1
|
Matin R, Zhang K, Ibrahim GM, Gouveia FV. Systematic Review of Experimental Deep Brain Stimulation in Rodent Models of Epilepsy. Neuromodulation 2024:S1094-7159(24)01220-0. [PMID: 39641703 DOI: 10.1016/j.neurom.2024.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/15/2024] [Accepted: 11/04/2024] [Indexed: 12/07/2024]
Abstract
OBJECTIVES Deep brain stimulation (DBS) is an established neuromodulatory technique for treating drug-resistant epilepsy. Despite its widespread use in carefully selected patients, the mechanisms underlying the antiseizure effects of DBS remain unclear. Herein, we provide a detailed overview of the current literature pertaining to experimental DBS in rodent models of epilepsy and identify relevant trends in this field. MATERIALS AND METHODS A systematic review was conducted using the PubMed MEDLINE database, following PRISMA guidelines. Data extraction focused on study characteristics, including stimulation protocol, seizure and behavioral outcomes, and reported mechanisms of action. RESULTS Of the 1788 resultant articles, 164 were included. The number of published articles has grown exponentially in recent decades. Most studies used chemically or electrically induced models of epilepsy. DBS targeting the anterior nucleus of the thalamus, hippocampal formation, or amygdala was most extensively studied. Effective stimulation parameters were identified, and novel stimulation designs were explored, such as closed-loop and unstructured stimulation approaches. Common mechanisms included synaptic modulation through the depression of excitatory neurotransmission and inhibitory release of GABA. At the network level, antiseizure effects were associated with the desynchronization of neural networks, characterized by decreased low-frequency oscillations. CONCLUSIONS Rodent models have significantly advanced the understanding of disease pathophysiology and the development of novel therapies. However, fundamental questions remain regarding DBS mechanisms, optimal targets, and parameters. Further research is necessary to improve DBS therapy and tailor treatment to individual patient circumstances.
Collapse
Affiliation(s)
- Rafi Matin
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Neurosciences & Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Kristina Zhang
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Neurosciences & Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - George M Ibrahim
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Neurosciences & Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada; Division of Neurosurgery, Hospital for Sick Children, Toronto, Ontario, Canada
| | | |
Collapse
|
2
|
Covolan L, Motta Pollo ML, Dos Santos PB, Betta VHC, Saad Barbosa FF, Covolan LAM, Gimenes C, Hamani C. Effects and mechanisms of anterior thalamus nucleus deep brain stimulation for epilepsy: A scoping review of preclinical studies. Neuropharmacology 2024; 260:110137. [PMID: 39218248 DOI: 10.1016/j.neuropharm.2024.110137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/29/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
Deep brain stimulation (DBS) of the anterior nucleus of the thalamus (ANT) is a safe and effective intervention for the treatment of certain forms of epilepsy. In preclinical models, electrical stimulation of the ANT has antiepileptogenic effects but its underlying mechanisms remain unclear. In this review, we searched multiple databases for studies that described the effects and mechanisms of ANT low or high frequency stimulation (LFS or HFS) in models of epilepsy. Out of 289 articles identified, 83 were pooled for analysis and 34 were included. Overall, ANT DBS was most commonly delivered at high frequency to rodents injected with kainic acid, pilocarpine, or pentylenetetrazole. In most studies, this therapy increased the latency to the first spontaneous seizure and reduced the frequency of seizures by 20%-80%. Electrophysiology data suggested that DBS reduces the severity of electrographic seizures, decreases the duration and increases the threshold of afterdischarges, reduces the power of low-frequency and increase the power high-frequency bands. Mechanistic studies revealed that ANT DBS leads to a series of short- and long-term changes at multiple levels. Some of its anticonvulsant effects were proposed to occur via the modulation of serotonergic and adenosinergic transmission. The latter seems to be derived from the downregulation of adenosine kinase (ADK). ANT DBS was also shown to increase hippocampal levels of lactate, alter the expression of genes involved in calcium signaling, synaptic glutamate, and the NOD-like receptor signaling pathway. When delivered during status epilepticus or following the injection of convulsant agents, DBS was found to reduce the expression of proinflammatory cytokines and apoptosis. When administered chronically, ANT DBS increased the expression of proteins involved in axonal guidance, changed functional connectivity in limbic circuits, and increased the number of hippocampal cells in epileptic animals, suggesting a neuroprotective effect.
Collapse
Affiliation(s)
- Luciene Covolan
- Departamento de Fisiologia, Universidade Federal de São Paulo, São Paulo - SP, 04023-062, Brazil.
| | - Maria Luiza Motta Pollo
- Departamento de Fisiologia, Universidade Federal de São Paulo, São Paulo - SP, 04023-062, Brazil
| | - Pedro Bastos Dos Santos
- Departamento de Fisiologia, Universidade Federal de São Paulo, São Paulo - SP, 04023-062, Brazil
| | | | | | | | - Christiane Gimenes
- Departamento de Fisiologia, Universidade Federal de São Paulo, São Paulo - SP, 04023-062, Brazil
| | - Clement Hamani
- Sunnybrook Research Institute, Harquail Centre for Neuromodulation, Division of Neurosurgery, University of Toronto, ON, M4N3M5, Canada
| |
Collapse
|
3
|
Yan Y, Yao C, Zhang B, Yang Z, Xie J, Tang M, Long Q, Tu E, Dong X. Olanzapine vs. magnesium valproate vs. lamotrigine in anti-N-methyl-D-aspartic acid receptor encephalitis: a retrospective study. BMC Neurol 2024; 24:331. [PMID: 39251922 PMCID: PMC11382376 DOI: 10.1186/s12883-024-03811-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 08/20/2024] [Indexed: 09/11/2024] Open
Abstract
BACKGROUND This study aimed to compare the impact of olanzapine, magnesium valproate, and lamotrigine as adjunctive treatments for anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis. And it is expected to add supporting points related to the rebalance of neurotransmitters in the brain through adjuvant therapy in the clinical management of anti-NMDAR encephalitis. METHODS This retrospective study included patients diagnosed with anti-NMDAR encephalitis who received standardized immunotherapy at Hunan Brain Hospital between January 2018 and December 2020. RESULTS Compared to the olanzapine group, both the magnesium valproate and lamotrigine groups showed lower scores on the positive and negative symptom scale (PANSS) total score after 3 weeks of treatment (all P < 0.05). The Montreal Cognitive Assessment Scale (MoCA) scores in the magnesium valproate and lamotrigine groups were significantly higher than in the olanzapine group after 3 weeks and 3 months of treatment (all P < 0.05). After 3 months of treatment, the proportions of patients with a modified Rankin scale score (mRS) of 0-1 in the magnesium valproate and lamotrigine groups were significantly higher than in the olanzapine group (all P < 0.05). The electroencephalogram (EEG) abnormality ranks at 3 months were significantly lower in the magnesium valproate and lamotrigine groups compared with the olanzapine group (all P < 0.05). Furthermore, the Glx/Cr ratio significantly decreased after 3 months of treatment (all P < 0.05) in the magnesium valproate and lamotrigine groups, while the Glx/Cr ratio in the olanzapine group showed no significant change (P > 0.05). CONCLUSION Compared with olanzapine, the addition of magnesium valproate or lamotrigine to immunotherapy might be associated with a lower PANSS score, higher MoCA score, and lower mRS score. The improvement of neurological functions and cognitive function may be related to the decreased Glx/Cr ratio.
Collapse
Affiliation(s)
- Yinhua Yan
- College of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, 410007, Hunan, China
- Department of Neurology, Brain Hospital of Hunan Province (The Second Hospital of Hunan Province), Changsha, 410007, Hunan, China
| | - Chenxiao Yao
- The Hospital of Trade-Business of Hunan Province, Changsha, 410006, Hunan, China
| | - Bo Zhang
- College of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, 410007, Hunan, China
- Hunan society of traditional Chinese medicine and integrated traditional Chinese and Western Medicine, Changsha, 410005, Hunan, China
| | - Zhenyu Yang
- College of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, 410007, Hunan, China
- Department of Neurology, Brain Hospital of Hunan Province (The Second Hospital of Hunan Province), Changsha, 410007, Hunan, China
| | - Jiahui Xie
- College of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, 410007, Hunan, China
- Department of Neurology, Brain Hospital of Hunan Province (The Second Hospital of Hunan Province), Changsha, 410007, Hunan, China
| | - Miao Tang
- College of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, 410007, Hunan, China
- Department of Neurology, Brain Hospital of Hunan Province (The Second Hospital of Hunan Province), Changsha, 410007, Hunan, China
| | - Qiong Long
- College of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, 410007, Hunan, China
- Department of Neurology, Brain Hospital of Hunan Province (The Second Hospital of Hunan Province), Changsha, 410007, Hunan, China
| | - Ewen Tu
- College of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, 410007, Hunan, China.
- Department of Neurology, Brain Hospital of Hunan Province (The Second Hospital of Hunan Province), Changsha, 410007, Hunan, China.
| | - Xuanqi Dong
- Brain Hospital of Hunan Province, Brain Hospital of Hunan Province(The Second Hospital of Hunan Province), Changsha, 410007, Hunan, China.
| |
Collapse
|
4
|
Bae S, Lim HK, Jeong Y, Kim SG, Park SM, Shon YM, Suh M. Deep brain stimulation of the anterior nuclei of the thalamus can alleviate seizure severity and induce hippocampal GABAergic neuronal changes in a pilocarpine-induced epileptic mouse brain. Cereb Cortex 2022; 32:5530-5543. [PMID: 35258078 DOI: 10.1093/cercor/bhac033] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/17/2022] [Accepted: 01/24/2022] [Indexed: 01/25/2023] Open
Abstract
Deep brain stimulation (DBS) of the anterior nucleus of the thalamus (ANT) has been widely used as an effective treatment for refractory temporal lobe epilepsy. Despite its promising clinical outcome, the exact mechanism of how ANT-DBS alleviates seizure severity has not been fully understood, especially at the cellular level. To assess effects of DBS, the present study examined electroencephalography (EEG) signals and locomotor behavior changes and conducted immunohistochemical analyses to examine changes in neuronal activity, number of neurons, and neurogenesis of inhibitory neurons in different hippocampal subregions. ANT-DBS alleviated seizure activity, abnormal locomotor behaviors, reduced theta-band, increased gamma-band EEG power in the interictal state, and increased the number of neurons in the dentate gyrus (DG). The number of parvalbumin- and somatostatin-expressing inhibitory neurons was recovered to the level in DG and CA1 of naïve mice. Notably, BrdU-positive inhibitory neurons were increased. In conclusion, ANT-DBS not only could reduce the number of seizures, but also could induce neuronal changes in the hippocampus, which is a key region involved in chronic epileptogenesis. Importantly, our results suggest that ANT-DBS may lead to hippocampal subregion-specific cellular recovery of GABAergic inhibitory neurons.
Collapse
Affiliation(s)
- Sungjun Bae
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Suwon 16419, South Korea.,Department of Biomedical Engineering, Sungkyunkwan University, Suwon 16419, South Korea.,IMNEWRUN Inc., N Center Bldg. A 5F, Sungkyunkwan University, Suwon 16419, South Korea
| | - Hyun-Kyoung Lim
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Suwon 16419, South Korea.,Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, South Korea
| | - Yoonyi Jeong
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Suwon 16419, South Korea.,Department of Biomedical Engineering, Sungkyunkwan University, Suwon 16419, South Korea
| | - Seong-Gi Kim
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Suwon 16419, South Korea.,Department of Biomedical Engineering, Sungkyunkwan University, Suwon 16419, South Korea
| | - Sung-Min Park
- Department of Creative IT Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea
| | - Young-Min Shon
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, South Korea.,Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University, Suwon 16419, South Korea
| | - Minah Suh
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Suwon 16419, South Korea.,Department of Biomedical Engineering, Sungkyunkwan University, Suwon 16419, South Korea.,IMNEWRUN Inc., N Center Bldg. A 5F, Sungkyunkwan University, Suwon 16419, South Korea.,Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, South Korea.,Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University, Suwon 16419, South Korea
| |
Collapse
|
5
|
Deep brain stimulation of the anterior nuclei of the thalamus in focal epilepsy. Clin Neurophysiol 2022; 144:1-7. [PMID: 36193600 DOI: 10.1016/j.clinph.2022.09.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 08/24/2022] [Accepted: 09/03/2022] [Indexed: 11/23/2022]
Abstract
OBJECTIVE To review the therapeutic effects of deep brain stimulation of the anterior nuclei of the thalamus (ANT-DBS) and the predictors of its effectiveness, safety, and adverse effects. METHODS A comprehensive search of the medical literature (PubMed) was conducted to identify relevant articles investigating ANT-DBS therapy for epilepsy. Out of 332 references, 77 focused on focal epilepsies were reviewed. RESULTS The DBS effect is probably due to decreased synchronization of epileptic activity in the cortex. The potential mechanisms from cellular to brain network levels are presented. The ANT might participate actively in the network elaborating focal seizures. The effects of ANT-DBS differed in various studies; ANT-DBS was linked with a 41% seizure frequency reduction at 1 year, 69% at 5 years, and 75% at 7 years. The most frequently reported adverse effects, depression and memory impairment, were considered non-serious in the long-term follow-up view. ANT-DBS also has been used in a few cases to treat status epilepticus. CONCLUSIONS We reviewed the clinical literature and identified several factors that may predict seizure outcome following DBS therapy. More large-scale trials are required since there is a need to explore stimulation settings, apply patient-tailored therapy, and identify the presurgical predictors of patient response. SIGNIFICANCE A critical review of the published literature on ANT-DBS in focal epilepsy is presented. ANT-DBS mechanisms are not fully understood; possible explanations are provided. Biomarkers of ANT-DBS effectiveness may lead to patient-tailored therapy.
Collapse
|
6
|
Gimenes C, Motta Pollo ML, Diaz E, Hargreaves EL, Boison D, Covolan L. Deep brain stimulation of the anterior thalamus attenuates PTZ kindling with concomitant reduction of adenosine kinase expression in rats. Brain Stimul 2022; 15:892-901. [PMID: 35690386 DOI: 10.1016/j.brs.2022.05.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 05/27/2022] [Accepted: 05/31/2022] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Deep brain stimulation (DBS) of the anterior nucleus of the thalamus (ANT) is an emerging therapy to provide seizure control in patients with refractory epilepsy, although its therapeutic mechanisms remain elusive. OBJECTIVE We tested the hypothesis that ANT-DBS might interfere with the kindling process using three experimental groups: PTZ, DBS-ON and DBS-OFF. METHODS 79 male rats were used in two experiments and exposed to chemical kindling with pentylenetetrazole (PTZ, 30 mg/kg i.p.), delivered three times a week for a total of 18 kindling days (KD). These animals were divided into two sets of three groups: PTZ (n = 26), DBS-ON (n = 28) and DBS-OFF (n = 25). ANT-DBS (130 Hz, 90 μs, and 200 μA) was paired with PTZ injections, while DBS-OFF group, although implanted remained unstimulated. After KD 18, the first set of PTZ-treated animals and an additional group of 11 naïve rats were euthanized for brain extraction to study adenosine kinase (ADK) expression. To observe possible long-lasting effects of ANT stimulation, the second set of animals underwent a 1-week treatment and stimulation-free period after KD 18 before a final PTZ challenge. RESULTS ANT-DBS markedly attenuated kindling progression in the DBS-ON group, which developed seizure scores of 2.4 on KD 13, whereas equivalent seizure scores were reached in the DBS-OFF and PTZ groups as early as KD5 and KD6, respectively. The incidence of animals with generalized seizures following 3 consecutive PTZ injections was 94%, 74% and 21% in PTZ, DBS-OFF and DBS-ON groups, respectively. Seizure scores triggered by a PTZ challenge one week after cessation of stimulation revealed lasting suppression of seizure scores in the DBS-ON group (2.7 ± 0.2) compared to scores of 4.5 ± 0.1 for the PTZ group and 4.3 ± 0.1 for the DBS-OFF group (P = 0.0001). While ANT-DBS protected hippocampal cells, the expression of ADK was decreased in the DBS-ON group compared to both PTZ (P < 0.01) and naïve animals (P < 0.01). CONCLUSIONS Our study demonstrates that ANT-DBS interferes with the kindling process and reduced seizure activity was maintained after a stimulation free period of one week. Our findings suggest that ANT-DBS might have additional therapeutic benefits to attenuate seizure progression in epilepsy.
Collapse
Affiliation(s)
- Christiane Gimenes
- Department of Physiology, Universidade Federal de Sao Paulo, Sao Paulo, Brazil
| | | | - Eduardo Diaz
- Department of Physiology, Universidade Federal de Sao Paulo, Sao Paulo, Brazil
| | - Eric L Hargreaves
- Department of Neurosurgery, Jersey Shore University Medical Center, Hackensack Meridian Health Network, Neptune, NJ, USA
| | - Detlev Boison
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, USA
| | - Luciene Covolan
- Department of Physiology, Universidade Federal de Sao Paulo, Sao Paulo, Brazil; Center for Research, Education and Innovation, Instituto Jô Clemente, Sao Paulo, Brazil.
| |
Collapse
|
7
|
Middlebrooks EH, He X, Grewal SS, Keller SS. Neuroimaging and thalamic connectomics in epilepsy neuromodulation. Epilepsy Res 2022; 182:106916. [PMID: 35367691 DOI: 10.1016/j.eplepsyres.2022.106916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/05/2022] [Accepted: 03/27/2022] [Indexed: 11/03/2022]
Abstract
Neuromodulation is an increasingly utilized therapy for the treatment of people with drug-resistant epilepsy. To date, the most common and effective target has been the thalamus, which is known to play a key role in multiple forms of epilepsy. Neuroimaging has facilitated rapid developments in the understanding of functional targets, surgical and programming techniques, and the effects of thalamic stimulation. In this review, the role of neuroimaging in neuromodulation is explored. First, the structural and functional changes of the thalamus in common epilepsy syndromes are discussed as the rationale for neuromodulation of the thalamus. Next, methods for imaging different thalamic nuclei are presented, as well as rationale for the need of direct surgical targeting rather than reliance on traditional stereotactic coordinates. Lastly, we discuss the potential role of neuroimaging in assessing the effects of thalamic stimulation and as a potential biomarker for neuromodulation outcomes.
Collapse
Affiliation(s)
- Erik H Middlebrooks
- Department of Radiology, Mayo Clinic, Jacksonville, FL, USA; Department of Neurosurgery, Mayo Clinic, Jacksonville, FL, USA.
| | - Xiaosong He
- Department of Psychology, University of Science and Technology of China, Hefei, Anhui, China
| | | | - Simon S Keller
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, UK
| |
Collapse
|
8
|
Middlebrooks EH, Jain A, Okromelidze L, Lin C, Westerhold EM, O'Steen CA, Ritaccio AL, Quiñones-Hinojosa A, Tatum WO, Grewal SS. Acute Brain Activation Patterns of High- Versus Low-Frequency Stimulation of the Anterior Nucleus of the Thalamus During Deep Brain Stimulation for Epilepsy. Neurosurgery 2021; 89:901-908. [PMID: 34460925 DOI: 10.1093/neuros/nyab306] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 06/09/2021] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Deep brain stimulation (DBS) of the anterior nucleus of the thalamus (ANT) is an increasingly utilized treatment of drug-resistant epilepsy. To date, the effect of high-frequency stimulation (HFS) vs low-frequency stimulation (LFS) in ANT DBS is poorly understood. OBJECTIVE To assess differences in the acute effect of LFS vs HFS in ANT DBS utilizing blood-oxygen-level-dependent (BOLD) functional magnetic resonance imaging (fMRI). METHODS In this prospective study of 5 patients with ANT DBS for epilepsy, BOLD activation and deactivation were modeled for 145-Hz and 30-Hz ANT stimulation using an fMRI block design. Data were analyzed with a general linear model and combined via 2-stage mixed-effects analysis. Z-score difference maps were nonparametrically thresholded using cluster threshold of z > 3.1 and a (corrected) cluster significance threshold of P = .05. RESULTS HFS produced significantly greater activation within multiple regions, in particular the limbic and default mode network (DMN). LFS produced minimal activation and failed to produce significant activation within these same networks. HFS produced widespread cortical and subcortical deactivation sparing most of the limbic and DMN regions. Meanwhile, LFS produced deactivation in most DMN and limbic structures. CONCLUSION Our results show that HFS and LFS produce substantial variability in both local and downstream network effects. In particular, largely opposing effects were identified within the limbic network and DMN. These findings may serve as a mechanistic basis for understanding the potential of HFS vs LFS in various epilepsy syndromes.
Collapse
Affiliation(s)
- Erik H Middlebrooks
- Department of Radiology, Division of Neuroradiology, Mayo Clinic, Jacksonville, Florida, USA.,Department of Neurosurgery, Mayo Clinic, Jacksonville, Florida, USA
| | - Ayushi Jain
- Department of Radiology, Division of Neuroradiology, Mayo Clinic, Jacksonville, Florida, USA
| | - Lela Okromelidze
- Department of Radiology, Division of Neuroradiology, Mayo Clinic, Jacksonville, Florida, USA
| | - Chen Lin
- Department of Radiology, Division of Neuroradiology, Mayo Clinic, Jacksonville, Florida, USA
| | - Erin M Westerhold
- Department of Radiology, Division of Neuroradiology, Mayo Clinic, Jacksonville, Florida, USA
| | - Chad A O'Steen
- Department of Radiology, Division of Neuroradiology, Mayo Clinic, Jacksonville, Florida, USA
| | | | | | - William O Tatum
- Department of Neurology, Mayo Clinic, Jacksonville, Florida, USA
| | - Sanjeet S Grewal
- Department of Neurosurgery, Mayo Clinic, Jacksonville, Florida, USA
| |
Collapse
|
9
|
Liu DF, Chen YC, Zhu GY, Wang X, Jiang Y, Liu HG, Zhang JG. Effects of anterior thalamic nuclei stimulation on gene expression in a rat model of temporal lobe epilepsy. Acta Neurol Belg 2020; 120:1361-1370. [PMID: 31758405 DOI: 10.1007/s13760-019-01240-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 11/06/2019] [Indexed: 12/13/2022]
Abstract
Deep brain stimulation of the anterior nucleus of the thalamus (ANT-DBS) has been shown to be effective and safe in the long-term treatment of refractory epilepsy. However, the mechanisms by which ANT-DBS controls epilepsy at the gene expression level (e.g., which regulatory mechanisms are altered) is not well understood. Nine rats were randomly assigned to the control group, the kainic acid (KA) group, and the DBS group. Temporal lobe epilepsy in rats was induced by a stereotaxic KA injection (KA group). The DBS group received the KA injection followed by treatment with ANT-DBS. Video-electroencephalogram (EEG) was used to monitor seizures. Total RNA samples were isolated from the hippocampus of three groups. Microarray was used to detect differentially regulated mRNAs. GO and pathway analysis were performed to analyze the functional categories and affected pathways. qPCR was used to prove the reliability of the microarray results. The differentially expressed genes the KA group and the DBS group, relative to the control group, were screened and a total of 2910 genes were identified. These genes were involved in functional categories such as ion channel activity (P = 5.01 × 10-8), gated channel activity (P = 1.42 × 10-7), lipid binding (P = 4.97 × 10-5), and hydrolase activity (P = 5.02 × 10-5) and pathways such as calcium signaling pathway (P = 2.09 × 10-8), glutamatergic synapse (P = 4.09 × 10-8) and NOD-like receptor signaling pathway (P = 2.70 × 10-6). Differentially expressed mRNAs might play a role in the pathogenesis of temporal lobe epilepsy. Calcium signaling pathways, synaptic glutamate, and NOD-like receptor signaling pathway play a central role in normal-epilepsy-ANT-DBS treatment series. ANT-DBS achieves its antiepileptic effects by modulating target genes involved in a variety of functions and pathways.
Collapse
Affiliation(s)
- De-Feng Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Tiantan Xili, No.6, Dongcheng, Beijing, 100050, China
| | - Ying-Chuan Chen
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Tiantan Xili, No.6, Dongcheng, Beijing, 100050, China
| | - Guan-Yu Zhu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Tiantan Xili, No.6, Dongcheng, Beijing, 100050, China
| | - Xiu Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Tiantan Xili, No.6, Dongcheng, Beijing, 100050, China
| | - Yin Jiang
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Tiantan Xili, No.6, Dongcheng, Beijing, 100050, China
| | - Huan-Guang Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Tiantan Xili, No.6, Dongcheng, Beijing, 100050, China.
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Tiantan Xili, No.6, Dongcheng, Beijing, 100050, China.
| | - Jian-Guo Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Tiantan Xili, No.6, Dongcheng, Beijing, 100050, China.
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Tiantan Xili, No.6, Dongcheng, Beijing, 100050, China.
- Beijing Key Laboratory of Neurostimulation, Beijing, 100050, China.
| |
Collapse
|
10
|
Scherer M, Milosevic L, Guggenberger R, Maus V, Naros G, Grimm F, Bucurenciu I, Steinhoff BJ, Weber YG, Lerche H, Weiss D, Rona S, Gharabaghi A. Desynchronization of temporal lobe theta-band activity during effective anterior thalamus deep brain stimulation in epilepsy. Neuroimage 2020; 218:116967. [PMID: 32445879 DOI: 10.1016/j.neuroimage.2020.116967] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 05/04/2020] [Accepted: 05/13/2020] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Bilateral cyclic high frequency deep brain stimulation (DBS) of the anterior nucleus of the thalamus (ANT) reduces the seizure count in a subset of patients with epilepsy. Detecting stimulation-induced alterations of pathological brain networks may help to unravel the underlying physiological mechanisms related to effective stimulation delivery and optimize target engagement. METHODS We acquired 64-channel electroencephalography during ten ANT-DBS cycles (145 Hz, 90 μs, 3-5 V) of 1-min ON followed by 5-min OFF stimulation to detect changes in cortical activity related to seizure reduction. The study included 14 subjects (three responders, four non-responders, and seven healthy controls). Mixed-model ANOVA tests were used to compare differences in cortical activity between subgroups both ON and OFF stimulation, while investigating frequency-specific effects for the seizure onset zones. RESULTS ANT-DBS had a widespread desynchronization effect on cortical theta and alpha band activity in responders, but not in non-responders. Time domain analysis showed that the stimulation induced reduction in theta-band activity was temporally linked to the stimulation period. Moreover, stimulation induced theta-band desynchronization in the temporal lobe channels correlated significantly with the therapeutic response. Responders to ANT-DBS and healthy-controls had an overall lower level of theta-band activity compared to non-responders. CONCLUSION This study demonstrated that temporal lobe channel theta-band desynchronization may be a predictive physiological hallmark of therapeutic response to ANT-DBS and may be used to improve the functional precision of this intervention by verifying implantation sites, calibrating stimulation contacts, and possibly identifying treatment responders prior to implantation.
Collapse
Affiliation(s)
- Maximillian Scherer
- Division of Functional and Restorative Neurosurgery, Department of Neurosurgery, And Tübingen NeuroCampus, University of Tübingen, 72076, Tübingen, Germany
| | - Luka Milosevic
- Division of Functional and Restorative Neurosurgery, Department of Neurosurgery, And Tübingen NeuroCampus, University of Tübingen, 72076, Tübingen, Germany
| | - Robert Guggenberger
- Division of Functional and Restorative Neurosurgery, Department of Neurosurgery, And Tübingen NeuroCampus, University of Tübingen, 72076, Tübingen, Germany
| | - Volker Maus
- Division of Functional and Restorative Neurosurgery, Department of Neurosurgery, And Tübingen NeuroCampus, University of Tübingen, 72076, Tübingen, Germany
| | - Georgios Naros
- Division of Functional and Restorative Neurosurgery, Department of Neurosurgery, And Tübingen NeuroCampus, University of Tübingen, 72076, Tübingen, Germany
| | - Florian Grimm
- Division of Functional and Restorative Neurosurgery, Department of Neurosurgery, And Tübingen NeuroCampus, University of Tübingen, 72076, Tübingen, Germany
| | | | | | - Yvonne G Weber
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany; Epilepsy Unit, Department of Neurosurgery, University of Tübingen, Tübingen, Germany
| | - Holger Lerche
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Daniel Weiss
- Department for Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research, And German Centre of Neurodegenerative Diseases (DZNE), University Tübingen, Tübingen, Germany
| | - Sabine Rona
- Epilepsy Unit, Department of Neurosurgery, University of Tübingen, Tübingen, Germany
| | - Alireza Gharabaghi
- Division of Functional and Restorative Neurosurgery, Department of Neurosurgery, And Tübingen NeuroCampus, University of Tübingen, 72076, Tübingen, Germany.
| |
Collapse
|
11
|
Middlebrooks EH, Grewal SS, Stead M, Lundstrom BN, Worrell GA, Van Gompel JJ. Differences in functional connectivity profiles as a predictor of response to anterior thalamic nucleus deep brain stimulation for epilepsy: a hypothesis for the mechanism of action and a potential biomarker for outcomes. Neurosurg Focus 2019; 45:E7. [PMID: 30064322 DOI: 10.3171/2018.5.focus18151] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Deep brain stimulation (DBS) of the anterior nucleus of the thalamus (ANT) is a promising therapy for refractory epilepsy. Unfortunately, the variability in outcomes from ANT DBS is not fully understood. In this pilot study, the authors assess potential differences in functional connectivity related to the volume of tissue activated (VTA) in ANT DBS responders and nonresponders as a means for better understanding the mechanism of action and potentially improving DBS targeting. METHODS This retrospective analysis consisted of 6 patients who underwent ANT DBS for refractory epilepsy. Patients were classified as responders (n = 3) if their seizure frequency decreased by at least 50%. The DBS electrodes were localized postoperatively and VTAs were computationally generated based on DBS programming settings. VTAs were used as seed points for resting-state functional MRI connectivity analysis performed using a control dataset. Differences in cortical connectivity to the VTA were assessed between the responder and nonresponder groups. RESULTS The ANT DBS responders showed greater positive connectivity with the default mode network compared to nonresponders, including the posterior cingulate cortex, medial prefrontal cortex, inferior parietal lobule, and precuneus. Interestingly, there was also a consistent anticorrelation with the hippocampus seen in responders that was not present in nonresponders. CONCLUSIONS Based on their pilot study, the authors observed that successful ANT DBS in patients with epilepsy produces increased connectivity in the default mode network, which the authors hypothesize increases the threshold for seizure propagation. Additionally, an inhibitory effect on the hippocampus mediated through increased hippocampal γ-aminobutyric acid (GABA) concentration may contribute to seizure suppression. Future studies are planned to confirm these findings.
Collapse
Affiliation(s)
- Erik H Middlebrooks
- Departments of1Radiology and.,2Neurosurgery, Mayo Clinic, Jacksonville, Florida; and
| | | | | | | | | | | |
Collapse
|
12
|
Bouwens van der Vlis TAM, Schijns OEMG, Schaper FLWVJ, Hoogland G, Kubben P, Wagner L, Rouhl R, Temel Y, Ackermans L. Deep brain stimulation of the anterior nucleus of the thalamus for drug-resistant epilepsy. Neurosurg Rev 2019; 42:287-296. [PMID: 29306976 PMCID: PMC6502776 DOI: 10.1007/s10143-017-0941-x] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 11/13/2017] [Accepted: 12/19/2017] [Indexed: 12/17/2022]
Abstract
Despite the use of first-choice anti-epileptic drugs and satisfactory seizure outcome rates after resective epilepsy surgery, a considerable percentage of patients do not become seizure free. ANT-DBS may provide for an alternative treatment option in these patients. This literature review discusses the rationale, mechanism of action, clinical efficacy, safety, and tolerability of ANT-DBS in drug-resistant epilepsy patients. A review using systematic methods of the available literature was performed using relevant databases including Medline, Embase, and the Cochrane Library pertaining to the different aspects ANT-DBS. ANT-DBS for drug-resistant epilepsy is a safe, effective and well-tolerated therapy, where a special emphasis must be given to monitoring and neuropsychological assessment of both depression and memory function. Three patterns of seizure control by ANT-DBS are recognized, of which a delayed stimulation effect may account for an improved long-term response rate. ANT-DBS remotely modulates neuronal network excitability through overriding pathological electrical activity, decrease neuronal cell loss, through immune response inhibition or modulation of neuronal energy metabolism. ANT-DBS is an efficacious treatment modality, even when curative procedures or lesser invasive neuromodulative techniques failed. When compared to VNS, ANT-DBS shows slightly superior treatment response, which urges for direct comparative trials. Based on the available evidence ANT-DBS and VNS therapies are currently both superior compared to non-invasive neuromodulation techniques such as t-VNS and rTMS. Additional in-vivo research is necessary in order to gain more insight into the mechanism of action of ANT-DBS in localization-related epilepsy which will allow for treatment optimization. Randomized clinical studies in search of the optimal target in well-defined epilepsy patient populations, will ultimately allow for optimal patient stratification when applying DBS for drug-resistant patients with epilepsy.
Collapse
Affiliation(s)
- Tim A M Bouwens van der Vlis
- Department of Neurosurgery, Academic Center for Epileptology (ACE), Maastricht University Medical Center, Maastricht (MUMC), PO Box 5800, 6202, AZ, Maastricht, The Netherlands.
| | - Olaf E M G Schijns
- Department of Neurosurgery, Academic Center for Epileptology (ACE), Maastricht University Medical Center, Maastricht (MUMC), PO Box 5800, 6202, AZ, Maastricht, The Netherlands
- European Graduate School of Neuroscience (Euron), Maastricht University, Maastricht, The Netherlands
- School for Mental Health and Neuroscience (MHeNS), Maastricht University, Maastricht, The Netherlands
| | - Frédéric L W V J Schaper
- School for Mental Health and Neuroscience (MHeNS), Maastricht University, Maastricht, The Netherlands
- Department of Neurology, Academic Center for Epileptology (ACE), Kempenhaeghe, MUMC, Maastricht, The Netherlands
| | - Govert Hoogland
- Department of Neurosurgery, Academic Center for Epileptology (ACE), Maastricht University Medical Center, Maastricht (MUMC), PO Box 5800, 6202, AZ, Maastricht, The Netherlands
- European Graduate School of Neuroscience (Euron), Maastricht University, Maastricht, The Netherlands
- School for Mental Health and Neuroscience (MHeNS), Maastricht University, Maastricht, The Netherlands
| | - Pieter Kubben
- Department of Neurosurgery, Academic Center for Epileptology (ACE), Maastricht University Medical Center, Maastricht (MUMC), PO Box 5800, 6202, AZ, Maastricht, The Netherlands
| | - Louis Wagner
- Department of Neurology, Academic Center for Epileptology (ACE), Kempenhaeghe, MUMC, Maastricht, The Netherlands
| | - Rob Rouhl
- European Graduate School of Neuroscience (Euron), Maastricht University, Maastricht, The Netherlands
- School for Mental Health and Neuroscience (MHeNS), Maastricht University, Maastricht, The Netherlands
- Department of Neurology, Academic Center for Epileptology (ACE), Kempenhaeghe, MUMC, Maastricht, The Netherlands
- Academic Center for Epileptology MUMC+ and Kempenhaeghe, Heeze, Maastricht, The Netherlands
| | - Yasin Temel
- Department of Neurosurgery, Academic Center for Epileptology (ACE), Maastricht University Medical Center, Maastricht (MUMC), PO Box 5800, 6202, AZ, Maastricht, The Netherlands
- European Graduate School of Neuroscience (Euron), Maastricht University, Maastricht, The Netherlands
- School for Mental Health and Neuroscience (MHeNS), Maastricht University, Maastricht, The Netherlands
| | - Linda Ackermans
- Department of Neurosurgery, Academic Center for Epileptology (ACE), Maastricht University Medical Center, Maastricht (MUMC), PO Box 5800, 6202, AZ, Maastricht, The Netherlands
| |
Collapse
|
13
|
Markert MS, Fisher RS. Neuromodulation - Science and Practice in Epilepsy: Vagus Nerve Stimulation, Thalamic Deep Brain Stimulation, and Responsive NeuroStimulation. Expert Rev Neurother 2018; 19:17-29. [DOI: 10.1080/14737175.2019.1554433] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Matthew S. Markert
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Robert S. Fisher
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
14
|
Feng L, Motelow JE, Ma C, Biche W, McCafferty C, Smith N, Liu M, Zhan Q, Jia R, Xiao B, Duque A, Blumenfeld H. Seizures and Sleep in the Thalamus: Focal Limbic Seizures Show Divergent Activity Patterns in Different Thalamic Nuclei. J Neurosci 2017; 37:11441-11454. [PMID: 29066556 PMCID: PMC5700426 DOI: 10.1523/jneurosci.1011-17.2017] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 10/09/2017] [Accepted: 10/14/2017] [Indexed: 01/12/2023] Open
Abstract
The thalamus plays diverse roles in cortical-subcortical brain activity patterns. Recent work suggests that focal temporal lobe seizures depress subcortical arousal systems and convert cortical activity into a pattern resembling slow-wave sleep. The potential simultaneous and paradoxical role of the thalamus in both limbic seizure propagation, and in sleep-like cortical rhythms has not been investigated. We recorded neuronal activity from the central lateral (CL), anterior (ANT), and ventral posteromedial (VPM) nuclei of the thalamus in an established female rat model of focal limbic seizures. We found that population firing of neurons in CL decreased during seizures while the cortex exhibited slow waves. In contrast, ANT showed a trend toward increased neuronal firing compatible with polyspike seizure discharges seen in the hippocampus. Meanwhile, VPM exhibited a remarkable increase in sleep spindles during focal seizures. Single-unit juxtacellular recordings from CL demonstrated reduced overall firing rates, but a switch in firing pattern from single spikes to burst firing during seizures. These findings suggest that different thalamic nuclei play very different roles in focal limbic seizures. While limbic nuclei, such as ANT, appear to participate directly in seizure propagation, arousal nuclei, such as CL, may contribute to depressed cortical function, whereas sleep spindles in relay nuclei, such as VPM, may interrupt thalamocortical information flow. These combined effects could be critical for controlling both seizure severity and impairment of consciousness. Further understanding of differential effects of seizures on different thalamocortical networks may lead to improved treatments directly targeting these modes of impaired function.SIGNIFICANCE STATEMENT Temporal lobe epilepsy has a major negative impact on quality of life. Previous work suggests that the thalamus plays a critical role in thalamocortical network modulation and subcortical arousal maintenance, but its precise seizure-associated functions are not known. We recorded neuronal activity in three different thalamic regions and found divergent activity patterns, which may respectively participate in seizure propagation, impaired level of conscious arousal, and altered relay of information to the cortex during focal limbic seizures. These very different activity patterns within the thalamus may help explain why focal temporal lobe seizures often disrupt widespread network function, and can help guide future treatments aimed at restoring normal thalamocortical network activity and cognition.
Collapse
Affiliation(s)
- Li Feng
- Departments of Neurology
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China, and
| | | | | | | | | | | | | | - Qiong Zhan
- Department of Neurology, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | | | - Bo Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China, and
| | | | - Hal Blumenfeld
- Departments of Neurology,
- Neuroscience, and
- Neurosurgery, Yale University School of Medicine, New Haven, Connecticut 06520
| |
Collapse
|
15
|
Meng DW, Liu HG, Yang AC, Zhang K, Zhang JG. Stimulation of Anterior Thalamic Nuclei Protects Against Seizures and Neuronal Apoptosis in Hippocampal CA3 Region of Kainic Acid-induced Epileptic Rats. Chin Med J (Engl) 2017; 129:960-6. [PMID: 27064042 PMCID: PMC4831532 DOI: 10.4103/0366-6999.179799] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background: The antiepileptic effect of the anterior thalamic nuclei (ANT) stimulation has been demonstrated; however, its underlying mechanism remains unclear. The aim of this study was to investigate the effect of chronic ANT stimulation on hippocampal neuron loss and apoptosis. Methods: Sixty-four rats were divided into four groups: The control group, the kainic acid (KA) group, the sham-deep brain stimulation (DBS) group, and the DBS group. KA was used to induce epilepsy. Seizure count and latency to the first spontaneous seizures were calculated. Nissl staining was used to analyze hippocampal neuronal loss. Polymerase chain reaction and Western blotting were conducted to assess the expression of caspase-3 (Casp3), B-cell lymphoma-2 (Bcl2), and Bcl2-associated X protein (Bax) in the hippocampal CA3 region. One-way analysis of variance was used to determine the differences between the four groups. Results: The latency to the first spontaneous seizures in the DBS group was significantly longer than that in the KA group (27.50 ± 8.05 vs. 16.38 ± 7.25 days, P = 0.0005). The total seizure number in the DBS group was also significantly reduced (DBS vs. KA group: 11.75 ± 6.80 vs. 23.25 ± 7.72, P = 0.0002). Chronic ANT-DBS reduced neuronal loss in the hippocampal CA3 region (DBS vs. KA group: 23.58 ± 6.34 vs. 13.13 ± 4.00, P = 0.0012). After chronic DBS, the relative mRNA expression level of Casp3 was decreased (DBS vs. KA group: 1.18 ± 0.37 vs. 2.09 ± 0.46, P = 0.0003), and the relative mRNA expression level of Bcl2 was increased (DBS vs. KA group: 0.92 ± 0.21 vs. 0.48 ± 0.16, P = 0.0004). The protein expression levels of CASP3 (DBS vs. KA group: 1.25 ± 0.26 vs. 2.49 ± 0.38, P < 0.0001) and BAX (DBS vs. KA group: 1.57 ± 0.49 vs. 2.80 ± 0.63, P = 0.0012) both declined in the DBS group whereas the protein expression level of BCL2 (DBS vs. KA group: 0.78 ± 0.32 vs. 0.36 ± 0.17, P = 0.0086) increased in the DBS group. Conclusions: This study demonstrated that chronic ANT stimulation could exert a neuroprotective effect on hippocampal neurons. This neuroprotective effect is likely to be mediated by the inhibition of apoptosis in the epileptic hippocampus.
Collapse
Affiliation(s)
| | | | | | | | - Jian-Guo Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050; Beijing Key Laboratory of Neuromodulation, Beijing 100050; Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100050, China
| |
Collapse
|
16
|
Hartl E, Feddersen B, Bötzel K, Mehrkens JH, Noachtar S. Seizure Control and Active Termination by Anterior Thalamic Deep Brain Stimulation. Brain Stimul 2017; 10:168-170. [DOI: 10.1016/j.brs.2016.10.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 10/03/2016] [Indexed: 01/03/2023] Open
|
17
|
Interaction between Thalamus and Hippocampus in Termination of Amygdala-Kindled Seizures in Mice. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2016; 2016:9580724. [PMID: 27829869 PMCID: PMC5086540 DOI: 10.1155/2016/9580724] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 09/20/2016] [Indexed: 12/20/2022]
Abstract
The thalamus and hippocampus have been found both involved in the initiation, propagation, and termination of temporal lobe epilepsy. However, the interaction of these regions during seizures is not clear. The present study is to explore whether some regular patterns exist in their interaction during the termination of seizures. Multichannel in vivo recording techniques were used to record the neural activities from the cornu ammonis 1 (CA1) of hippocampus and mediodorsal thalamus (MDT) in mice. The mice were kindled by electrically stimulating basolateral amygdala neurons, and Racine's rank standard was employed to classify the stage of behavioral responses (stage 1~5). The coupling index and directionality index were used to investigate the synchronization and information flow direction between CA1 and MDT. Two main results were found in this study. (1) High levels of synchronization between the thalamus and hippocampus were observed before the termination of seizures at stage 4~5 but after the termination of seizures at stage 1~2. (2) In the end of seizures at stage 4~5, the information tended to flow from MDT to CA1. Those results indicate that the synchronization and information flow direction between the thalamus and the hippocampus may participate in the termination of seizures.
Collapse
|
18
|
Kim HY, Hur YJ, Kim HD, Park KM, Kim SE, Hwang TG. Modification of electrophysiological activity pattern after anterior thalamic deep brain stimulation for intractable epilepsy: report of 3 cases. J Neurosurg 2016; 126:2028-2035. [DOI: 10.3171/2016.6.jns152958] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVEThalamic stimulation can provoke electroencephalography (EEG) synchronization or desynchronization, which can help to reduce the occurrence of seizures in intractable epilepsy, though the underlying mechanism is not fully understood. Therefore, the authors investigated changes in EEG electrical activity to better understand the seizure-reducing effects of deep brain stimulation (DBS) in patients with intractable epilepsy.METHODSElectrical activation patterns in the epileptogenic brains of 3 patients were analyzed using classical low-resolution electromagnetic tomography analysis recursively applied (CLARA). Electrical activity recorded during thalamic stimulation was compared with that recorded during the preoperative and postoperative off-stimulation states in patients who underwent anterior thalamic nucleus DBS for intractable epilepsy.RESULTSInterictal EEG was fully synchronized to the β frequency in the postoperative on-stimulation period. The CLARA showed that electrical activity during preoperative and postoperative off-stimulation states was localized in cortical and subcortical areas, including the insular, middle frontal, mesial temporal, and precentral areas. No electrical activity was localized in deep nucleus structures. However, with CLARA, electrical activity in the postoperative on-stimulation period was localized in the anterior cingulate area, basal ganglia, and midbrain.CONCLUSIONSAnterior thalamic stimulation could spread electrical current to the underlying neuronal networks that connect with the thalamus, which functions as a cortical pacemaker. Consequently, the thalamus could modify electrical activity within these neuronal networks and influence cortical EEG activity by inducing neuronal synchronization between the thalamus and cortical structures.
Collapse
Affiliation(s)
| | | | - Heung-Dong Kim
- 4Department of Pediatrics, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Kang Min Park
- 3Neurology, Haeundae Paik Hospital, Inje University College of Medicine, Busan; and
| | - Sung Eun Kim
- 3Neurology, Haeundae Paik Hospital, Inje University College of Medicine, Busan; and
| | | |
Collapse
|
19
|
Shi L, Yang AC, Li JJ, Meng DW, Jiang B, Zhang JG. Favorable modulation in neurotransmitters: Effects of chronic anterior thalamic nuclei stimulation observed in epileptic monkeys. Exp Neurol 2015; 265:94-101. [DOI: 10.1016/j.expneurol.2015.01.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 12/21/2014] [Accepted: 01/08/2015] [Indexed: 10/24/2022]
|
20
|
Soukupová M, Binaschi A, Falcicchia C, Zucchini S, Roncon P, Palma E, Magri E, Grandi E, Simonato M. Impairment of GABA release in the hippocampus at the time of the first spontaneous seizure in the pilocarpine model of temporal lobe epilepsy. Exp Neurol 2014; 257:39-49. [PMID: 24768627 DOI: 10.1016/j.expneurol.2014.04.014] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 03/27/2014] [Accepted: 04/16/2014] [Indexed: 01/03/2023]
Abstract
The alterations in GABA release have not yet been systematically measured along the natural course of temporal lobe epilepsy. In this work, we analyzed GABA extracellular concentrations (using in vivo microdialysis under basal and high K(+)-evoked conditions) and loss of two GABA interneuron populations (parvalbumin and somatostatin neurons) in the ventral hippocampus at different time-points after pilocarpine-induced status epilepticus in the rat, i.e. during development and progression of epilepsy. We found that (i) during the latent period between the epileptogenic insult, status epilepticus, and the first spontaneous seizure, basal GABA outflow was reduced to about one third of control values while the number of parvalbumin-positive cells was reduced by about 50% and that of somatostatin-positive cells by about 25%; nonetheless, high K(+) stimulation increased extracellular GABA in a proportionally greater manner during latency than under control conditions; (ii) at the time of the first spontaneous seizure (i.e., when the diagnosis of epilepsy is made in humans) this increased responsiveness to stimulation disappeared, i.e. there was no longer any compensation for GABA cell loss; (iii) thereafter, this dysfunction remained constant until a late phase of the disease. These data suggest that a GABAergic hyper-responsiveness can compensate for GABA cell loss and protect from occurrence of seizures during latency, whereas impaired extracellular GABA levels can favor the occurrence of spontaneous recurrent seizures and the maintenance of an epileptic state.
Collapse
Affiliation(s)
- Marie Soukupová
- Department of Medical Sciences, Section of Pharmacology, Neuroscience Center, University of Ferrara, Italy; National Institute of Neuroscience, Italy.
| | - Anna Binaschi
- Department of Medical Sciences, Section of Pharmacology, Neuroscience Center, University of Ferrara, Italy; National Institute of Neuroscience, Italy
| | - Chiara Falcicchia
- Department of Medical Sciences, Section of Pharmacology, Neuroscience Center, University of Ferrara, Italy; National Institute of Neuroscience, Italy
| | - Silvia Zucchini
- Department of Medical Sciences, Section of Pharmacology, Neuroscience Center, University of Ferrara, Italy; National Institute of Neuroscience, Italy; Laboratory of Technologies for Advanced Therapy (LTTA), Technopole of Ferrara, Italy
| | - Paolo Roncon
- Department of Medical Sciences, Section of Pharmacology, Neuroscience Center, University of Ferrara, Italy; National Institute of Neuroscience, Italy
| | - Eleonora Palma
- Department of Physiology and Pharmacology University of Roma "Sapienza", Italy; IRCCS San Raffaele Pisana, Roma, Italy
| | - Eros Magri
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, University of Ferrara, Italy
| | - Enrico Grandi
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, University of Ferrara, Italy
| | - Michele Simonato
- Department of Medical Sciences, Section of Pharmacology, Neuroscience Center, University of Ferrara, Italy; National Institute of Neuroscience, Italy; Laboratory of Technologies for Advanced Therapy (LTTA), Technopole of Ferrara, Italy
| |
Collapse
|
21
|
Involvement of thalamus in initiation of epileptic seizures induced by pilocarpine in mice. Neural Plast 2014; 2014:675128. [PMID: 24778885 PMCID: PMC3981117 DOI: 10.1155/2014/675128] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Accepted: 02/05/2014] [Indexed: 01/31/2023] Open
Abstract
Studies have suggested that thalamus is involved in temporal lobe epilepsy, but the role of thalamus is still unclear. We obtained local filed potentials (LFPs) and single-unit activities from CA1 of hippocampus and parafascicular nucleus of thalamus during the development of epileptic seizures induced by pilocarpine in mice. Two measures, redundancy and directionality index, were used to analyze the electrophysiological characters of neuronal activities and the information flow between thalamus and hippocampus. We found that LFPs became more regular during the seizure in both hippocampus and thalamus, and in some cases LFPs showed a transient disorder at seizure onset. The variation tendency of the peak values of cross-correlation function between neurons matched the variation tendency of the redundancy of LFPs. The information tended to flow from thalamus to hippocampus during seizure initiation period no matter what the information flow direction was before the seizure. In some cases the information flow was symmetrically bidirectional, but none was found in which the information flowed from hippocampus to thalamus during the seizure initiation period. In addition, inactivation of thalamus by tetrodotoxin (TTX) resulted in a suppression of seizures. These results suggest that thalamus may play an important role in the initiation of epileptic seizures.
Collapse
|
22
|
Tian XB, Li RC, Bu HL, Liu C, Liu TT, Xiang HB, Lu CJ. The mechanism of electroacupuncture for predicting the efficacy of deep brain stimulation in pharmacoresistant epilepsy may be involved in the melanocortinergic signal. Epilepsy Behav 2013; 29:594-6. [PMID: 24113566 DOI: 10.1016/j.yebeh.2013.08.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 08/28/2013] [Indexed: 12/30/2022]
Affiliation(s)
- Xue-Bi Tian
- Department of Anesthesiology and Pain Medicine, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | | | | | | | | | | | | |
Collapse
|
23
|
Liu HG, Ma Y, Meng DW, Yang AC, Zhang JG. A rat model of hemidystonia induced by 3-nitropropionic acid. PLoS One 2013; 8:e79199. [PMID: 24194961 PMCID: PMC3806852 DOI: 10.1371/journal.pone.0079199] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 09/19/2013] [Indexed: 01/14/2023] Open
Abstract
OBJECTIVE Secondary dystonia commonly presents as hemidystonia and is often refractory to current treatments. We aimed to establish an inducible rat model of hemidystonia utilizing 3-nitropropionic acid (3-NP) and to determine the pathophysiology of this model. METHODS Two different doses of 3-NP were stereotactically administered into the ipsilateral caudate putamen (CPu) of Wistar rats. Behavioral changes and alterations in the neurotransmitter levels in the basal ganglia were analyzed. We also performed an electromyogram, 7.0-T magnetic resonance imaging and transmission electron microscopy examination to determine the pathophysiology of the model. RESULTS In the CPu region, 3-NP produced mitochondrial cristae rupture, axonal degeneration, increased excitatory synaptic vesicles and necrosis. The extracellular concentrations of excitatory amino acids increased, whereas the inhibitory amino acids decreased in the CPu. Furthermore, an imbalance of neurotransmitters was found in other regions of the basal ganglia with the exception of the external globus pallidus. This study demonstrated that 3-NP administration results in CPu damage, and combined with a neurotransmitter imbalance in the basal ganglia, it produces specific neurobehavioral changes in rats. Right limb (contralateral side of CPu lesion) and trunk dystonic postures, shortened step length and ipsiversive dystonic posturing were observed in these rats. Furthermore, EMG recordings confirmed that co-contraction of the agonist and antagonist muscles could be seen for several seconds in right limbs. CONCLUSIONS Stereotactic injection of 3-NP into the ipsilateral CPu of rats established an inducible model for hemidystonia. This effect might result from an imbalance of neurotransmitter levels, which induce dysfunctional activity of the basal ganglia mainly via the cortico-striato-GPi direct pathway. Symptoms in this model were present for 1 week. Activation of the cortico-striato-GPe indirect pathway and rebalance of neurotransmitters may lead to recovery. This rat model may be a suitable tool used to understand and further investigate the pathophysiology of dystonia.
Collapse
Affiliation(s)
- Huan-Guang Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yu Ma
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Da-Wei Meng
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - An-Chao Yang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jian-guo Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| |
Collapse
|
24
|
Yan N, Chen N, Lu J, Wang Y, Wang W. Electroacupuncture at acupoints could predict the outcome of anterior nucleus thalamus high-frequency electrical stimulation in medically refractory epilepsy. Med Hypotheses 2013; 81:426-8. [DOI: 10.1016/j.mehy.2013.06.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 04/10/2013] [Accepted: 06/01/2013] [Indexed: 01/14/2023]
|
25
|
Contributions of microdialysis to new alternative therapeutics for hepatic encephalopathy. Int J Mol Sci 2013; 14:16184-206. [PMID: 23921686 PMCID: PMC3759906 DOI: 10.3390/ijms140816184] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 07/24/2013] [Accepted: 07/29/2013] [Indexed: 02/07/2023] Open
Abstract
Hepatic encephalopathy (HE) is a common complication of cirrhosis, of largely reversible impairment of brain function occurring in patients with acute or chronic liver failure or when the liver is bypassed by portosystemic shunts. The mechanisms causing this brain dysfunction are still largely unclear. The need to avoid complications caused by late diagnosis has attracted interest to understand the mechanisms underlying neuronal damage in order to find markers that will allow timely diagnosis and to propose new therapeutic alternatives to improve the care of patients. One of the experimental approaches to study HE is microdialysis; this technique allows evaluation of different chemical substances in several organs through the recollection of samples in specific places by semi-permeable membranes. In this review we will discuss the contributions of microdialysis in the understanding of the physiological alterations in human hepatic encephalopathy and experimental models and the studies to find novel alternative therapies for this disease.
Collapse
|
26
|
Chen N, Yan N, Liu C, Ge Y, Zhang JG, Meng FG. Neuroprotective effects of electrical stimulation of the anterior nucleus of the thalamus for hippocampus neurons in intractable epilepsy. Med Hypotheses 2013; 80:517-9. [PMID: 23481284 DOI: 10.1016/j.mehy.2013.02.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 01/31/2013] [Accepted: 02/07/2013] [Indexed: 11/28/2022]
Abstract
Epilepsy and Parkinson's disease (PD) are common neurological disorders. Both epilepsy and PD are potentially progressive disabling diseases that can be treated with the established therapy of deep brain stimulation (DBS). The difference in therapy is target selection and stimulation parameter modulation. The anterior nucleus of the thalamus (ANT) is chosen for intractable epilepsy and the subthalamic nucleus (STN) is chosen for PD. Long-term stable symptom control of STN-DBS can be seen in PD patients while the positive effect of ANT-DBS can be observed in epilepsy patients. Experimental data and clinical evidence have been reported that indicate the neuroprotective property of STN-DBS could be found in PD patients. Therefore, we hypothesize that the neuroprotective benefits of ANT-DBS may be present in epilepsy patients.
Collapse
Affiliation(s)
- Ning Chen
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China
| | | | | | | | | | | |
Collapse
|