1
|
Systemic lupus erythematosus: genetic variants in Xq28 region. Reumatologia 2019; 57:264-270. [PMID: 31844338 PMCID: PMC6911245 DOI: 10.5114/reum.2019.89517] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 10/17/2019] [Indexed: 11/23/2022] Open
Abstract
Objectives Methyl-CpG-binding protein 2 (MECP2) and interleukin-1 receptor-associated kinase (IRAK1) are encoded by adjacent X-linked genes and recognized for their role in regulation of inflammation. The present case control study was conducted to detect the genetic association between MECP2 (rs1734791) and IRAK1 (rs1059703) single nucleotide polymorphisms (SNPs) and susceptibility to systemic lupus erythematosus (SLE), and the possible association of these SNPs and severity of SLE. Material and methods Fifty patients with SLE and 100 healthy controls were included in this study. Systemic Lupus International Collaborating Clinics (SLICC) criteria were used to classify SLE patients and the activity of the disease was assessed by SLEDAI score. Disease severity was assessed by the SLICC damage index (SLICC DI). Genetic association of both SNPs with SLE was assessed by Taq Man allelic discrimination technique. Results Analyses of MECP2 (rs1734791) SNP genotypes revealed that homozygous TT genotype was significantly higher in the control group than SLE patients (p < 0.001, odds ratio [OR] = 0.120). Frequency of allele (A) was significantly higher in SLE patients, (p < 0.001, OR = 0.334). SLE patients had significantly higher frequency of the homozygous AA and heterozygous AG genotype of IRAK1 (rs1059703) SNP in comparison to healthy controls (p = 0.0029, OR = 4.17 and 6.30 respectively). T+G and T+A of rs1734791 and rs1059703 SNPs are protective haplotypes (OR = 0.47 and 0.3, p = 0.0046 and < 0.012 respectively). No significant association between either SNP and disease activity or severity was found. Conclusions There is a possible genetic association between both rs1734791 and rs1059703 SNPs and susceptibility to SLE, while no significant association between either SNP and disease activity or severity was detected.
Collapse
|
2
|
Pecorelli A, Cordone V, Messano N, Zhang C, Falone S, Amicarelli F, Hayek J, Valacchi G. Altered inflammasome machinery as a key player in the perpetuation of Rett syndrome oxinflammation. Redox Biol 2019; 28:101334. [PMID: 31606551 PMCID: PMC6812177 DOI: 10.1016/j.redox.2019.101334] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 09/23/2019] [Accepted: 09/26/2019] [Indexed: 12/24/2022] Open
Abstract
Rett syndrome (RTT) is a progressive neurodevelopmental disorder mainly caused by mutations in the X-linked MECP2 gene. RTT patients show multisystem disturbances associated with an oxinflammatory status. Inflammasomes are multi-protein complexes, responsible for host immune responses against pathogen infections and redox-related cellular stress. Assembly of NLRP3/ASC inflammasome triggers pro-caspase-1 activation, thus, resulting in IL-1β and IL-18 maturation. However, an aberrant activation of inflammasome system has been implicated in several human diseases. Our aim was to investigate the possible role of inflammasome in the chronic subclinical inflammatory condition typical of RTT, by analyzing this complex in basal and lipopolysaccharide (LPS)+ATP-stimulated primary fibroblasts, as well as in serum from RTT patients and healthy volunteers. RTT cells showed increased levels of nuclear p65 and ASC proteins, pro-IL-1β mRNA, and NLRP3/ASC interaction in basal condition, without any further response upon the LPS + ATP stimuli. Moreover, augmented levels of circulating ASC and IL-18 proteins were found in serum of RTT patients, which are likely able to amplify the inflammatory response. Taken together, our findings suggest that RTT patients exhibited a challenged inflammasome machinery at cellular and systemic level, which may contribute to the subclinical inflammatory state feedback observed in this pathology. RTT cell shows a constitutive NFκB activation. Aberrant activation of inflammasome system is evident in RTT. This new evidence can explain the demonstrated subclinical inflammation in RTT.
Collapse
Affiliation(s)
- Alessandra Pecorelli
- Plants for Human Health Institute, Dept. of Animal Science, NC Research Campus, NC State University, Kannapolis, 28081, NC, USA
| | - Valeria Cordone
- Plants for Human Health Institute, Dept. of Animal Science, NC Research Campus, NC State University, Kannapolis, 28081, NC, USA; Dept. of Biomedical and Specialist Surgical Sciences, University of Ferrara, 44121, Ferrara, Italy
| | - Nicolò Messano
- Plants for Human Health Institute, Dept. of Animal Science, NC Research Campus, NC State University, Kannapolis, 28081, NC, USA
| | - Changqing Zhang
- Plants for Human Health Institute, Dept. of Plant and Microbial Biology, NC Research Campus, NC State University, Kannapolis, 28081, NC, USA
| | - Stefano Falone
- Dept. of Life, Health and Environmental Sciences, University of L'Aquila, 67100, L'Aquila, Italy
| | - Fernanda Amicarelli
- Dept. of Life, Health and Environmental Sciences, University of L'Aquila, 67100, L'Aquila, Italy
| | - Joussef Hayek
- Child Neuropsychiatry Unit, University General Hospital, Azienda Ospedaliera Universitaria Senese, 53100, Siena, Italy
| | - Giuseppe Valacchi
- Plants for Human Health Institute, Dept. of Animal Science, NC Research Campus, NC State University, Kannapolis, 28081, NC, USA; Dept. of Biomedical and Specialist Surgical Sciences, University of Ferrara, 44121, Ferrara, Italy; Dept. of Food and Nutrition, Kyung Hee University, 02447, Seoul, South Korea.
| |
Collapse
|
3
|
InanlooRahatloo K, Peymani F, Kahrizi K, Najmabadi H. Whole-Transcriptome Analysis Reveals Dysregulation of Actin-Cytoskeleton Pathway in Intellectual Disability Patients. Neuroscience 2019; 404:423-444. [PMID: 30742961 DOI: 10.1016/j.neuroscience.2019.01.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 01/07/2019] [Accepted: 01/17/2019] [Indexed: 12/14/2022]
Abstract
A significant level of genetic heterogeneity has been demonstrated in intellectual disability (ID). More than 700 genes have been identified in ID patients. To identify molecular pathways underlying this heterogeneity, we applied whole-transcriptome analysis using RNA-Seq in consanguineous families with ID. Significant changes in expression of genes related to neuronal and actin cytoskeletal functions were observed in all the ID families. Remarkably, we found a significant down-regulation of SHTN1 gene and up-regulation of FGFR2 gene in all ID patients. FGFR2, but not SHTN1, was previously reported as an ID causing gene. Detailed gene ontology analyses identified pathways linked to tyrosine protein kinase, actin cytoskeleton, and axonogenesis to be affected in ID patients. The findings reported here provide new insights into the candidate genes and molecular pathways underling ID and highlight the key role of actin cytoskeleton in etiology of ID.
Collapse
Affiliation(s)
- Kolsoum InanlooRahatloo
- School of Biology, College of Science, University of Tehran, Tehran, Iran; Genetic Research Center, University of social welfare and Rehabilitation Sciences, Tehran, Iran.
| | - Fatemeh Peymani
- Genetic Research Center, University of social welfare and Rehabilitation Sciences, Tehran, Iran
| | - Kimia Kahrizi
- Genetic Research Center, University of social welfare and Rehabilitation Sciences, Tehran, Iran
| | - Hossein Najmabadi
- Genetic Research Center, University of social welfare and Rehabilitation Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Yang T, Wang Y, Jiang S, Liu X, Yu Z. Hepatocyte growth factor-induced differentiation of bone mesenchymal stem cells toward hepatocyte-like cells occurs through nuclear factor-kappa B signaling in vitro. Cell Biol Int 2016; 40:1017-23. [PMID: 27249785 DOI: 10.1002/cbin.10630] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Accepted: 05/26/2016] [Indexed: 01/19/2023]
Abstract
Hepatocyte growth factor (HGF) is multifaceted cytokine that regulates proliferation, differentiation, morphology, and motility within numerous stem cells. More recently, HGF has been reported to induce the differentiation of bone mesenchymal stem cells (BMSCs) into mature hepatocytes, but the underlying biochemical and molecular signaling is largely unknown. We isolated BMSC from the bone marrow of rats, which were then cultured and exposed to HGF for 15 days. We subsequently assayed these cells for liver functionality and markers, and blocked NF-кB signaling at various stages of the pathway. The present results demonstrate that HGF induces the differentiation of BMSCs toward hepatocyte-like cells through the NF-кB signaling. More specifically, HGF upregulated the translocation of NF-кB to the nucleus.
Collapse
Affiliation(s)
- Tongxi Yang
- Department of Cell Biology, School of Basic Medicine, Qingdao University, Qingdao City, Shandong Province, 266000, China
| | - Yi Wang
- Department of Cell Biology, School of Basic Medicine, Qingdao University, Qingdao City, Shandong Province, 266000, China
| | - Shasha Jiang
- Department of Cell Biology, School of Basic Medicine, Qingdao University, Qingdao City, Shandong Province, 266000, China
| | - Xiaoping Liu
- Department of Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao City, Shandong Province, 266000, China
| | - Zhongjie Yu
- Department of Cell Biology, School of Basic Medicine, Qingdao University, Qingdao City, Shandong Province, 266000, China
| |
Collapse
|
5
|
Das E, Bhattacharyya NP. MicroRNA-432 contributes to dopamine cocktail and retinoic acid induced differentiation of human neuroblastoma cells by targeting NESTIN and RCOR1 genes. FEBS Lett 2014; 588:1706-14. [DOI: 10.1016/j.febslet.2014.03.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 02/01/2014] [Accepted: 03/09/2014] [Indexed: 12/13/2022]
|
6
|
Kasprzyk L, Defossez PA, Miotto B. [Epigenetic regulation in neuronal differentiation and brain function]. Biol Aujourdhui 2013; 207:1-17. [PMID: 23694721 DOI: 10.1051/jbio/2013001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2012] [Indexed: 11/15/2022]
Abstract
DNA methylation compacts chromatin structure and represses gene transcription. It is important for numerous cellular processes, including embryonic development, X-chromosome inactivation, suppression of transposable elements, and cellular differentiation. In addition, environmental cues, including drugs, pollutants, trauma or early-life social environment, alter DNA methylation patterns in different organs. For instance, studies have unravelled a complex and dynamic interplay between environment, DNA methylation and neuron function during development and in the adult. This crosstalk is hypothesized as an essential molecular event underlying the effects of long-term memory, drug addiction, and several psychotic and behavioural disorders. In this review, we give a summary of this exciting field of research and highlight the molecular functions of DNA methylation and of proteins interacting with methylated DNA.
Collapse
Affiliation(s)
- Laetitia Kasprzyk
- Unité d'Épigénétique et Destin Cellulaire, CNRS UMR7216, Université Paris Diderot 35, rue Hélène Brion, 75205 Paris Cedex 13, France
| | | | | |
Collapse
|