics. Stopped-flow light scattering water transport assay was used to measure the osmotic permeability coefficient (Pf, cm/s) and activation energy (Ea, kcal/mol) conferred by TRPV4. Results provided evidence that although the Pf measured upon TRPV4 activation is lower than the one obtained in AQP4-overexpressing cells (Pf of AQP4 = 0.01667 ± 0.0007; Pf of TRPV4 = 0.002261 ± 0.0004; Pf of TRPV4 + 4αPDD = 0.007985 ± 0.0006; Pf of WT = 0.002249 ± 0.0002), along with activation energy values (Ea of AQP4 = 0.86 ± 0.0006; Ea of TRPV4 + 4αPDD = 2.73 ± 1.9; Ea of WT = 8.532 ± 0.4), these parameters were compatible with a facilitated pathway for water movement rather than simple diffusion. The possibility to tune plasma membrane water permeability more finely through TRPV4 might represent a protective mechanism in cells constantly facing severe osmotic challenges to avoid the potential deleterious effects of the rapid cell swelling occurring via AQP channels.
Collapse
Affiliation(s)
- Barbara Barile
- Department of Bioscience, Biotechnology and Environment, University of Bari Aldo Moro, Bari, Italy
| | - Maria Grazia Mola
- Department of Bioscience, Biotechnology and Environment, University of Bari Aldo Moro, Bari, Italy
| | - Francesco Formaggio
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Emanuela Saracino
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), Bologna, Italy
| | - Antonio Cibelli
- Department of Bioscience, Biotechnology and Environment, University of Bari Aldo Moro, Bari, Italy
| | - Concetta Domenica Gargano
- Department of Translational Biomedicine and Neuroscience (DiBraiN), School of Medicine, University of Bari Aldo Moro, Bari, Italy
| | - Guido Mogni
- Department of Bioscience, Biotechnology and Environment, University of Bari Aldo Moro, Bari, Italy
| | - Antonio Frigeri
- Department of Translational Biomedicine and Neuroscience (DiBraiN), School of Medicine, University of Bari Aldo Moro, Bari, Italy
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, 840 Kennedy Center, Bronx, NY, United States
| | - Marco Caprini
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Valentina Benfenati
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), Bologna, Italy
| | - Grazia Paola Nicchia
- Department of Bioscience, Biotechnology and Environment, University of Bari Aldo Moro, Bari, Italy
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, 840 Kennedy Center, Bronx, NY, United States
| |
Collapse
|
3
|
Ishida Y, Nosaka M, Ishigami A, Kondo T. Forensic application of aquaporins. Leg Med (Tokyo) 2023; 63:102249. [PMID: 37060638 DOI: 10.1016/j.legalmed.2023.102249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 03/04/2023] [Indexed: 04/03/2023]
Abstract
Aquaporins (AQPs) are a family of water channel proteins that primarily elicit the basic functions of water transport and osmotic homeostasis. To date, at least 17 mammalian AQPs have been identified, AQP-0 to -12 have been found in higher orders including human, and AQP-13 to -16 have been described in older lineages. Moreover, these proteins have recently been shown to regulate many biological processes through unique activities, such as cell proliferation, migration, apoptosis, and mitochondrial metabolism. Several studies have focused on the involvement of AQPs in cell biology aspect, showing that they are involved in a variety of physiological processes and pathophysiological conditions. Furthermore, in the field of forensic medicine, studies on whether AQPs can be a useful marker for diagnosing various causes of death have been conducted using autopsy samples and animal experiments, which have produced interesting results. Herein, we review certain observations regarding AQPs and discuss their potential to contribute to the future practice of forensic research.
Collapse
|
4
|
The Water Transport System in Astrocytes–Aquaporins. Cells 2022; 11:cells11162564. [PMID: 36010640 PMCID: PMC9406552 DOI: 10.3390/cells11162564] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/26/2022] [Accepted: 08/08/2022] [Indexed: 11/16/2022] Open
Abstract
Highlights (AQPs) are transmembrane proteins responsible for fast water movement across cell membranes, including those of astrocytes. The expression and subcellular localization of AQPs in astrocytes are highly dynamic under physiological and pathological conditions. Besides their primary function in water homeostasis, AQPs participate in many ancillary functions including glutamate clearance in tripartite synapses and cell migration.
Abstract Astrocytes have distinctive morphological and functional characteristics, and are found throughout the central nervous system. Astrocytes are now known to be far more than just housekeeping cells in the brain. Their functions include contributing to the formation of the blood–brain barrier, physically and metabolically supporting and communicating with neurons, regulating the formation and functions of synapses, and maintaining water homeostasis and the microenvironment in the brain. Aquaporins (AQPs) are transmembrane proteins responsible for fast water movement across cell membranes. Various subtypes of AQPs (AQP1, AQP3, AQP4, AQP5, AQP8 and AQP9) have been reported to be expressed in astrocytes, and the expressions and subcellular localizations of AQPs in astrocytes are highly correlated with both their physiological and pathophysiological functions. This review describes and summarizes the recent advances in our understanding of astrocytes and AQPs in regard to controlling water homeostasis in the brain. Findings regarding the features of different AQP subtypes, such as their expression, subcellular localization, physiological functions, and the pathophysiological roles of astrocytes are presented, with brain edema and glioma serving as two representative AQP-associated pathological conditions. The aim is to provide a better insight into the elaborate “water distribution” system in cells, exemplified by astrocytes, under normal and pathological conditions.
Collapse
|
5
|
Aquaporin-1 and aquaporin-9 gene variations in sudden infant death syndrome. Int J Legal Med 2021; 135:719-725. [PMID: 33462668 PMCID: PMC8036210 DOI: 10.1007/s00414-020-02493-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 12/17/2020] [Indexed: 11/09/2022]
Abstract
Several studies have indicated that a vulnerability in the development and regulation of brain function is involved in sudden infant death syndrome (SIDS). The aim of this study was to investigate the genes encoding the brain aquaporins (AQPs) AQP1 and AQP9 in SIDS. The hypothesis was that specific variants of these genes are part of the genetic vulnerability predisposing infants to sudden unexpected death. The study included 168 SIDS cases with a median age of 15.5 (range 2–52) weeks and 372 adolescent/adult deceased controls with a median age of 44 (range 11–91) years. In the AQP1 gene, the rs17159702 CC/CT genotypes were found to be associated with SIDS (p = 0.02). In the AQP9 gene, the combination of a TT genotype of rs8042354, rs2292711 and rs13329178 was more frequent in SIDS cases than in controls (p = 0.03). In the SIDS group, an association was found between genetic variations in the AQP1 gene and maternal smoking and between the 3xTT combination in the AQP9 gene and being found lifeless in a prone position. In conclusion, this study adds further evidence to the involvement of brain aquaporins in SIDS, suggesting that specific variants of AQP genes constitute a genetic predisposition, making the infant vulnerable to sudden death together with external risk factors and probably other genetic factors.
Collapse
|
6
|
Shchepareva ME, Zakharova MN. Functional Role of Aquaporins in the Nervous System under Normal and Pathological Conditions. NEUROCHEM J+ 2020. [DOI: 10.1134/s1819712420010171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Osorio D, Pinzón A, Martín-Jiménez C, Barreto GE, González J. Multiple Pathways Involved in Palmitic Acid-Induced Toxicity: A System Biology Approach. Front Neurosci 2020; 13:1410. [PMID: 32076395 PMCID: PMC7006434 DOI: 10.3389/fnins.2019.01410] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 12/12/2019] [Indexed: 01/26/2023] Open
Abstract
Inflammation is a complex biological response to injuries, metabolic disorders or infections. In the brain, astrocytes play an important role in the inflammatory processes during neurodegenerative diseases. Recent studies have shown that the increase of free saturated fatty acids such as palmitic acid produces a metabolic inflammatory response in astrocytes generally associated with damaging mechanisms such as oxidative stress, endoplasmic reticulum stress, and autophagic defects. In this aspect, the synthetic neurosteroid tibolone has shown to exert protective functions against inflammation in neuronal experimental models without the tumorigenic effects exerted by sexual hormones such as estradiol and progesterone. However, there is little information regarding the specific mechanisms of tibolone in astrocytes during inflammatory insults. In the present study, we performed a genome-scale metabolic reconstruction of astrocytes that was used to study astrocytic response during an inflammatory insult by palmitate through Flux Balance Analysis methods and data mining. In this aspect, we assessed the metabolic fluxes of human astrocytes under three different scenarios: healthy (normal conditions), induced inflammation by palmitate, and tibolone treatment under palmitate inflammation. Our results suggest that tibolone reduces the L-glutamate-mediated neurotoxicity in astrocytes through the modulation of several metabolic pathways involved in glutamate uptake. We also identified a set of reactions associated with the protective effects of tibolone, including the upregulation of taurine metabolism, gluconeogenesis, cPPAR and the modulation of calcium signaling pathways. In conclusion, the different scenarios studied in our model allowed us to identify several metabolic fluxes perturbed under an inflammatory response and the protective mechanisms exerted by tibolone.
Collapse
Affiliation(s)
- Daniel Osorio
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, United States
| | - Andrés Pinzón
- Laboratorio de Bioinformática y Biología de Sistemas, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Cynthia Martín-Jiménez
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - George E. Barreto
- Department of Biological Sciences, University of Limerick, Limerick, Ireland
- Health Research Institute, University of Limerick, Limerick, Ireland
| | - Janneth González
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| |
Collapse
|
8
|
Liu JY, Chen XX, Chen HY, Shi J, Leung GPH, Tang SCW, Lao LX, Yip HKF, Lee KF, Sze SCW, Zhang ZJ, Zhang KY. Downregulation of Aquaporin 9 Exacerbates Beta-amyloid-induced Neurotoxicity in Alzheimer’s Disease Models In vitro and In vivo. Neuroscience 2018; 394:72-82. [DOI: 10.1016/j.neuroscience.2018.09.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 09/12/2018] [Accepted: 09/17/2018] [Indexed: 11/16/2022]
|
9
|
Clément T, Rodriguez-Grande B, Badaut J. Aquaporins in brain edema. J Neurosci Res 2018; 98:9-18. [DOI: 10.1002/jnr.24354] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Accepted: 10/15/2018] [Indexed: 01/08/2023]
Affiliation(s)
- Tifenn Clément
- CNRS UMR 5287, INCIA, University of Bordeaux; Bordeaux France
| | | | - Jérôme Badaut
- CNRS UMR 5287, INCIA, University of Bordeaux; Bordeaux France
- Department of Basic Science; Loma Linda University School of Medicine; Loma Linda California
| |
Collapse
|
10
|
Jullienne A, Fukuda AM, Ichkova A, Nishiyama N, Aussudre J, Obenaus A, Badaut J. Modulating the water channel AQP4 alters miRNA expression, astrocyte connectivity and water diffusion in the rodent brain. Sci Rep 2018; 8:4186. [PMID: 29520011 PMCID: PMC5843607 DOI: 10.1038/s41598-018-22268-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 02/20/2018] [Indexed: 12/27/2022] Open
Abstract
Aquaporins (AQPs) facilitate water diffusion through the plasma membrane. Brain aquaporin-4 (AQP4) is present in astrocytes and has critical roles in normal and disease physiology. We previously showed that a 24.9% decrease in AQP4 expression after in vivo silencing resulted in a 45.8% decrease in tissue water mobility as interpreted from magnetic resonance imaging apparent diffusion coefficients (ADC). Similar to previous in vitro studies we show decreased expression of the gap junction protein connexin 43 (Cx43) in vivo after intracortical injection of siAQP4 in the rat. Moreover, siAQP4 induced a loss of dye-coupling between astrocytes in vitro, further demonstrating its effect on gap junctions. In contrast, silencing of Cx43 did not alter the level of AQP4 or water mobility (ADC) in the brain. We hypothesized that siAQP4 has off-target effects on Cx43 expression via modification of miRNA expression. The decreased expression of Cx43 in siAQP4-treated animals was associated with up-regulation of miR224, which is known to target AQP4 and Cx43 expression. This could be one potential molecular mechanism responsible for the effect of siAQP4 on Cx43 expression, and the resultant decrease in astrocyte connectivity and dramatic effects on ADC values and water mobility.
Collapse
Affiliation(s)
- Amandine Jullienne
- Basic Sciences Department, Loma Linda University, Loma Linda, CA, 92354, USA
- Department of Physiology, Loma Linda University, Loma Linda, CA, 92354, USA
| | - Andrew M Fukuda
- Basic Sciences Department, Loma Linda University, Loma Linda, CA, 92354, USA
- Department of Physiology, Loma Linda University, Loma Linda, CA, 92354, USA
| | | | - Nina Nishiyama
- Department of Physiology, Loma Linda University, Loma Linda, CA, 92354, USA
| | | | - André Obenaus
- Basic Sciences Department, Loma Linda University, Loma Linda, CA, 92354, USA
- Department of Pediatrics, University of California Irvine, Irvine, CA, 92697, USA
| | - Jérôme Badaut
- Basic Sciences Department, Loma Linda University, Loma Linda, CA, 92354, USA.
- Department of Physiology, Loma Linda University, Loma Linda, CA, 92354, USA.
- CNRS-UMR 5287, University of Bordeaux, 33076, Bordeaux, France.
| |
Collapse
|
11
|
Hirt L, Price M, Benakis C, Badaut J. Aquaporins in neurological disorders. CLINICAL AND TRANSLATIONAL NEUROSCIENCE 2018. [DOI: 10.1177/2514183x17752902] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- Lorenz Hirt
- Neurology service, department of clinical neurosciences, CHUV, Lausanne, Switzerland
- Centre de recherche en neurosciences (CRN), CHUV, Lausanne, Switzerland
| | - Melanie Price
- Neurology service, department of clinical neurosciences, CHUV, Lausanne, Switzerland
- Centre de recherche en neurosciences (CRN), CHUV, Lausanne, Switzerland
| | - Corinne Benakis
- Institute for Stroke and Dementia Research (ISD), Munich, Germany
| | - Jérôme Badaut
- CNRS UMR 5287, INCIA, University of Bordeaux, Bordeaux, France
- Department of Basic science, Loma Linda University, Loma Linda, CA, USA
| |
Collapse
|
12
|
Friscourt F, Badaut J. Aquaporins through the brain in health and disease: From water to gas movements. J Neurosci Res 2017; 96:177-179. [PMID: 28960397 DOI: 10.1002/jnr.24155] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 08/22/2017] [Accepted: 08/22/2017] [Indexed: 01/05/2023]
Affiliation(s)
- Frédéric Friscourt
- CNRS UMR 5287, INCIA, University of Bordeaux, Bordeaux, France.,Institut Européen de Chimie et Biologie, University of Bordeaux, Pessac, France
| | - Jerome Badaut
- CNRS UMR 5287, INCIA, University of Bordeaux, Bordeaux, France.,Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| |
Collapse
|
13
|
Hirt L, Price M, Mastour N, Brunet JF, Barrière G, Friscourt F, Badaut J. Increase of aquaporin 9 expression in astrocytes participates in astrogliosis. J Neurosci Res 2017; 96:194-206. [PMID: 28419510 DOI: 10.1002/jnr.24061] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 03/10/2017] [Accepted: 03/10/2017] [Indexed: 01/01/2023]
Abstract
Here we assess the potential functional role of increased aquaporin 9 (APQ9) in astrocytes. Increased AQP9 expression was achieved in primary astrocyte cultures by transfection of a plasmid-containing green fluorescent protein fused to either wild-type or mutated human AQP9. Increased AQP9 expression and phosphorylation at Ser222 were associated with a significant change in astrocyte morphology, mainly with a higher number of processes. Similar phenotypic changes are observed in astrogliosis processes after injury. In parallel, we observed that in vivo, thrombin preconditioning before ischemic stroke induced an early increase in AQP9 expression in the male mouse brain. This increased AQP9 expression was also associated with astrocyte morphological changes, especially in the white matter tract. Astrocyte reactivity is debated as being either beneficial or deleterious. As thrombin preconditioning leads to a decrease in lesion size after stroke, our data suggest that the early increase in AQP9 concomitant with astrocyte reactivity leads to a beneficial effect. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Lorenz Hirt
- Neurology Department, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Melanie Price
- Neurology Department, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Nabil Mastour
- Neurosurgery Research Group, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Jean-François Brunet
- Neurosurgery Research Group, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | | | | | - Jerome Badaut
- CNRS UMR 5287, INCIA, University of Bordeaux, Bordeaux, France
| |
Collapse
|
14
|
Abstract
Aquaporins (AQPs ) mediate water flux between the four distinct water compartments in the central nervous system (CNS). In the present chapter, we mainly focus on the expression and function of the 9 AQPs expressed in the CNS, which include five members of aquaporin subfamily: AQP1, AQP4, AQP5, AQP6, and AQP8; three members of aquaglyceroporin subfamily: AQP3, AQP7, and AQP9; and one member of superaquaporin subfamily: AQP11. In addition, AQP1, AQP2 and AQP4 expressed in the peripheral nervous system (PNS) are also reviewed. AQP4, the predominant water channel in the CNS, is involved both in the astrocyte swelling of cytotoxic edema and the resolution of vasogenic edema, and is of pivotal importance in the pathology of brain disorders such as neuromyelitis optica , brain tumors and Alzheimer's disease. Other AQPs are also involved in a variety of important physiological and pathological process in the brain. It has been suggested that AQPs could represent an important target in treatment of brain disorders like cerebral edema. Future investigations are necessary to elucidate the pathological significance of AQPs in the CNS.
Collapse
|
15
|
Quincozes-Santos A, Bobermin LD, de Assis AM, Gonçalves CA, Souza DO. Fluctuations in glucose levels induce glial toxicity with glutamatergic, oxidative and inflammatory implications. Biochim Biophys Acta Mol Basis Dis 2016; 1863:1-14. [PMID: 27663722 DOI: 10.1016/j.bbadis.2016.09.013] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 08/21/2016] [Accepted: 09/17/2016] [Indexed: 02/06/2023]
Abstract
Astrocytes are dynamic cells that maintain brain homeostasis by regulating neurotransmitter systems, antioxidant defenses, inflammatory responses and energy metabolism. Astroglial cells are also primarily responsible for the uptake and metabolism of glucose in the brain. Diabetes mellitus (DM) is a pathological condition characterized by hyperglycemia and is associated with several changes in the central nervous system (CNS), including alterations in glial function. Classically, excessive glucose concentrations are used to induce experimental models of astrocyte dysfunction; however, hypoglycemic episodes may also cause several brain injuries. The main focus of the present study was to evaluate how fluctuations in glucose levels induce cytotoxicity. The culture medium of astroglial cells was replaced twice as follows: (1) from 6mM (control) to 12mM (high glucose), and (2) from 12mM to 0mM (glucose deprivation). Cell viability, mitochondrial function, oxidative/nitrosative stress, glutamate metabolism, inflammatory responses, nuclear factor κB (NFκB) transcriptional activity and p38 mitogen-activated protein kinase (p38 MAPK) levels were assessed. Our in vitro experimental model showed that up and down fluctuations in glucose levels decreased cell proliferation, induced mitochondrial dysfunction, increased oxidative/nitrosative stress with consequent cellular biomolecular damage, impaired glutamate metabolism and increased pro-inflammatory cytokine release. Additionally, activation of the NFκB and p38 signaling pathways were putative mechanisms of the effects of glucose fluctuations on astroglial cells. In summary, for the first time, we show that changes in glucose concentrations, from high-glucose levels to glucose deprivation, exacerbate glial injury.
Collapse
Affiliation(s)
- André Quincozes-Santos
- Departamento de Bioquímica, Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| | - Larissa Daniele Bobermin
- Departamento de Bioquímica, Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Adriano M de Assis
- Departamento de Bioquímica, Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Carlos-Alberto Gonçalves
- Departamento de Bioquímica, Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Diogo Onofre Souza
- Departamento de Bioquímica, Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
16
|
Astrocyte Aquaporin Dynamics in Health and Disease. Int J Mol Sci 2016; 17:ijms17071121. [PMID: 27420057 PMCID: PMC4964496 DOI: 10.3390/ijms17071121] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 07/07/2016] [Accepted: 07/07/2016] [Indexed: 02/01/2023] Open
Abstract
The family of aquaporins (AQPs), membrane water channels, consists of diverse types of proteins that are mainly permeable to water; some are also permeable to small solutes, such as glycerol and urea. They have been identified in a wide range of organisms, from microbes to vertebrates and plants, and are expressed in various tissues. Here, we focus on AQP types and their isoforms in astrocytes, a major glial cell type in the central nervous system (CNS). Astrocytes have anatomical contact with the microvasculature, pia, and neurons. Of the many roles that astrocytes have in the CNS, they are key in maintaining water homeostasis. The processes involved in this regulation have been investigated intensively, in particular regulation of the permeability and expression patterns of different AQP types in astrocytes. Three aquaporin types have been described in astrocytes: aquaporins AQP1 and AQP4 and aquaglyceroporin AQP9. The aim here is to review their isoforms, subcellular localization, permeability regulation, and expression patterns in the CNS. In the human CNS, AQP4 is expressed in normal physiological and pathological conditions, but astrocytic expression of AQP1 and AQP9 is mainly associated with a pathological state.
Collapse
|
17
|
Tanahashi H, Tian QB, Hara Y, Sakagami H, Endo S, Suzuki T. Polyhydramnios in Lrp4 knockout mice with bilateral kidney agenesis: Defects in the pathways of amniotic fluid clearance. Sci Rep 2016; 6:20241. [PMID: 26847765 PMCID: PMC4742865 DOI: 10.1038/srep20241] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 12/29/2015] [Indexed: 12/26/2022] Open
Abstract
Amniotic fluid volume during mid-to-late gestation depends mainly on the urine excretion from the foetal kidneys and partly on the fluid secretion from the foetal lungs during foetal breathing-like movements. Urine is necessary for foetal breathing-like movements, which is critical for foetal lung development. Bilateral renal agenesis and/or obstruction of the urinary tract lead to oligohydramnios, which causes infant death within a short period after birth due to pulmonary hypoplasia. Lrp4, which functions as an agrin receptor, is essential for the formation of neuromuscular junctions. Herein, we report novel phenotypes of Lrp4 knockout (Lrp4(-/-)) mice. Most Lrp4(-/-) foetuses showed unilateral or bilateral kidney agenesis, and Lrp4 knockout resulted in polyhydramnios. The loss of Lrp4 compromised foetal swallowing and breathing-like movements and downregulated the expression of aquaporin-9 in the foetal membrane and aquaporin-1 in the placenta, which possibly affected the amniotic fluid clearance. These results suggest that amniotic fluid removal was compromised in Lrp4(-/-) foetuses, resulting in polyhydramnios despite the impairment of urine production. Our findings indicate that amniotic fluid removal plays an essential role in regulating the amniotic fluid volume.
Collapse
Affiliation(s)
- Hiroshi Tanahashi
- Department of Neuroplasticity, Institute of Pathogenesis and Disease Prevention, Graduate School of Medicine, Shinshu University, 3-1-1 Asahi, Matsumoto 390-8621, Japan.,Department of Biological Sciences for Intractable Neurological Diseases, Institute for Biomedical Sciences, Shinshu University, 3-1-1 Asahi, Matsumoto 390-8621, Japan
| | - Qing-Bao Tian
- Department of Neuroplasticity, Institute of Pathogenesis and Disease Prevention, Graduate School of Medicine, Shinshu University, 3-1-1 Asahi, Matsumoto 390-8621, Japan
| | - Yoshinobu Hara
- Department of Anatomy, Kitasato University School of Medicine, 1-15-1, Kitasato, Sagamihara, Kanagawa 252-0374, Japan
| | - Hiroyuki Sakagami
- Department of Anatomy, Kitasato University School of Medicine, 1-15-1, Kitasato, Sagamihara, Kanagawa 252-0374, Japan
| | - Shogo Endo
- Research Team for Aging Neuroscience, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Sakae-cho, Itabashi, Tokyo 173-0015, Japan
| | - Tatsuo Suzuki
- Department of Neuroplasticity, Institute of Pathogenesis and Disease Prevention, Graduate School of Medicine, Shinshu University, 3-1-1 Asahi, Matsumoto 390-8621, Japan.,Department of Biological Sciences for Intractable Neurological Diseases, Institute for Biomedical Sciences, Shinshu University, 3-1-1 Asahi, Matsumoto 390-8621, Japan
| |
Collapse
|
18
|
Uptake, Metabolic Effects and Toxicity of Arsenate and Arsenite in Astrocytes. Neurochem Res 2015; 41:465-75. [DOI: 10.1007/s11064-015-1570-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 03/30/2015] [Accepted: 04/01/2015] [Indexed: 12/17/2022]
|
19
|
Koehler Y, Luther EM, Meyer S, Schwerdtle T, Dringen R. Uptake and toxicity of arsenite and arsenate in cultured brain astrocytes. J Trace Elem Med Biol 2014; 28:328-37. [PMID: 24894442 DOI: 10.1016/j.jtemb.2014.04.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 04/22/2014] [Accepted: 04/23/2014] [Indexed: 01/10/2023]
Abstract
Inorganic arsenicals are environmental toxins that have been connected with neuropathies and impaired cognitive functions. To investigate whether such substances accumulate in brain astrocytes and affect their viability and glutathione metabolism, we have exposed cultured primary astrocytes to arsenite or arsenate. Both arsenicals compromised the cell viability of astrocytes in a time- and concentration-dependent manner. However, the early onset of cell toxicity in arsenite-treated astrocytes revealed the higher toxic potential of arsenite compared with arsenate. The concentrations of arsenite and arsenate that caused within 24h half-maximal release of the cytosolic enzyme lactate dehydrogenase were around 0.3mM and 10mM, respectively. The cellular arsenic contents of astrocytes increased rapidly upon exposure to arsenite or arsenate and reached after 4h of incubation almost constant steady state levels. These levels were about 3-times higher in astrocytes that had been exposed to a given concentration of arsenite compared with the respective arsenate condition. Analysis of the intracellular arsenic species revealed that almost exclusively arsenite was present in viable astrocytes that had been exposed to either arsenate or arsenite. The emerging toxicity of arsenite 4h after exposure was accompanied by a loss in cellular total glutathione and by an increase in the cellular glutathione disulfide content. These data suggest that the high arsenite content of astrocytes that had been exposed to inorganic arsenicals causes an increase in the ratio of glutathione disulfide to glutathione which contributes to the toxic potential of these substances.
Collapse
Affiliation(s)
- Yvonne Koehler
- Centre for Biomolecular Interactions Bremen, Faculty 2 (Biology/Chemistry), University of Bremen, PO Box 330440, D-28334 Bremen, Germany; Centre for Environmental Research and Sustainable Technology, Leobener Strasse, D-28359 Bremen, Germany
| | - Eva Maria Luther
- Centre for Biomolecular Interactions Bremen, Faculty 2 (Biology/Chemistry), University of Bremen, PO Box 330440, D-28334 Bremen, Germany; Centre for Environmental Research and Sustainable Technology, Leobener Strasse, D-28359 Bremen, Germany
| | - Soeren Meyer
- Graduate School of Chemistry, University of Münster, Wilhelm-Klemm-Straße 10, D-48149 Münster, Germany; Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, D-14558 Nuthetal, Germany
| | - Tanja Schwerdtle
- Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, D-14558 Nuthetal, Germany
| | - Ralf Dringen
- Centre for Biomolecular Interactions Bremen, Faculty 2 (Biology/Chemistry), University of Bremen, PO Box 330440, D-28334 Bremen, Germany; Centre for Environmental Research and Sustainable Technology, Leobener Strasse, D-28359 Bremen, Germany.
| |
Collapse
|
20
|
Tadepalle N, Koehler Y, Brandmann M, Meyer N, Dringen R. Arsenite stimulates glutathione export and glycolytic flux in viable primary rat brain astrocytes. Neurochem Int 2014; 76:1-11. [PMID: 24995390 DOI: 10.1016/j.neuint.2014.06.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 06/20/2014] [Accepted: 06/23/2014] [Indexed: 01/30/2023]
Abstract
Intoxication with inorganic arsenicals leads to neuropathies and impaired cognitive functions. However, little is known so far on the cellular targets that are involved in the adverse effects of arsenite to brain cells. To test whether arsenite may affect neural glucose and glutathione (GSH) metabolism, primary astrocyte cultures from rat brain were used as a model system. Exposure of cultured astrocytes to arsenite in concentrations of up to 0.3mM did not compromise cell viability during incubations for up to 6h, while 1mM arsenite damaged the cells already within 2h after application. Determination of cellular arsenic contents of astrocytes that had been incubated for 2h with arsenite revealed an almost linear concentration-dependent increase in the specific cellular arsenic content. Exposure of astrocytes to arsenite stimulated the export of GSH and accelerated the cellular glucose consumption and lactate production in a time- and concentration-dependent manner. Half-maximal stimulation of GSH export and glycolytic flux were observed for arsenite in concentrations of 0.1mM and 0.3mM, respectively. The arsenite-induced stimulation of both processes was abolished upon removal of extracellular arsenite. The strong stimulation of GSH export by arsenite was prevented by MK571, an inhibitor of the multidrug resistance protein 1, suggesting that this transporter mediates the accelerated GSH export. In addition, presence of MK571 significantly increased the specific cellular arsenic content, suggesting that Mrp1 may also be involved in arsenic export from astrocytes. The data observed suggest that alterations in glucose and GSH metabolism may contribute to the reported adverse neural consequences of intoxication with arsenite.
Collapse
Affiliation(s)
- Nimesha Tadepalle
- Centre for Biomolecular Interactions Bremen, Faculty 2 (Biology/Chemistry), University of Bremen, PO Box 330440, D-28334 Bremen, Germany
| | - Yvonne Koehler
- Centre for Biomolecular Interactions Bremen, Faculty 2 (Biology/Chemistry), University of Bremen, PO Box 330440, D-28334 Bremen, Germany; Centre for Environmental Research and Sustainable Technology, Leobener Strasse, D-28359 Bremen, Germany
| | - Maria Brandmann
- Centre for Biomolecular Interactions Bremen, Faculty 2 (Biology/Chemistry), University of Bremen, PO Box 330440, D-28334 Bremen, Germany; Centre for Environmental Research and Sustainable Technology, Leobener Strasse, D-28359 Bremen, Germany
| | - Nils Meyer
- Centre for Biomolecular Interactions Bremen, Faculty 2 (Biology/Chemistry), University of Bremen, PO Box 330440, D-28334 Bremen, Germany
| | - Ralf Dringen
- Centre for Biomolecular Interactions Bremen, Faculty 2 (Biology/Chemistry), University of Bremen, PO Box 330440, D-28334 Bremen, Germany; Centre for Environmental Research and Sustainable Technology, Leobener Strasse, D-28359 Bremen, Germany.
| |
Collapse
|
21
|
Badaut J, Fukuda AM, Jullienne A, Petry KG. Aquaporin and brain diseases. BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1840:1554-65. [PMID: 24513456 PMCID: PMC3960327 DOI: 10.1016/j.bbagen.2013.10.032] [Citation(s) in RCA: 146] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2013] [Revised: 10/09/2013] [Accepted: 10/17/2013] [Indexed: 11/28/2022]
Abstract
BACKGROUND The presence of water channel proteins, aquaporins (AQPs), in the brain led to intense research in understanding the underlying roles of each of them under normal conditions and pathological conditions. SCOPE OF REVIEW In this review, we summarize some of the recent knowledge on the 3 main AQPs (AQP1, AQP4 and AQP9), with a special focus on AQP4, the most abundant AQP in the central nervous system. MAJOR CONCLUSIONS AQP4 was most studied in several brain pathological conditions ranging from acute brain injuries (stroke, traumatic brain injury) to the chronic brain disease with autoimmune neurodegenerative diseases. To date, no specific therapeutic agents have been developed to either inhibit or enhance water flux through these channels. However, experimental results strongly underline the importance of this topic for future investigation. Early inhibition of water channels may have positive effects in prevention of edema formation in brain injuries but at later time points during the course of a disease, AQP is critical for clearance of water from the brain into blood vessels. GENERAL SIGNIFICANCE Thus, AQPs, and in particular AQP4, have important roles both in the formation and resolution of edema after brain injury. The dual, complex function of these water channel proteins makes them an excellent therapeutic target. This article is part of a Special Issue entitled Aquaporins.
Collapse
Affiliation(s)
- Jérôme Badaut
- Department of Pediatrics, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA; Department of Physiology, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA; Univ Bordeaux, CNRS UMR 5287, 146 rue Leo Saignat33076 Bordeaux cedex.
| | - Andrew M Fukuda
- Department of Physiology, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA
| | - Amandine Jullienne
- Department of Pediatrics, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA
| | - Klaus G Petry
- INSERM U1049 Neuroinflammation, Imagerie et Thérapie de la Sclérose en Plaques, F-33076 Bordeaux, France
| |
Collapse
|
22
|
WANG CHUAN, LV ZILAN, KANG YUJUN, XIANG TINGXIU, WANG PILONG, JIANG ZHENG. Aquaporin-9 downregulation prevents steatosis in oleic acid-induced non-alcoholic fatty liver disease cell models. Int J Mol Med 2013; 32:1159-65. [DOI: 10.3892/ijmm.2013.1502] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 09/10/2013] [Indexed: 11/06/2022] Open
|