1
|
Conti G, Poupakis S, Ekamper P, Bijwaard GE, Lumey LH. Severe prenatal shocks and adolescent health: Evidence from the Dutch Hunger Winter. ECONOMICS AND HUMAN BIOLOGY 2024; 53:101372. [PMID: 38564976 DOI: 10.1016/j.ehb.2024.101372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 02/23/2024] [Accepted: 03/01/2024] [Indexed: 04/04/2024]
Abstract
This paper investigates health impacts at the end of adolescence of prenatal exposure to multiple shocks, by exploiting the unique natural experiment of the Dutch Hunger Winter. At the end of World War II, a famine occurred abruptly in the Western Netherlands (November 1944-May 1945), pushing the previously and subsequently well-nourished Dutch population to the brink of starvation. We link high-quality military recruits data with objective health measurements for the cohorts born in the years surrounding WWII with newly digitised historical records on calories and nutrient composition of the war rations, daily temperature, and warfare deaths. Using difference-in-differences and triple differences research designs, we first show that the cohorts exposed to the Dutch Hunger Winter since early gestation have a higher Body Mass Index and an increased probability of being obese at age 18. We then find that this effect is partly moderated by warfare exposure and a reduction in energy-adjusted protein intake. Lastly, we account for selective mortality using a copula-based approach and newly-digitised data on survival rates, and find evidence of both selection and scarring effects. These results emphasise the complexity of the mechanisms at play in studying the consequences of early conditions.
Collapse
Affiliation(s)
- Gabriella Conti
- Department of Economics and Social Research Institute, University College London, United Kingdom; Institute for Fiscal Studies, CEPR, United Kingdom; IZA, Germany.
| | - Stavros Poupakis
- Department of Economics and Finance, Brunel University London, United Kingdom
| | - Peter Ekamper
- Netherlands Interdisciplinary Demographic Institute, KNAW,, Netherlands; University of Groningen, Netherlands
| | - Govert E Bijwaard
- IZA, Germany; Netherlands Interdisciplinary Demographic Institute, KNAW,, Netherlands; University of Groningen, Netherlands
| | - L H Lumey
- Department of Epidemiology, Mailman School of Public Health, Columbia University, United States of America
| |
Collapse
|
2
|
Wang M, Feng N, Qin J, Wang S, Chen J, Qian S, Liu Y, Luo F. Abdominal surgery under ketamine anesthesia during second trimester impairs hippocampal learning and memory of offspring by regulating dendrite spine remodeling in rats. Neurotoxicology 2024; 101:82-92. [PMID: 38346645 DOI: 10.1016/j.neuro.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/01/2024] [Accepted: 02/07/2024] [Indexed: 02/23/2024]
Abstract
Recent evidence showed that general anesthesia produces long-term neurotoxicity and cognitive dysfunction. However, it remains unclear whether maternal non-obstetric surgery under ketamine anesthesia during second trimester causes cognitive impairment in offspring. The present study assigned pregnant rats into three groups: 1) normal control group receiving no anesthesia and no surgery, 2) ketamine group receiving ketamine anesthesia for 2 h on the 14th day of gestation but no surgery, and 3) surgery group receiving abdominal surgery under ketamine anesthesia on the 14th day of gestation. On postnatal day 1, the offspring rats in Ketamine group and surgery group were assigned to receive intra-peritoneal injection of Senegenin (15 mg/kg), once per day for consecutive 14 days. The offspring's spatial perception, anxiety-like behavior, and learning and memory were evaluated. Then the offspring's hippocampal tissues were collected. The offspring of the surgery group were impaired in the spatial perception in the cliff avoidance test and the spatial learning and memory in the Morris water maze test. Accordingly, the activity of histone deacetylases increased, the protein levels of NEDD9, BDNF, p-TrkB, Syn and PSD-95 decreased, and the density of dendritic spines reduced in the hippocampus of the offspring of the surgery group, and such effects were not seen in the offspring of the ketamine group, neither in the offspring of control group. Senegenin alleviated the learning and memory impairment, and increased the protein levels of NEDD9, BDNF, p-TrkB, Syn and PSD-95 and the density of dendritic spines in the offspring of the surgery group. ketamine anesthesia plus surgery during second trimester impairs hippocampus-dependent learning and memory, and the deficits could be rescued by treatment with Senegenin.
Collapse
Affiliation(s)
- Mengdie Wang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| | - Namin Feng
- Department of Anesthesiology, the First Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710061, China
| | - Jia Qin
- Rehabilitation Medical Center and Department of Anesthesiology, Zhejiang Provincial People's Hospital and Hangzhou Medical College Affiliated People's Hospital, Hangzhou, Zhejiang 310000, China
| | - Shengqiang Wang
- Department of Anesthesiology, Yichun People's Hospital, Yichun 336000, China
| | - Jiabao Chen
- Rehabilitation Medical Center and Department of Anesthesiology, Zhejiang Provincial People's Hospital and Hangzhou Medical College Affiliated People's Hospital, Hangzhou, Zhejiang 310000, China
| | - Shaojie Qian
- Rehabilitation Medical Center and Department of Anesthesiology, Zhejiang Provincial People's Hospital and Hangzhou Medical College Affiliated People's Hospital, Hangzhou, Zhejiang 310000, China
| | - Yulin Liu
- Department of Immunology, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Foquan Luo
- Rehabilitation Medical Center and Department of Anesthesiology, Zhejiang Provincial People's Hospital and Hangzhou Medical College Affiliated People's Hospital, Hangzhou, Zhejiang 310000, China.
| |
Collapse
|
3
|
Crombie GK, Palliser HK, Shaw JC, Hanley BA, Moloney RA, Hirst JJ. Prenatal Stress Induces Translational Disruption Associated with Myelination Deficits. Dev Neurosci 2023; 45:290-308. [PMID: 37004512 DOI: 10.1159/000530282] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 03/03/2023] [Indexed: 04/03/2023] Open
Abstract
Disruptions to neurodevelopment are known to be linked to behavioral disorders in childhood and into adulthood. The fetal brain is extremely vulnerable to stimuli that alter inhibitory GABAergic pathways and critical myelination processes, programing long-term neurobehavioral disruption. The maturation of the GABAergic system into the major inhibitory pathway in the brain and the development of oligodendrocytes into mature cells capable of producing myelin are integral components of optimal neurodevelopment. The current study aimed to elucidate prenatal stress-induced mechanisms that disrupt these processes and to delineate the role of placental pathways in these adverse outcomes. Pregnant guinea pig dams were exposed to prenatal stress with strobe light exposure for 2 h/day on gestational age (GA) 35, 40, 45, 50, 55, 60, and 65, and groups of fetuses and placentae were collected after the stress exposure on GA40, GA50, GA60, and GA69 (term). Fetal plasma, placental, and brain tissue were collected for allopregnanolone and cortisol quantification with ELISA. Relative mRNA expression of genes of specific pathways of interest was examined with real-time PCR in placental and hippocampal tissue, and myelin basic protein (MBP) was quantified immunohistochemically in the hippocampus and surrounding regions for assessment of mature myelin. Prenatal stress in mid-late gestation resulted in disruptions to the translational machinery responsible for the production of myelin and decreased myelin coverage in the hippocampus and surrounding regions. The male placenta showed an initial protective increase in allopregnanolone concentrations in response to maternal psychosocial stress. The male and female placentae had a sex-dependent increase in neurosteroidogenic enzymes at term following prenatal stress. Independent from exposure to prenatal stress, at gestational day 60 - a critical period for myelin development, the placentae of female fetuses had increased capability of preventing cortisol transfer to the fetus through expression of 11-beta-hydroxysteroid dehydrogenase types 1 and 2. The deficits early in the process of maturation of myelination indicate that the reduced myelination observed at childhood equivalence in previous studies begins in fetal life. This negative programing persists into childhood, potentially due to dysregulation of MBP translation processes. Expression patterns of neurosteroidogenic enzymes in the placenta at term following stress may identify at-risk fetuses that have been exposed to a stressful in utero environment.
Collapse
Affiliation(s)
- Gabrielle K Crombie
- Mothers and Babies Research Centre, Hunter Medical Research Institute, Newcastle, New South Wales, Australia
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, New South Wales, Australia
| | - Hannah K Palliser
- Mothers and Babies Research Centre, Hunter Medical Research Institute, Newcastle, New South Wales, Australia
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, New South Wales, Australia
| | - Julia C Shaw
- Mothers and Babies Research Centre, Hunter Medical Research Institute, Newcastle, New South Wales, Australia
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, New South Wales, Australia
| | - Bethany A Hanley
- Mothers and Babies Research Centre, Hunter Medical Research Institute, Newcastle, New South Wales, Australia
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, New South Wales, Australia
| | - Roisin A Moloney
- Mothers and Babies Research Centre, Hunter Medical Research Institute, Newcastle, New South Wales, Australia
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, New South Wales, Australia
| | - Jonathan J Hirst
- Mothers and Babies Research Centre, Hunter Medical Research Institute, Newcastle, New South Wales, Australia
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, New South Wales, Australia
| |
Collapse
|
4
|
Medeiros LDS, Rodrigues PDS, Santos DNL, Silva-Sampaio AC, Kirsten TB, Suffredini IB, Coque ADC, da Silva RA, Bernardi MM. Prenatal restraint stress downregulates the hypothalamic kisspeptidergic system transcripts genes, reduces the estrogen plasma levels, delayed the onset of puberty, and reduced the sexual behavior intensity in female rats. Physiol Behav 2023; 260:114055. [PMID: 36563733 DOI: 10.1016/j.physbeh.2022.114055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 10/28/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022]
Abstract
AIMS This study investigated the possible relationships between the expression of the Kiss1 and Gpr54 gene expressions and the pituitary-gonadal hormones with the female onset of puberty and sexual behavior. The Kiss1 and Gpr54 gene expressions were examined because they are critical to controlling the hypothalamic activation of GnRH neurons and, in turn, the pituitary-gonadal hormones related to the early onset of puberty and sexual behavior. Further, it was evaluated that the pituitary and gonadal hormones involved in the vaginal opening and the expression of sexual behavior. METHODS Pregnant rats exposed to PRS from gestation days 17 to 20 were evaluated for maternal and open-field behaviors. The maternal behavior was analyzed because it may alter brain sexual organization affecting the pups development. It was observed in female pups the physical and development and, in adult age, the open-field behavior, the anxiety-like behavior, the estrous cycle, the sexual behavior, the serum FSH, LH, estrogen, progesterone, and testosterone levels, and the gene expression of kisspeptin protein (Kiss1) and Gpr54 in the hypothalamus. RESULTS the maternal and open-field behaviors were unaffected. In the F1 generation, PRS reduced weight at weaning, delayed the day of the vaginal opening and reduced the intensity of lordosis, the estrogen levels, and the Kiss1 and Gpr54 gene expression. These effects were attributed to hypothalamic kisspeptidergic system downregulation of transcripts genes and the reduced estrogen levels affected by the PRS.
Collapse
Affiliation(s)
- Loren da Silva Medeiros
- Psychoneuroimmunology Laboratory, Graduate Program in Environmental and Experimental Pathology, Paulista University, Rua Dr. Bacelar, 1212, São Paulo, SP 04026-002, Brazil
| | - Paula da Silva Rodrigues
- Psychoneuroimmunology Laboratory, Graduate Program in Environmental and Experimental Pathology, Paulista University, Rua Dr. Bacelar, 1212, São Paulo, SP 04026-002, Brazil
| | - Daniel Nascimento Lago Santos
- Psychoneuroimmunology Laboratory, Graduate Program in Environmental and Experimental Pathology, Paulista University, Rua Dr. Bacelar, 1212, São Paulo, SP 04026-002, Brazil
| | - Ana Claudia Silva-Sampaio
- Psychoneuroimmunology Laboratory, Graduate Program in Environmental and Experimental Pathology, Paulista University, Rua Dr. Bacelar, 1212, São Paulo, SP 04026-002, Brazil
| | - Thiago Berti Kirsten
- Psychoneuroimmunology Laboratory, Graduate Program in Environmental and Experimental Pathology, Paulista University, Rua Dr. Bacelar, 1212, São Paulo, SP 04026-002, Brazil
| | - Ivana Barbosa Suffredini
- Núcleo de Pesquisas em Biodiversidade, Laboratório de Extração, Universidade Paulista - UNIP, Av. Paulista, 900, São Paulo, SP 01310-100, Brazil
| | - Alex de Camargo Coque
- Psychoneuroimmunology Laboratory, Graduate Program in Environmental and Experimental Pathology, Paulista University, Rua Dr. Bacelar, 1212, São Paulo, SP 04026-002, Brazil
| | - Rodrigo Augusto da Silva
- Psychoneuroimmunology Laboratory, Graduate Program in Environmental and Experimental Pathology, Paulista University, Rua Dr. Bacelar, 1212, São Paulo, SP 04026-002, Brazil; School of Dentistry, Graduate Program in Health Sciences, University of Taubaté, Rua dos Operários, 9, Taubaté, SP 12020-340, Brazil
| | - Maria Martha Bernardi
- Psychoneuroimmunology Laboratory, Graduate Program in Environmental and Experimental Pathology, Paulista University, Rua Dr. Bacelar, 1212, São Paulo, SP 04026-002, Brazil.
| |
Collapse
|
5
|
Ssewanyana D, Knight JA, Matthews SG, Wong J, Khani NA, Lye J, Murphy KE, Foshay K, Okeke J, Lye SJ, Hung RJ. Maternal prenatal psychological distress and vitamin intake with children's neurocognitive development. Pediatr Res 2022; 92:1450-1457. [PMID: 35288638 DOI: 10.1038/s41390-022-02003-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 01/06/2022] [Accepted: 02/06/2022] [Indexed: 11/09/2022]
Abstract
BACKGROUND Maternal prenatal psychological distress (PPD) is increasingly linked to sub-optimal child neurodevelopment. Daily intake of prenatal vitamin during pre-conception and early pregnancy may ameliorate the effects of PPD on cognition in the offspring. METHODS PPD was assessed in early (12-16 weeks) and late (28-32 weeks) gestation in the Ontario Birth Study. Prenatal vitamin supplement intake information was collected in early gestation. Child cognition at 4 years was assessed using the NIH Toolbox. Poisson regression was used to investigate associations between PPD and/or prenatal vitamin intake and child cognition. RESULTS Four hundred and eighteen mother-child dyads were assessed. Moderate-severe PPD experienced during early gestation was associated with reduced cognition (adjusted incidence rate ratio (IRRadj) = 3.71, 95% confidence interval (CI): 1.57-8.77, P = 0.003). Daily intake of prenatal vitamins was not associated with cognition (IRRadj = 1.34, 95% CI: 0.73-2.46, P = 0.34). Upon stratification, the experience of mild-severe PPD with daily intake of prenatal vitamins was associated with higher incident rates of suboptimal cognition compared to children of women with daily prenatal vitamin intake without any episode of PPD (IRRadj = 2.88, 95% CI: 1.1-7.4). CONCLUSIONS Moderate-severe PPD in early pregnancy is associated with poor cognition in children and daily intake of prenatal vitamin did not ameliorate this association. IMPACT Our findings expand on existing literature by highlighting that exposure to prenatal psychological distress (PPD), in moderate-to-severe form, in the early stages of pregnancy, can have detrimental effects on the offspring's cognitive development at 4 years. Overall, prenatal vitamin intake did not ameliorate the effects of PPD. Early screening and treatment of prenatal maternal mental illness is crucial.
Collapse
Affiliation(s)
- Derrick Ssewanyana
- Alliance for Human Development, Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON, Canada.,Prosserman Centre for Population Health Research, Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON, Canada
| | - Julia A Knight
- Prosserman Centre for Population Health Research, Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON, Canada.,Division of Epidemiology, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Stephen G Matthews
- Alliance for Human Development, Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON, Canada.,Department of Physiology, University of Toronto, Toronto, ON, Canada.,Department of Medicine, University of Toronto, Toronto, ON, Canada.,Department of Obstetrics and Gynaecology, University of Toronto, Toronto, ON, Canada.,Department of Obstetrics and Gynaecology, Sinai Health System, Toronto, ON, Canada
| | - Jody Wong
- Prosserman Centre for Population Health Research, Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON, Canada
| | - Nadya Adel Khani
- Prosserman Centre for Population Health Research, Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON, Canada
| | - Jennifer Lye
- Prosserman Centre for Population Health Research, Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON, Canada
| | - Kellie E Murphy
- Department of Obstetrics and Gynaecology, University of Toronto, Toronto, ON, Canada.,Department of Obstetrics and Gynaecology, Sinai Health System, Toronto, ON, Canada
| | - Kim Foshay
- Department of Obstetrics and Gynaecology, Sinai Health System, Toronto, ON, Canada
| | - Justin Okeke
- Department of Obstetrics and Gynaecology, Sinai Health System, Toronto, ON, Canada
| | - Stephen J Lye
- Alliance for Human Development, Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON, Canada.,Department of Physiology, University of Toronto, Toronto, ON, Canada.,Department of Medicine, University of Toronto, Toronto, ON, Canada.,Department of Obstetrics and Gynaecology, University of Toronto, Toronto, ON, Canada.,Department of Obstetrics and Gynaecology, Sinai Health System, Toronto, ON, Canada
| | - Rayjean J Hung
- Prosserman Centre for Population Health Research, Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON, Canada. .,Division of Epidemiology, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
6
|
Reemst K, Ruigrok SR, Bleker L, Naninck EFG, Ernst T, Kotah JM, Lucassen PJ, Roseboom TJ, Pollux BJA, de Rooij SR, Korosi A. Sex-dependence and comorbidities of the early-life adversity induced mental and metabolic disease risks: Where are we at? Neurosci Biobehav Rev 2022; 138:104627. [PMID: 35339483 DOI: 10.1016/j.neubiorev.2022.104627] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 02/15/2022] [Accepted: 03/13/2022] [Indexed: 01/02/2023]
Abstract
Early-life adversity (ELA) is a major risk factor for developing later-life mental and metabolic disorders. However, if and to what extent ELA contributes to the comorbidity and sex-dependent prevalence/presentation of these disorders remains unclear. We here comprehensively review and integrate human and rodent ELA (pre- and postnatal) studies examining mental or metabolic health in both sexes and discuss the role of the placenta and maternal milk, key in transferring maternal effects to the offspring. We conclude that ELA impacts mental and metabolic health with sex-specific presentations that depend on timing of exposure, and that human and rodent studies largely converge in their findings. ELA is more often reported to impact cognitive and externalizing domains in males, internalizing behaviors in both sexes and concerning the metabolic dimension, adiposity in females and insulin sensitivity in males. Thus, ELA seems to be involved in the origin of the comorbidity and sex-specific prevalence/presentation of some of the most common disorders in our society. Therefore, ELA-induced disease states deserve specific preventive and intervention strategies.
Collapse
Affiliation(s)
- Kitty Reemst
- University of Amsterdam, Swammerdam Institute of Life Sciences, Center for Neuroscience, Brain Plasticity Group, Amsterdam, The Netherlands
| | - Silvie R Ruigrok
- University of Amsterdam, Swammerdam Institute of Life Sciences, Center for Neuroscience, Brain Plasticity Group, Amsterdam, The Netherlands
| | - Laura Bleker
- Amsterdam University Medical Center, University of Amsterdam, Department of Epidemiology and Data Science, Amsterdam, The Netherlands
| | - Eva F G Naninck
- University of Amsterdam, Swammerdam Institute of Life Sciences, Center for Neuroscience, Brain Plasticity Group, Amsterdam, The Netherlands
| | - Tiffany Ernst
- Wageningen University, Department of Animal Sciences, Experimental Zoology &Evolutionary Biology Group, Wageningen, The Netherlands
| | - Janssen M Kotah
- University of Amsterdam, Swammerdam Institute of Life Sciences, Center for Neuroscience, Brain Plasticity Group, Amsterdam, The Netherlands
| | - Paul J Lucassen
- University of Amsterdam, Swammerdam Institute of Life Sciences, Center for Neuroscience, Brain Plasticity Group, Amsterdam, The Netherlands; Centre for Urban Mental Health, University of Amsterdam, The Netherlands
| | - Tessa J Roseboom
- Amsterdam University Medical Center, University of Amsterdam, Department of Epidemiology and Data Science, Amsterdam, The Netherlands
| | - Bart J A Pollux
- Wageningen University, Department of Animal Sciences, Experimental Zoology &Evolutionary Biology Group, Wageningen, The Netherlands
| | - Susanne R de Rooij
- Amsterdam University Medical Center, University of Amsterdam, Department of Epidemiology and Data Science, Amsterdam, The Netherlands
| | - Aniko Korosi
- University of Amsterdam, Swammerdam Institute of Life Sciences, Center for Neuroscience, Brain Plasticity Group, Amsterdam, The Netherlands.
| |
Collapse
|
7
|
Crombie GK, Palliser HK, Shaw JC, Hodgson DM, Walker DW, Hirst JJ. Neurosteroid-based intervention using Ganaxolone and Emapunil for improving stress-induced myelination deficits and neurobehavioural disorders. Psychoneuroendocrinology 2021; 133:105423. [PMID: 34601389 DOI: 10.1016/j.psyneuen.2021.105423] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 09/11/2021] [Accepted: 09/19/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Prenatal stress is associated with long-term disturbances in white matter development and behaviour in children, such as attention deficit hyperactivity disorder (ADHD) and anxiety. Oligodendrocyte maturation and myelin formation is a tightly orchestrated process beginning during gestation, and therefore is very vulnerable to the effects of maternal prenatal stresses in mid-late pregnancy. The current study aimed to examine the effects of prenatal stress on components of the oligodendrocyte lineage to identify the key processes that are disrupted and to determine if postnatal therapies directed at ameliorating white matter deficits also improve behavioural outcomes. METHODS Pregnant guinea pig dams were exposed to control-handling or prenatal stress with strobe light exposure for 2hrs/day on gestational age (GA) 50, 55, 60 and 65, and allowed to spontaneously deliver ~GA70. Pups were administered oral ganaxolone (5 mg/kg/day in 45% cyclodextrin) or the TSPO agonist, emapunil (XBD173; 0.3 mg/kg/day in 1% tragacanth gum) or vehicle, on postnatal days (PND) 1-7. Behavioural outcomes were assessed using open field and elevated plus maze testing on PND7 and PND27. Hippocampal samples were collected at PND30 to assess markers of oligodendrocyte development through assessment of total oligodendrocytes (OLIG2) and mature cells (myelin basic protein; MBP), and total neurons (NeuN) by immunostaining. Real-time PCR was conducted on hippocampal regions to assess markers of the oligodendrocyte lineage, markers of neurogenesis and components of the neurosteroidogenesis pathway. Plasma samples were collected for steroid quantification of cortisol, allopregnanolone, progesterone and testosterone by ELISA. RESULTS Prenatal stress resulted in hyperactivity in male offspring, and anxiety-like behaviour in female offspring in the guinea pig at an age equivalent to late childhood. Postnatal ganaxolone and emapunil treatment after prenatal stress restored the behavioural phenotype to that of control in females only. The oligodendrocyte maturation lineage, translation of MBP mRNA-to-protein, and neurogenesis were disrupted in prenatally-stressed offspring, resulting in a decreased amount of mature myelin. Emapunil treatment restored mature myelin levels in both sexes, and reversed disruptions to the oligodendrocyte lineage in female offspring, an effect not seen with ganaxolone treatment. CONCLUSION The marked and persisting behavioural and white matter perturbations observed in a clinically relevant guinea pig model of prenatal stress highlights the need for postnatal interventions that increase myelin repair and improve long-term outcomes. The effectiveness of emapunil treatment in restoring female offspring behaviour, and promoting maturation of myelin indicates that early therapeutic interventions can reverse the damaging effects of major stressful events in pregnancy. Further studies optimising target mechanisms and dosing are warranted.
Collapse
Affiliation(s)
- Gabrielle K Crombie
- Mothers and Babies Research Centre, Hunter Medical Research Institute, Newcastle, NSW, Australia; School of Biomedical Sciences and Pharmacy, University of Newcastle, NSW, Australia.
| | - Hannah K Palliser
- Mothers and Babies Research Centre, Hunter Medical Research Institute, Newcastle, NSW, Australia; School of Biomedical Sciences and Pharmacy, University of Newcastle, NSW, Australia
| | - Julia C Shaw
- Mothers and Babies Research Centre, Hunter Medical Research Institute, Newcastle, NSW, Australia; School of Biomedical Sciences and Pharmacy, University of Newcastle, NSW, Australia
| | | | - David W Walker
- School of Health and Biomedical Sciences, RMIT University, VIC, Australia
| | - Jonathan J Hirst
- Mothers and Babies Research Centre, Hunter Medical Research Institute, Newcastle, NSW, Australia; School of Biomedical Sciences and Pharmacy, University of Newcastle, NSW, Australia
| |
Collapse
|
8
|
Franke K, Van den Bergh BRH, de Rooij SR, Kroegel N, Nathanielsz PW, Rakers F, Roseboom TJ, Witte OW, Schwab M. Effects of maternal stress and nutrient restriction during gestation on offspring neuroanatomy in humans. Neurosci Biobehav Rev 2020; 117:5-25. [PMID: 32001273 PMCID: PMC8207653 DOI: 10.1016/j.neubiorev.2020.01.031] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 01/23/2020] [Accepted: 01/24/2020] [Indexed: 01/06/2023]
Abstract
Cognitive and mental health are major determinants of quality of life, allowing integration into society at all ages. Human epidemiological and animal studies indicate that in addition to genetic factors and lifestyle, prenatal environmental influences may program neuropsychiatric disorders in later life. While several human studies have examined the effects of prenatal stress and nutrient restriction on brain function and mental health in later life, potentially mediating effects of prenatal stress and nutrient restriction on offspring neuroanatomy in humans have been studied only in recent years. Based on neuroimaging and anatomical data, we comprehensively review the studies in this emerging field. We relate prenatal environmental influences to neuroanatomical abnormalities in the offspring, measured in utero and throughout life. We also assess the relationship between neuroanatomical abnormalities and cognitive and mental disorders. Timing- and gender-specific effects are considered, if reported. Our review provides evidence for adverse effects of an unfavorable prenatal environment on structural brain development that may contribute to the risk for cognitive, behavioral and mental health problems throughout life.
Collapse
Affiliation(s)
- Katja Franke
- Department of Neurology, Jena University Hospital, Jena, Germany.
| | - Bea R H Van den Bergh
- Research Group on Health Psychology, Faculty of Psychology and Educational Sciences, KU Leuven, Leuven, Belgium; Department for Welfare, Public Health and Family, Flemish Government, Brussels, Belgium
| | - Susanne R de Rooij
- Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Amsterdam University Medical Centres, University of Amsterdam, The Netherlands
| | - Nasim Kroegel
- Department of Neurology, Jena University Hospital, Jena, Germany; acatech - National Academy of Science and Engineering, Berlin, Germany
| | - Peter W Nathanielsz
- Texas Pregnancy & Life Course Health Research Center, Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, United States; Dept. of Animal Science, University of Wyoming, Laramie, WY, United States
| | - Florian Rakers
- Department of Neurology, Jena University Hospital, Jena, Germany
| | - Tessa J Roseboom
- Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Amsterdam University Medical Centres, University of Amsterdam, The Netherlands; Department of Obstetrics and Gynaecology, Amsterdam University Medical Centres, University of Amsterdam, The Netherlands
| | - Otto W Witte
- Department of Neurology, Jena University Hospital, Jena, Germany
| | - Matthias Schwab
- Department of Neurology, Jena University Hospital, Jena, Germany
| |
Collapse
|
9
|
Braun K, Bock J, Wainstock T, Matas E, Gaisler-Salomon I, Fegert J, Ziegenhain U, Segal M. Experience-induced transgenerational (re-)programming of neuronal structure and functions: Impact of stress prior and during pregnancy. Neurosci Biobehav Rev 2020; 117:281-296. [DOI: 10.1016/j.neubiorev.2017.05.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 05/23/2017] [Accepted: 05/24/2017] [Indexed: 12/11/2022]
|
10
|
Effects of Maternal Chewing on Prenatal Stress-Induced Cognitive Impairments in the Offspring via Multiple Molecular Pathways. Int J Mol Sci 2020; 21:ijms21165627. [PMID: 32781547 PMCID: PMC7460630 DOI: 10.3390/ijms21165627] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/03/2020] [Accepted: 08/03/2020] [Indexed: 12/14/2022] Open
Abstract
We aimed to investigate the effects of maternal chewing on prenatal stress-induced cognitive impairments in the offspring and to explore the molecular pathways of maternal chewing in a mice model. Maternal chewing ameliorated spatial learning impairments in the offspring in a Morris water maze test. Immunohistochemistry and Western blot findings revealed that maternal chewing alleviated hippocampal neurogenesis impairment and increased the expression of hippocampal brain-derived neurotrophic factor in the offspring. In addition, maternal chewing increased the expression of glucocorticoid receptor (GR) and 11β-hydroxysteroid dehydrogenase isozyme 2 (11β-HSD2) and decreased the expression of 11β-HSD1 in the placenta, thereby attenuating the increase of glucocorticoid in the offspring. Furthermore, maternal chewing increased the expression of 11β-HSD2, FK506-binding protein 51 (FKBP51) and FKBP52 and decreased the expression of 11β-HSD1, thereby increasing hippocampal nuclear GR level. In addition, maternal chewing attenuated the increase in expression of DNMT1 and DNMT3a and the decrease in expression of histone H3 methylation at lysine 4, 9, 27 and histone H3 acetylation at lysine 9 induced by prenatal stress in the offspring. Our findings suggest that maternal chewing could ameliorate prenatal stress-induced cognitive impairments in the offspring at least in part by protecting placenta barrier function, alleviating hippocampal nuclear GR transport impairment and increasing the hippocampal brain-derived neurotrophic factor (BDNF) level.
Collapse
|
11
|
Hermes M, Antonow-Schlorke I, Hollstein D, Kuehnel S, Rakers F, Frauendorf V, Dreiling M, Rupprecht S, Schubert H, Witte OW, Schwab M. Maternal psychosocial stress during early gestation impairs fetal structural brain development in sheep. Stress 2020; 23:233-242. [PMID: 31469022 DOI: 10.1080/10253890.2019.1652266] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Maternal stress, especially during early pregnancy, predisposes offspring to neuropsychiatric disorders. We hypothesized that maternal psychosocial stress (MPS) during pregnancy affects fetal structural neurodevelopment depending on the gestational age of exposure. Fetal sheep brains were harvested at 130 days gestation (dG, term 150 dG) from ewes frequently isolated from flock-mates during early gestation (first and second trimester; n = 10) or late gestation (third trimester; n = 10), or from control flock-mates (n = 8). Immunohistochemistry for formation of neuronal processes, myelination, synaptic density, cell proliferation and programed cell death was performed on brain tissue sections. Sections of the cortical gray matter, the hippocampal CA3 region and the superficial, subcortical and deep white matter were examined morphometrically. Stress effects depended on the brain region and time of exposure. Stress during early gestation but not during late gestation reduced the amount of neuronal processes in the cerebral cortex and hippocampus by 36.9 ± 10.1% (p < 0.05, mean ± SEM) and 36.9 ± 15.8% (p < 0.05), respectively, accompanied by a decrease in synaptic density in the cerebral cortex and hippocampus by 39.8 ± 23.1% (p < 0.05) and 32.9 ± 13.4% (p < 0.01). Myelination was decreased in white matter layers on average by 44.8 ± 11.7% (p < 0.05) accompanied by reduced (glial) cell proliferation in the deep white matter by 83.6 ± 12.4% (p < 0.05). In contrast, stress during the third trimester had no effect in any brain region. Chronic MPS during the first and second trimester induced prolonged effects on neuronal network and myelin formation which might contribute to disturbed neurobehavioral, cognitive and motor development in offspring of stressed mothers.Lay summaryMany women are exposed to stressful events during pregnancy. Maternal stress especially during early pregnancy predisposes for offspring's neuropsychiatric disorders. In our sheep study, we show that disturbance of fetal brain development is a potential mechanism and is worst during 1st and 2nd trimester.
Collapse
Affiliation(s)
- Markus Hermes
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | | | - Dorothea Hollstein
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | - Sarah Kuehnel
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | - Florian Rakers
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | - Vilmar Frauendorf
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | - Michelle Dreiling
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | - Sven Rupprecht
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
- Else Kröner-Forschungskolleg AntiAge, Bad Homburg, Germany
| | - Harald Schubert
- Institute of Lab Animal Sciences and Welfare, Jena University Hospital, Jena, Germany
| | - Otto W Witte
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | - Matthias Schwab
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
| |
Collapse
|
12
|
Tahira AC, Barbosa AR, Feltrin AS, Gastaldi VD, de Toledo VHC, de Carvalho Pereira JG, Lisboa BCG, de Souza Reis VN, dos Santos ACF, Maschietto M, Brentani H. Putative contributions of the sex chromosome proteins SOX3 and SRY to neurodevelopmental disorders. Am J Med Genet B Neuropsychiatr Genet 2019; 180:390-414. [PMID: 30537354 PMCID: PMC6767407 DOI: 10.1002/ajmg.b.32704] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 11/08/2018] [Accepted: 11/12/2018] [Indexed: 12/12/2022]
Abstract
The male-biased prevalence of certain neurodevelopmental disorders and the sex-biased outcomes associated with stress exposure during gestation have been previously described. Here, we hypothesized that genes distinctively targeted by only one or both homologous proteins highly conserved across therian mammals, SOX3 and SRY, could induce sexual adaptive changes that result in a differential risk for neurodevelopmental disorders. ChIP-seq/chip data showed that SOX3/SRY gene targets were expressed in different brain cell types in mice. We used orthologous human genes in rodent genomes to extend the number of SOX3/SRY set (1,721). These genes were later found to be enriched in five modules of coexpressed genes during the early and mid-gestation periods (FDR < 0.05), independent of sexual hormones. Genes with differential expression (24, p < 0.0001) and methylation (40, p < 0.047) between sexes were overrepresented in this set. Exclusive SOX3 or SRY target genes were more associated with the late gestational and postnatal periods. Using autism as a model sex-biased disorder, the SOX3/SRY set was enriched in autism gene databases (FDR ≤ 0.05), and there were more de novo variations from the male autism spectrum disorder (ASD) samples under the SRY peaks compared to the random peaks (p < 0.024). The comparison of coexpressed networks of SOX3/SRY target genes between male autism and control samples revealed low preservation in gene modules related to stress response (99 genes) and neurogenesis (78 genes). This study provides evidence that while SOX3 is a regulatory mechanism for both sexes, the male-exclusive SRY also plays a role in gene regulation, suggesting a potential mechanism for sex bias in ASD.
Collapse
Affiliation(s)
- Ana Carolina Tahira
- LIM23, Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao PauloSao PauloSPBrazil
| | - André Rocha Barbosa
- LIM23, Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao PauloSao PauloSPBrazil
- Inter‐institutional Grad Program on BioinformaticsUniversity of São PauloSão PauloSPBrazil
| | | | - Vinicius Daguano Gastaldi
- LIM23, Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao PauloSao PauloSPBrazil
| | - Victor Hugo Calegari de Toledo
- LIM23, Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao PauloSao PauloSPBrazil
| | | | - Bianca Cristina Garcia Lisboa
- LIM23, Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao PauloSao PauloSPBrazil
| | - Viviane Neri de Souza Reis
- LIM23, Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao PauloSao PauloSPBrazil
| | - Ana Cecília Feio dos Santos
- LIM23, Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao PauloSao PauloSPBrazil
- Laboratório de Pesquisas Básicas em Malária – EntomologiaSeção de Parasitologia – Instituto Evandro Chagas/SVS/MSAnanindeuaPABrazil
| | - Mariana Maschietto
- Brazilian Biosciences National Laboratory (LNBio)Brazilian Center for Research in Energy and Materials (CNPEM)CampinasSPBrazil
| | - Helena Brentani
- LIM23, Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao PauloSao PauloSPBrazil
- Inter‐institutional Grad Program on BioinformaticsUniversity of São PauloSão PauloSPBrazil
- Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao PauloSPBrazil
- National Institute of Developmental Psychiatry for Children and Adolescents (INPD)Sao PauloSPBrazil
- Faculdade de Medicina FMUSPUniversidade de Sao PauloSao PauloSPBrazil
| |
Collapse
|
13
|
Early post-conception maternal cortisol, children’s HPAA activity and DNA methylation profiles. J Dev Orig Health Dis 2018; 10:73-87. [DOI: 10.1017/s2040174418000880] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractThe hypothalamic–pituitary–adrenal axis (HPAA) plays a critical role in the functioning of all other biological systems. Thus, studying how the environment may influence its ontogeny is paramount to understanding developmental origins of health and disease. The early post-conceptional (EPC) period could be particularly important for the HPAA as the effects of exposures on organisms’ first cells can be transmitted through all cell lineages. We evaluate putative relationships between EPC maternal cortisol levels, a marker of physiologic stress, and their children’s pre-pubertal HPAA activity (n=22 dyads). Maternal first-morning urinary (FMU) cortisol, collected every-other-day during the first 8 weeks post-conception, was associated with children’s FMU cortisol collected daily around the start of the school year, a non-experimental challenge, as well as salivary cortisol responses to an experimental challenge (all Ps<0.05), with some sex-related differences. We investigated whether epigenetic mechanisms statistically mediated these links and, therefore, could provide cues as to possible biological pathways involved. EPC cortisol was associated with >5% change in children’s buccal epithelial cells’ DNA methylation for 867 sites, while children’s HPAA activity was associated with five CpG sites. Yet, no CpG sites were related to both, EPC cortisol and children’s HPAA activity. Thus, these epigenetic modifications did not statistically mediate the observed physiological links. Larger, prospective peri-conceptional cohort studies including frequent bio-specimen collection from mothers and children will be required to replicate our analyses and, if our results are confirmed, identify biological mechanisms mediating the statistical links observed between maternal EPC cortisol and children’s HPAA activity.
Collapse
|
14
|
Soliani FCDBG, Cabbia R, Batistela MF, Almeida AG, Kümpel VD, Yamauchi Junior L, de Andrade TGCS. Impact of social separation during pregnancy on the manifestation of defensive behaviors related to generalized anxiety and panic throughout offspring development. PLoS One 2017; 12:e0185572. [PMID: 29036201 PMCID: PMC5642899 DOI: 10.1371/journal.pone.0185572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 09/01/2017] [Indexed: 11/21/2022] Open
Abstract
The multiple insecurities, anatomical, physiological and psychological changes arising from the gestational period can generate an overload of stress in the mother and cause disturbances in the offspring, affecting it throughout its development. The existing analysis linking prenatal stress and offspring’s anxiety have divergent results, being limited as to gestational week, type of stressor and age of progeny’s assessment. Social separation has been described as a stressor that causes increase in anxiety. Thus, the present study evaluated the effects of social separation applied in one of the three gestational weeks of rat dams on the manifestation of the defensive behaviors related to generalized anxiety disorder and panic in the Elevated T Maze of the male progeny in three stages of development (1, 3 or 6 months of life). It was found, in the offspring of grouped (control) dams, increased behaviors associated with generalized anxiety disorder and a reduction of panic-like behaviors throughout development. For animals whose dams were socially separated during pregnancy, the most critical period of exposure was the 2nd gestational week, which affected the acquisition of aversive memory, demonstrated by the impairment on learning of avoidances of the offspring in all ages evaluated. Stressor exposure in this week also increased the avoidances, related to generalized anxiety of progeny in the 1st month and decreased escapes, related to panic in the 3rd month of life and, at the age of 6 months old, an inverse situation, with the reduction of the defensive behaviors associated to generalized anxiety disorder. The results show that, when assessing effects of prenatal stress on the manifestation of anxiety, not only the period of exposure is important, but also the age of offspring assessed.
Collapse
Affiliation(s)
| | - Rafael Cabbia
- Laboratory of Physiology, UNESP–Univ Estadual Paulista, Assis, São Paulo, Brazil
| | | | | | - Vinícius Dias Kümpel
- Laboratory of Physiology, UNESP–Univ Estadual Paulista, Assis, São Paulo, Brazil
| | - Luiz Yamauchi Junior
- Laboratory of Physiology, UNESP–Univ Estadual Paulista, Assis, São Paulo, Brazil
| | | |
Collapse
|
15
|
Prenatal noise stress impairs HPA axis and cognitive performance in mice. Sci Rep 2017; 7:10560. [PMID: 28874680 PMCID: PMC5585382 DOI: 10.1038/s41598-017-09799-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 07/28/2017] [Indexed: 11/11/2022] Open
Abstract
Noise stress is a common environmental pollutant whose adverse effect on offspring performance has been less studied. This study was novel in terms of using “noise” as a prenatal stress compared with physical stress to explore the effect of stress during gestation on HPA axis activation, cognitive performance, and motor coordination, as well as in investigating the effect of behavioral assessments on the corticosterone (CORT) levels. Three groups of C57BL/6 mice with a gestational history of either noise stress (NS), physical stress (PS), or no stress were examined in several behavioral tests. Plasma CORT level was significantly higher before starting the behavioral tests in NS group than the two other groups. It was significantly increased after the behavioral tests in both prenatal stressed groups relative to the controls. Stress caused anxiety-like behavior and reduced learning and memory performance in both stressed groups compared to the controls, as well as decreased motor coordination in the NS group relative to the other groups. The findings suggested that: prenatal NS severely changes the HPA axis; both prenatal stressors, and particularly NS, negatively impair the offspring’s cognitive and motor performance; and, they also cause a strong susceptibility to interpret environmental experiences as stressful conditions.
Collapse
|
16
|
Oxidative stress, prefrontal cortex hypomyelination and cognitive symptoms in schizophrenia. Transl Psychiatry 2017; 7:e1171. [PMID: 28934193 PMCID: PMC5538118 DOI: 10.1038/tp.2017.138] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 04/12/2017] [Accepted: 05/06/2017] [Indexed: 12/13/2022] Open
Abstract
Schizophrenia (SZ) is a neurodevelopmental disorder with a broad symptomatology, including cognitive symptoms that are thought to arise from the prefrontal cortex (PFC). The neurobiological aetiology of these symptoms remains elusive, yet both impaired redox control and PFC dysconnectivity have been recently implicated. PFC dysconnectivity has been linked to white matter, oligodendrocyte (OL) and myelin abnormalities in SZ patients. Myelin is produced by mature OLs, and OL precursor cells (OPCs) are exceptionally susceptible to oxidative stress. Here we propose a hypothesis for the aetiology of cognitive symptomatology in SZ: the redox-induced prefrontal OPC-dysfunctioning hypothesis. We pose that the combination of genetic and environmental factors causes oxidative stress marked by a build-up of reactive oxygen species that, during late adolescence, impair OPC signal transduction processes that are necessary for OPC proliferation and differentiation, and involve AMP-activated protein kinase, Akt-mTOR-P70S6K and peroxisome proliferator receptor alpha signalling. OPC dysfunctioning coincides with the relatively late onset of PFC myelination, causing hypomyelination and disruption of connectivity in this brain area. The resulting cognitive deficits arise in parallel with SZ onset. Hence, our hypothesis provides a novel neurobiological framework for the aetiology of SZ cognitive symptoms. Future research addressing our hypothesis could have important implications for the development of new (combined) antioxidant- and promyelination-based strategies to treat the cognitive symptoms in SZ.
Collapse
|
17
|
Effects of combined IUGR and prenatal stress on the development of the hippocampus in a fetal guinea pig model. J Dev Orig Health Dis 2017; 8:584-596. [PMID: 28502262 DOI: 10.1017/s2040174417000307] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Intrauterine growth restriction (IUGR) and maternal stress during pregnancy are two compromises that negatively impact neurodevelopment and increase the risk of developing later life neuropsychiatric disorders such as schizophrenia, depression and behavioural disorders. Neurosteroids, particularly allopregnanolone, are important in protecting the developing brain and promoting many essential neurodevelopmental processes. Individually, IUGR and prenatal stress (PS) reduce myelination and neurogenesis within affected fetal brains, however less information is available on the combined effects of these two disorders on the term fetal brain. This study aimed to investigate how IUGR and PS impairs the neurosteroid pathway when combined using a guinea pig model, and how these then disrupt the neurodevelopment of the fetus. Uterine artery blood flow restriction was performed at GA30-35 to induce growth restriction, whilst PS was induced by exposure of the dam to a strobe light during gestation commencing GA40 and repeated every 5 days. Exposure in this model caused reductions in hippocampal CA1 MBP immunostaining of male fetuses in both IUGR alone and IUGR+PS paradigms but only by IUGR in the subcortical white mater, compared with control males. Plasma allopregnanolone was reduced by both stressors irrespective of sex, whereas GFAP or MAP2 expression were not affected by either stressor. Female neurodevelopment, as assessed by these markers, was unimpeded by these compromises. The addition of prenatal stress did not further compound these deficits.
Collapse
|
18
|
Suzuki A, Iinuma M, Hayashi S, Sato Y, Azuma K, Kubo KY. Maternal chewing during prenatal stress ameliorates stress-induced hypomyelination, synaptic alterations, and learning impairment in mouse offspring. Brain Res 2016; 1651:36-43. [PMID: 27613358 DOI: 10.1016/j.brainres.2016.09.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 08/12/2016] [Accepted: 09/05/2016] [Indexed: 01/24/2023]
Abstract
Maternal chewing during prenatal stress attenuates both the development of stress-induced learning deficits and decreased cell proliferation in mouse hippocampal dentate gyrus. Hippocampal myelination affects spatial memory and the synaptic structure is a key mediator of neuronal communication. We investigated whether maternal chewing during prenatal stress ameliorates stress-induced alterations of hippocampal myelin and synapses, and impaired development of spatial memory in adult offspring. Pregnant mice were divided into control, stress, and stress/chewing groups. Stress was induced by placing mice in a ventilated restraint tube, and was initiated on day 12 of pregnancy and continued until delivery. Mice in the stress/chewing group were given a wooden stick to chew during restraint. In 1-month-old pups, spatial memory was assessed in the Morris water maze, and hippocampal oligodendrocytes and synapses in CA1 were assayed by immunohistochemistry and electron microscopy. Prenatal stress led to impaired learning ability, and decreased immunoreactivity of myelin basic protein (MBP) and 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNPase) in the hippocampal CA1 in adult offspring. Numerous myelin sheath abnormalities were observed. The G-ratio [axonal diameter to axonal fiber diameter (axon plus myelin sheath)] was increased and postsynaptic density length was decreased in the hippocampal CA1 region. Maternal chewing during stress attenuated the prenatal stress-induced impairment of spatial memory, and the decreased MBP and CNPase immunoreactivity, increased G-ratios, and decreased postsynaptic-density length in the hippocampal CA1 region. These findings suggest that chewing during prenatal stress in dams could be an effective coping strategy to prevent hippocampal behavioral and morphologic impairments in their offspring.
Collapse
Affiliation(s)
- Ayumi Suzuki
- Department of Pediatric Dentistry, Asahi University School of Dentistry, 1851 Hozumi, Mizuho, Gifu 501-0296, Japan
| | - Mitsuo Iinuma
- Department of Pediatric Dentistry, Asahi University School of Dentistry, 1851 Hozumi, Mizuho, Gifu 501-0296, Japan
| | - Sakurako Hayashi
- Department of Pediatric Dentistry, Asahi University School of Dentistry, 1851 Hozumi, Mizuho, Gifu 501-0296, Japan
| | - Yuichi Sato
- Department of Molecular Diagnostics, Kitasato University School of Allied Health Science, Kitasato 1-15-1, Minamiku, Sagamihara, Kanagawa 252-0373, Japan
| | - Kagaku Azuma
- Department of Anatomy, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, Fukuoka 807-8555, Japan
| | - Kin-Ya Kubo
- Seijoh University Graduate School of Health Care Studies, 2-172, Fukinodai, Tokai, Aichi 476-8588, Japan.
| |
Collapse
|
19
|
Prenatal stressors in rodents: Effects on behavior. Neurobiol Stress 2016; 6:3-13. [PMID: 28229104 PMCID: PMC5314420 DOI: 10.1016/j.ynstr.2016.08.004] [Citation(s) in RCA: 167] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 08/07/2016] [Accepted: 08/08/2016] [Indexed: 12/13/2022] Open
Abstract
The current review focuses on studies in rodents published since 2008 and explores possible reasons for any differences they report in the effects of gestational stress on various types of behavior in the offspring. An abundance of experimental data shows that different maternal stressors in rodents can replicate some of the abnormalities in offspring behavior observed in humans. These include, anxiety, in juvenile and adult rats and mice, assessed in the elevated plus maze and open field tests and depression, detected in the forced swim and sucrose-preference tests. Deficits were reported in social interaction that is suggestive of pathology associated with schizophrenia, and in spatial learning and memory in adult rats in the Morris water maze test, but in most studies only males were tested. There were too few studies on the novel object recognition test at different inter-trial intervals to enable a conclusion about the effect of prenatal stress and whether any deficits are more prevalent in males. Among hippocampal glutamate receptors, NR2B was the only subtype consistently reduced in association with learning deficits. However, like in humans with schizophrenia and depression, prenatal stress lowered hippocampal levels of BDNF, which were closely correlated with decreases in hippocampal long-term potentiation. In mice, down-regulation of BDNF appeared to occur through the action of gene-methylating enzymes that are already increased above controls in prenatally-stressed neonates. In conclusion, the data obtained so far from experiments in rodents lend support to a physiological basis for the neurodevelopmental hypothesis of schizophrenia and depression.
Collapse
|
20
|
Bennett GA, Palliser HK, Walker D, Hirst J. Severity and timing: How prenatal stress exposure affects glial developmental, emotional behavioural and plasma neurosteroid responses in guinea pig offspring. Psychoneuroendocrinology 2016; 70:47-57. [PMID: 27155257 DOI: 10.1016/j.psyneuen.2016.04.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 04/13/2016] [Accepted: 04/13/2016] [Indexed: 11/18/2022]
Abstract
Prenatal stress has been associated with a variety of developmental changes in offspring, notably those associated with brain development and subsequent risk for neuropathologies later in life. Recently, the importance of the timing and the severity of the stressor during pregnancy has been emphasized with neurosteroids including allopregnanolone implicated in the regulation of stress and also for endogenous neuroprotection in offspring. Prenatal stress was induced using strobe light exposure in pregnant guinea pigs (term 71days) in three defined stress exposure groups (Gestational Age (GA)35-65, GA50-65 and GA60-65). Stress was induced for 2h (9-11am) every 5days via strobe light exposure. A fetal cohort were euthanased at term with fetal brains and plasma collected. Anxiety-like behaviour was evaluated at 18 days of age in a separate cohort of offspring with brains and plasma collected at 21days of age. Markers for mature oligodendrocytes and reactive astrocytes were measured in the CA1 region of the hippocampus and the subcortical white matter. The neurosteroid allopregnanolone was measured by radioimmunoassay in offspring plasma. In the CA1 region of the hippocampus, fetuses from all stress groups showed reduced expression of mature oligodendrocytes and reactive astrocytes. By juvenility, all male stress exposure groups had recovered to levels of unaffected controls with the exception of the GA35-65 stress group. In juvenile females, mature oligodendrocyte marker expression was reduced in all stress groups and reactive astrocyte expression was reduced in the GA35-65 and GA60-65 stress groups by juvenility. Increased reactive astrocyte expression was also apparent in the subcortical white matter in both sexes both at term and at juvenility. Prenatally stressed offspring spent less time exploring in the object exploration test and also entered the inner zone of the open field less than controls at 18days of age. Circulating allopregnanolone concentrations were significantly reduced in GA35-65 and GA 60-65 stress exposed fetuses with those in the GA35-65 stress group remaining reduced by juvenility. This study has shown the effects of differing levels of prenatal stress severity and timing on glial development, emotional behaviour and plasma allopregnanolone concentrations in offspring.
Collapse
Affiliation(s)
- Greer A Bennett
- Mothers and Babies Research Centre, Hunter Medical Research Institute, Newcastle, NSW, Australia; School of Biomedical Sciences and Pharmacy, University of Newcastle, NSW, Australia.
| | - Hannah K Palliser
- Mothers and Babies Research Centre, Hunter Medical Research Institute, Newcastle, NSW, Australia; School of Biomedical Sciences and Pharmacy, University of Newcastle, NSW, Australia
| | - David Walker
- Hudson Institute of Medical Research, Clayton, VIC, Australia
| | - Jonathan Hirst
- Mothers and Babies Research Centre, Hunter Medical Research Institute, Newcastle, NSW, Australia; School of Biomedical Sciences and Pharmacy, University of Newcastle, NSW, Australia
| |
Collapse
|
21
|
Maturana CJ, Aguirre A, Sáez JC. High glucocorticoid levels during gestation activate the inflammasome in hippocampal oligodendrocytes of the offspring. Dev Neurobiol 2016; 77:625-642. [PMID: 27314460 DOI: 10.1002/dneu.22409] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 06/13/2016] [Accepted: 06/14/2016] [Indexed: 12/12/2022]
Abstract
Exposure to high levels of glucocorticoids (GCs) during early life induces long-lasting neuroinflammation. GCs induce rapid degranulation of mast cells, which release proinflammatory molecules promoting activation of microglia and astrocytes. The possible involvement of oligodendrocytes, however, remains poorly understood. It was studied whether high GC levels during gestation activates the inflammasome in hippocampal oligodendrocytes of mouse offspring. Oligodendrocytes of control pups showed expression of inflammasome components (NLRP3, ACS, and caspase-1) and their levels were increased by prenatal administration of dexamethasone (DEX), a synthetic GC. These cells also showed high levels of IL-1β and TNF-α, revealing activation of the inflammasome. Moreover, they showed increased levels of the P2X7 receptor and pannexin1, which are associated to inflammasome activation. However, levels of connexins either were not affected (Cx29) or reduced (Cx32 and Cx47). Nonetheless, the functional states of pannexin1 and connexin hemichannels were elevated and directly associated to functional P2X7 receptors. As observed in DEX-treated brain slices, hemichannel activity first increased in hippocampal mast cells and later in microglia and macroglia. DEX-induced oligodendrocyte hemichannel activity was mimicked by urocortin-II, which is a corticotropin-releasing hormone receptor (CRHR) agonist. Response to DEX and urocortin-II was inhibited by antalarmin (a CRHR blocker) or by mast cells or microglia inhibitors. The increase in hemichannel activity persisted for several weeks after birth and cross-fostering with a control mother did not reverse this condition. It is proposed that activation of the oligodendrocyte inflammasome might be relevant in demyelinating diseases associated with early life exposure to high GC levels. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 77: 625-642, 2017.
Collapse
Affiliation(s)
- Carola J Maturana
- Departamento De Fisiología, Facultad De Ciencias Biológicas, Pontificia Universidad Católica De Chile, Santiago, Chile.,Centro Interdisciplinario de Neurociencias de Valparaíso, Instituto Milenio, Valparaíso, Chile
| | - Adam Aguirre
- Departamento De Fisiología, Facultad De Ciencias Biológicas, Pontificia Universidad Católica De Chile, Santiago, Chile
| | - Juan C Sáez
- Departamento De Fisiología, Facultad De Ciencias Biológicas, Pontificia Universidad Católica De Chile, Santiago, Chile.,Centro Interdisciplinario de Neurociencias de Valparaíso, Instituto Milenio, Valparaíso, Chile
| |
Collapse
|
22
|
Maccari S, Polese D, Reynaert ML, Amici T, Morley-Fletcher S, Fagioli F. Early-life experiences and the development of adult diseases with a focus on mental illness: The Human Birth Theory. Neuroscience 2016; 342:232-251. [PMID: 27235745 DOI: 10.1016/j.neuroscience.2016.05.042] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 05/13/2016] [Accepted: 05/17/2016] [Indexed: 12/18/2022]
Abstract
In mammals, early adverse experiences, including mother-pup interactions, shape the response of an individual to chronic stress or to stress-related diseases during adult life. This has led to the elaboration of the theory of the developmental origins of health and disease, in particular adult diseases such as cardiovascular and metabolic disorders. In addition, in humans, as stated by Massimo Fagioli's Human Birth Theory, birth is healthy and equal for all individuals, so that mental illness develop exclusively in the postnatal period because of the quality of the relationship in the first year of life. Thus, this review focuses on the importance of programming during the early developmental period on the manifestation of adult diseases in both animal models and humans. Considering the obvious differences between animals and humans we cannot systematically move from animal models to humans. Consequently, in the first part of this review, we will discuss how animal models can be used to dissect the influence of adverse events occurring during the prenatal and postnatal periods on the developmental trajectories of the offspring, and in the second part, we will discuss the role of postnatal critical periods on the development of mental diseases in humans. Epigenetic mechanisms that cause reversible modifications in gene expression, driving the development of a pathological phenotype in response to a negative early postnatal environment, may lie at the core of this programming, thereby providing potential new therapeutic targets. The concept of the Human Birth Theory leads to a comprehension of the mental illness as a pathology of the human relationship immediately after birth and during the first year of life.
Collapse
Affiliation(s)
- Stefania Maccari
- Univ. Lille, CNRS, UMR 8576, UGSF, Unité de Glycobiologie Structurale et Fonctionnelle, 59000 Lille, France; IRCCS Neuromed, 86077, Italy; Sapienza University of Rome, 00185 Rome, Italy.
| | - Daniela Polese
- NESMOS Department, Sant'Andrea Hospital, Sapienza University of Rome, Italy; Unit of Psychiatry, Federico II University of Naples, Italy
| | - Marie-Line Reynaert
- Univ. Lille, CNRS, UMR 8576, UGSF, Unité de Glycobiologie Structurale et Fonctionnelle, 59000 Lille, France
| | | | - Sara Morley-Fletcher
- Univ. Lille, CNRS, UMR 8576, UGSF, Unité de Glycobiologie Structurale et Fonctionnelle, 59000 Lille, France
| | - Francesca Fagioli
- Prevention and early Intervention Mental Health (PIPSM) ASL Rome 1, Italy
| |
Collapse
|
23
|
Lasting Differential Effects on Plasticity Induced by Prenatal Stress in Dorsal and Ventral Hippocampus. Neural Plast 2016; 2016:2540462. [PMID: 26881096 PMCID: PMC4736977 DOI: 10.1155/2016/2540462] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 11/18/2015] [Accepted: 12/20/2015] [Indexed: 12/14/2022] Open
Abstract
Early life adversaries have a profound impact on the developing brain structure and functions that persist long after the original traumatic experience has vanished. One of the extensively studied brain structures in relation to early life stress has been the hippocampus because of its unique association with cognitive processes of the brain. While the entire hippocampus shares the same intrinsic organization, it assumes different functions in its dorsal and ventral sectors (DH and VH, resp.), based on different connectivity with other brain structures. In the present review, we summarize the differences between DH and VH and discuss functional and structural effects of prenatal stress in the two sectors, with the realization that much is yet to be explored in understanding the opposite reactivity of the DH and VH to stressful stimulation.
Collapse
|
24
|
Bronson SL, Bale TL. The Placenta as a Mediator of Stress Effects on Neurodevelopmental Reprogramming. Neuropsychopharmacology 2016; 41:207-18. [PMID: 26250599 PMCID: PMC4677129 DOI: 10.1038/npp.2015.231] [Citation(s) in RCA: 155] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 07/10/2015] [Accepted: 07/30/2015] [Indexed: 02/07/2023]
Abstract
Adversity experienced during gestation is a predictor of lifetime neuropsychiatric disease susceptibility. Specifically, maternal stress during pregnancy predisposes offspring to sex-biased neurodevelopmental disorders, including schizophrenia, attention deficit/hyperactivity disorder, and autism spectrum disorders. Animal models have demonstrated disease-relevant endophenotypes in prenatally stressed offspring and have provided unique insight into potential programmatic mechanisms. The placenta has a critical role in the deleterious and sex-specific effects of maternal stress and other fetal exposures on the developing brain. Stress-induced perturbations of the maternal milieu are conveyed to the embryo via the placenta, the maternal-fetal intermediary responsible for maintaining intrauterine homeostasis. Disruption of vital placental functions can have a significant impact on fetal development, including the brain, outcomes that are largely sex-specific. Here we review the novel involvement of the placenta in the transmission of the maternal adverse environment and effects on the developing brain.
Collapse
Affiliation(s)
- Stefanie L Bronson
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, USA
| | - Tracy L Bale
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, USA
| |
Collapse
|
25
|
Bock J, Wainstock T, Braun K, Segal M. Stress In Utero: Prenatal Programming of Brain Plasticity and Cognition. Biol Psychiatry 2015; 78:315-26. [PMID: 25863359 DOI: 10.1016/j.biopsych.2015.02.036] [Citation(s) in RCA: 155] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 02/10/2015] [Accepted: 02/25/2015] [Indexed: 12/17/2022]
Abstract
Animal studies confirm earlier anecdotal observations in humans to indicate that early life experience has a profound impact on adult behavior, years after the original experience has vanished. These studies also highlight the role of early life adversaries in the shaping of a disordered brain. Evidence is accumulating to indicate that the epigenome, through which the environment regulates gene expression, is responsible for long-lasting effects of stress during pregnancy on brain and behavior. A possible differential effect of the environment on the epigenome may underlie the observation that only a small fraction of a population with similar genetic background deteriorates into mental disorders. Considerable progress has been made in the untangling of the epigenetic mechanisms that regulate emotional brain development. The present review focuses on the lasting effects of prenatal stress on brain plasticity and cognitive functions in human and rodent models. Although human studies stress the significance of early life experience in functional maturation, they lack the rigor inherent in controlled animal experiments. Furthermore, the analysis of molecular and cellular mechanisms affected by prenatal stress is possible only in experimental animals. The present review attempts to link human and animal studies while proposing molecular mechanisms that interfere with functional brain development.
Collapse
Affiliation(s)
- Joerg Bock
- Otto von Guericke University Magdeburg (JB, KB), Magdeburg, Germany
| | - Tamar Wainstock
- Rollins School of Public Health (TW), Emory University, Atlanta, Georgia
| | - Katharina Braun
- Otto von Guericke University Magdeburg (JB, KB), Magdeburg, Germany
| | - Menahem Segal
- Department of Neurobiology (MS) Weizmann Institute, Rehovot, Israel.
| |
Collapse
|
26
|
Blum K, Febo M, Smith DE, Roy AK, Demetrovics Z, Cronjé FJ, Femino J, Agan G, Fratantonio JL, Pandey SC, Badgaiyan RD, Gold MS. Neurogenetic and epigenetic correlates of adolescent predisposition to and risk for addictive behaviors as a function of prefrontal cortex dysregulation. J Child Adolesc Psychopharmacol 2015; 25:286-92. [PMID: 25919973 PMCID: PMC4442554 DOI: 10.1089/cap.2014.0146] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
As addiction professionals, we are becoming increasingly concerned about preteenagers and young adults' involvement with substance abuse as a way of relieving stress and anger. The turbulent underdeveloped central nervous system, especially in the prefrontal cortex (PFC), provides impetus to not only continue important neuroimaging studies in both human and animal models, but also to encourage preventive measures and cautions embraced by governmental and social media outlets. It is well known that before people reach their 20s, PFC development is undergoing significant changes and, as such, hijacks appropriate decision making in this population. We are further proposing that early genetic testing for addiction risk alleles will offer important information that could potentially be utilized by their parents and caregivers prior to use of psychoactive drugs by these youth. Understandably, family history, parenting styles, and attachment may be modified by various reward genes, including the known bonding substances oxytocin/vasopressin, which effect dopaminergic function. Well-characterized neuroimaging studies continue to reflect region-specific differential responses to drugs and food (including other non-substance-addictive behaviors) via either "surfeit" or "deficit." With this in mind, we hereby propose a "reward deficiency solution system" that combines early genetic risk diagnosis, medical monitoring, and nutrigenomic dopamine agonist modalities to combat this significant global dilemma that is preventing our youth from leading normal productive lives, which will in turn make them happier.
Collapse
Affiliation(s)
- Kenneth Blum
- Department of Psychiatry and McKnight Brain Institute, University of Florida, College of Medicine, Gainesville, Florida.,Division of Addiction Services, Dominion Diagnostics, LLC, North Kingstown, Rhode Island.,Department of Addiction Research & Therapy, Malibu Beach Recovery Center, Malibu Beach, California.,Human Integrative Services & Translational Science, Department of Psychiatry, University of Vermont College of Medicine, Burlington, Vermont
| | - Marcelo Febo
- Department of Psychiatry and McKnight Brain Institute, University of Florida, College of Medicine, Gainesville, Florida
| | - David E. Smith
- Division of Addiction Services, Dominion Diagnostics, LLC, North Kingstown, Rhode Island.,Institute of Health & Aging, University of California, San Francisco, California
| | | | - Zsolt Demetrovics
- Department of Clinical Psychology and Addiction, Institute of Psychology, Eötvös Loránd University, Budapest, Hungary
| | | | - John Femino
- Department of Clinical Medicine, Meadows Edge Recovery Center, North Kingston, Rhode Island
| | - Gozde Agan
- Division of Addiction Services, Dominion Diagnostics, LLC, North Kingstown, Rhode Island
| | - James L. Fratantonio
- Division of Applied Clinical Research, Dominion Diagnostics, LLC, North Kingstown, Rhode Island
| | - Subhash C. Pandey
- Department of Psychiatry, University of Illinois at Chicago and Jesse Brown VA Medical Center, Chicago, Illinois
| | - Rajendra D. Badgaiyan
- Department of Psychiatry, University of Minnesota College of Medicine, Minneapolis, Minnesota
| | - Mark S. Gold
- Department of Psychiatry and McKnight Brain Institute, University of Florida, College of Medicine, Gainesville, Florida.,Department of Addiction Research & Therapy, Malibu Beach Recovery Center, Malibu Beach, California
| |
Collapse
|
27
|
Li N, Wang Y, Zhao X, Gao Y, Song M, Yu L, Wang L, Li N, Chen Q, Li Y, Cai J, Wang X. Long-term effect of early-life stress from earthquake exposure on working memory in adulthood. Neuropsychiatr Dis Treat 2015; 11:2959-65. [PMID: 26648728 PMCID: PMC4664544 DOI: 10.2147/ndt.s88770] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
OBJECTIVE The present study aimed to investigate the long-term effect of 1976 Tangshan earthquake exposure in early life on performance of working memory in adulthood. METHODS A total of 907 study subjects born and raised in Tangshan were enrolled in this study. They were divided into three groups according to the dates of birth: infant exposure (3-12 months, n=274), prenatal exposure (n=269), and no exposure (born at least 1 year after the earthquake, n=364). The prenatal group was further divided into first, second, and third trimester subgroups based on the timing of exposure during pregnancy. Hopkins Verbal Learning Test-Revised and Brief Visuospatial Memory Test-Revised (BVMT-R) were used to measure the performance of working memory. Unconditional logistic regression analysis was used to analyze the influential factors for impaired working memory. RESULTS The Hopkins Verbal Learning Test-Revised scores did not show significant difference across the three groups. Compared with no exposure group, the BVMT-R scores were slightly lower in the prenatal exposure group and markedly decreased in the infant exposure group. When the BVMT-R scores were analyzed in three subgroups, the results showed that the subjects whose mothers were exposed to earthquake in the second and third trimesters of pregnancy had significantly lower BVMT-R scores compared with those in the first trimester. Education level and early-life earthquake exposure were identified as independent risk factors for reduced performance of visuospatial memory indicated by lower BVMT-R scores. CONCLUSION Infant exposure to earthquake-related stress impairs visuospatial memory in adulthood. Fetuses in the middle and late stages of development are more vulnerable to stress-induced damage that consequently results in impaired visuospatial memory. Education and early-life trauma can also influence the performance of working memory in adulthood.
Collapse
Affiliation(s)
- Na Li
- Department of Psychiatry, The First Hospital of Hebei Medical University, Hebei, People's Republic of China ; Mental Health Institute of Hebei Medical University, Hebei, People's Republic of China ; Brain Ageing and Cognitive Neuroscience Laboratory, Hebei, People's Republic of China
| | - Yumei Wang
- Department of Psychiatry, The First Hospital of Hebei Medical University, Hebei, People's Republic of China ; Mental Health Institute of Hebei Medical University, Hebei, People's Republic of China ; Brain Ageing and Cognitive Neuroscience Laboratory, Hebei, People's Republic of China
| | - Xiaochuan Zhao
- Department of Psychiatry, The First Hospital of Hebei Medical University, Hebei, People's Republic of China ; Mental Health Institute of Hebei Medical University, Hebei, People's Republic of China ; Brain Ageing and Cognitive Neuroscience Laboratory, Hebei, People's Republic of China
| | - Yuanyuan Gao
- Department of Psychiatry, The First Hospital of Hebei Medical University, Hebei, People's Republic of China ; Mental Health Institute of Hebei Medical University, Hebei, People's Republic of China ; Brain Ageing and Cognitive Neuroscience Laboratory, Hebei, People's Republic of China
| | - Mei Song
- Department of Psychiatry, The First Hospital of Hebei Medical University, Hebei, People's Republic of China ; Mental Health Institute of Hebei Medical University, Hebei, People's Republic of China ; Brain Ageing and Cognitive Neuroscience Laboratory, Hebei, People's Republic of China
| | - Lulu Yu
- Department of Psychiatry, The First Hospital of Hebei Medical University, Hebei, People's Republic of China ; Mental Health Institute of Hebei Medical University, Hebei, People's Republic of China ; Brain Ageing and Cognitive Neuroscience Laboratory, Hebei, People's Republic of China
| | - Lan Wang
- Department of Psychiatry, The First Hospital of Hebei Medical University, Hebei, People's Republic of China ; Mental Health Institute of Hebei Medical University, Hebei, People's Republic of China ; Brain Ageing and Cognitive Neuroscience Laboratory, Hebei, People's Republic of China
| | - Ning Li
- Department of Psychiatry, The First Hospital of Hebei Medical University, Hebei, People's Republic of China ; Mental Health Institute of Hebei Medical University, Hebei, People's Republic of China ; Brain Ageing and Cognitive Neuroscience Laboratory, Hebei, People's Republic of China
| | - Qianqian Chen
- Department of Psychiatry, The First Hospital of Hebei Medical University, Hebei, People's Republic of China ; Mental Health Institute of Hebei Medical University, Hebei, People's Republic of China ; Brain Ageing and Cognitive Neuroscience Laboratory, Hebei, People's Republic of China
| | - Yunpeng Li
- Department of Psychiatry, The First Hospital of Hebei Medical University, Hebei, People's Republic of China ; Mental Health Institute of Hebei Medical University, Hebei, People's Republic of China ; Brain Ageing and Cognitive Neuroscience Laboratory, Hebei, People's Republic of China
| | - Jiajia Cai
- Department of Psychiatry, The First Hospital of Hebei Medical University, Hebei, People's Republic of China ; Mental Health Institute of Hebei Medical University, Hebei, People's Republic of China ; Brain Ageing and Cognitive Neuroscience Laboratory, Hebei, People's Republic of China
| | - Xueyi Wang
- Department of Psychiatry, The First Hospital of Hebei Medical University, Hebei, People's Republic of China ; Mental Health Institute of Hebei Medical University, Hebei, People's Republic of China ; Brain Ageing and Cognitive Neuroscience Laboratory, Hebei, People's Republic of China
| |
Collapse
|
28
|
Schraut KG, Jakob SB, Weidner MT, Schmitt AG, Scholz CJ, Strekalova T, El Hajj N, Eijssen LMT, Domschke K, Reif A, Haaf T, Ortega G, Steinbusch HWM, Lesch KP, Van den Hove DL. Prenatal stress-induced programming of genome-wide promoter DNA methylation in 5-HTT-deficient mice. Transl Psychiatry 2014; 4:e473. [PMID: 25335169 PMCID: PMC4350514 DOI: 10.1038/tp.2014.107] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 08/25/2014] [Indexed: 12/12/2022] Open
Abstract
The serotonin transporter gene (5-HTT/SLC6A4)-linked polymorphic region has been suggested to have a modulatory role in mediating effects of early-life stress exposure on psychopathology rendering carriers of the low-expression short (s)-variant more vulnerable to environmental adversity in later life. The underlying molecular mechanisms of this gene-by-environment interaction are not well understood, but epigenetic regulation including differential DNA methylation has been postulated to have a critical role. Recently, we used a maternal restraint stress paradigm of prenatal stress (PS) in 5-HTT-deficient mice and showed that the effects on behavior and gene expression were particularly marked in the hippocampus of female 5-Htt+/- offspring. Here, we examined to which extent these effects are mediated by differential methylation of DNA. For this purpose, we performed a genome-wide hippocampal DNA methylation screening using methylated-DNA immunoprecipitation (MeDIP) on Affymetrix GeneChip Mouse Promoter 1.0 R arrays. Using hippocampal DNA from the same mice as assessed before enabled us to correlate gene-specific DNA methylation, mRNA expression and behavior. We found that 5-Htt genotype, PS and their interaction differentially affected the DNA methylation signature of numerous genes, a subset of which showed overlap with the expression profiles of the corresponding transcripts. For example, a differentially methylated region in the gene encoding myelin basic protein (Mbp) was associated with its expression in a 5-Htt-, PS- and 5-Htt × PS-dependent manner. Subsequent fine-mapping of this Mbp locus linked the methylation status of two specific CpG sites to Mbp expression and anxiety-related behavior. In conclusion, hippocampal DNA methylation patterns and expression profiles of female prenatally stressed 5-Htt+/- mice suggest that distinct molecular mechanisms, some of which are promoter methylation-dependent, contribute to the behavioral effects of the 5-Htt genotype, PS exposure and their interaction.
Collapse
Affiliation(s)
- K G Schraut
- Division of Molecular Psychiatry, Laboratory of Translational Neuroscience, Center of Mental Health, Department of Psychiatry, University of Wuerzburg, Wuerzburg, Germany
| | - S B Jakob
- Division of Molecular Psychiatry, Laboratory of Translational Neuroscience, Center of Mental Health, Department of Psychiatry, University of Wuerzburg, Wuerzburg, Germany
| | - M T Weidner
- Division of Molecular Psychiatry, Laboratory of Translational Neuroscience, Center of Mental Health, Department of Psychiatry, University of Wuerzburg, Wuerzburg, Germany,Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Maastricht, The Netherlands
| | - A G Schmitt
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University of Wuerzburg, Wuerzburg, Germany
| | - C J Scholz
- Laboratory for Microarray Applications, Interdisciplinary Center for Clinical Research, University of Wuerzburg, Wuerzburg, Germany
| | - T Strekalova
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Maastricht, The Netherlands,Institute for Hygiene and Tropical Medicine, New University of Lisbon, Lisbon, Portugal
| | - N El Hajj
- Institute of Human Genetics, University of Wuerzburg, Wuerzburg, Germany
| | - L M T Eijssen
- Department of Bioinformatics-BiGCaT, Maastricht University, Maastricht, The Netherlands
| | - K Domschke
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University of Wuerzburg, Wuerzburg, Germany
| | - A Reif
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University of Wuerzburg, Wuerzburg, Germany
| | - T Haaf
- Institute of Human Genetics, University of Wuerzburg, Wuerzburg, Germany
| | - G Ortega
- Division of Molecular Psychiatry, Laboratory of Translational Neuroscience, Center of Mental Health, Department of Psychiatry, University of Wuerzburg, Wuerzburg, Germany
| | - H W M Steinbusch
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Maastricht, The Netherlands
| | - K P Lesch
- Division of Molecular Psychiatry, Laboratory of Translational Neuroscience, Center of Mental Health, Department of Psychiatry, University of Wuerzburg, Wuerzburg, Germany,Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Maastricht, The Netherlands,Division of Molecular Psychiatry, Laboratory of Translational Neuroscience, Department of Psychiatry, University of Wuerzburg, 97080 Wuerzburg, Germany. E-mail:
| | - D L Van den Hove
- Division of Molecular Psychiatry, Laboratory of Translational Neuroscience, Center of Mental Health, Department of Psychiatry, University of Wuerzburg, Wuerzburg, Germany,Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
29
|
Boersma GJ, Bale TL, Casanello P, Lara HE, Lucion AB, Suchecki D, Tamashiro KL. Long-term impact of early life events on physiology and behaviour. J Neuroendocrinol 2014; 26:587-602. [PMID: 24690036 DOI: 10.1111/jne.12153] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 03/14/2014] [Accepted: 03/25/2014] [Indexed: 01/12/2023]
Abstract
This review discusses the effects of stress and nutrition throughout development and summarises studies investigating how exposure to stress or alterations in nutrition during the pre-conception, prenatal and early postnatal periods can affect the long-term health of an individual. In general, the data presented here suggest that that anything signalling potential adverse conditions later in life, such as high levels of stress or low levels of food availability, will lead to alterations in the offspring, possibly of an epigenetic nature, preparing the offspring for these conditions later in life. However, when similar environmental conditions are not met in adulthood, these alterations may have maladaptive consequences, resulting in obesity and heightened stress sensitivity. The data also suggest that the mechanism underlying these adult phenotypes might be dependent on the type and the timing of exposure.
Collapse
Affiliation(s)
- G J Boersma
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Khan D, Fernando P, Cicvaric A, Berger A, Pollak A, Monje FJ, Pollak DD. Long-term effects of maternal immune activation on depression-like behavior in the mouse. Transl Psychiatry 2014; 4:e363. [PMID: 24548878 PMCID: PMC3944633 DOI: 10.1038/tp.2013.132] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 11/29/2013] [Accepted: 12/07/2013] [Indexed: 01/04/2023] Open
Abstract
Depression is a debilitating mental disease affecting a large population worldwide, the pathophysiological mechanisms of which remain incompletely understood. Prenatal infection and associated activation of the maternal immune system (MIA) are prominently related to an increased risk for the development of several psychiatric disorders including schizophrenia and autism in the offsprings. However, the role of MIA in the etiology of depression and its neurobiological basis are insufficiently investigated. Here we induced MIA in mice by challenge with polyinosinic:polycytidylic phosphate salt-a synthetic analog of double-stranded RNA, which enhances maternal levels of the cytokine interleukin-6 (IL-6)-and demonstrate a depression-like behavioral phenotype in adult offsprings. Adult offsprings additionally show deficits in cognition and hippocampal long-term potentiation (LTP) accompanied by disturbed proliferation of newborn cells in the dentate gyrus and compromised neuronal maturation and survival. The behavioral, neurogenic and functional deficiencies observed are associated with reduced hippocampal expression of vascular endothelial growth factor (VEGF)A-VEGFR2. IL-6-STAT3-dependent aberrant VEGFA-VEGFR2 signaling is proposed as neurobiological mechanism mediating the effects of MIA on the developing fetal brain and ensuing consequences in adulthood.
Collapse
Affiliation(s)
- D Khan
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - P Fernando
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - A Cicvaric
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - A Berger
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - A Pollak
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - F J Monje
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - D D Pollak
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
31
|
Bock J, Rether K, Gröger N, Xie L, Braun K. Perinatal programming of emotional brain circuits: an integrative view from systems to molecules. Front Neurosci 2014; 8:11. [PMID: 24550772 PMCID: PMC3913903 DOI: 10.3389/fnins.2014.00011] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 01/17/2014] [Indexed: 02/06/2023] Open
Abstract
Environmental influences such as perinatal stress have been shown to program the developing organism to adapt brain and behavioral functions to cope with daily life challenges. Evidence is now accumulating that the specific and individual effects of early life adversity on the functional development of brain and behavior emerge as a function of the type, intensity, timing and the duration of the adverse environment, and that early life stress (ELS) is a major risk factor for developing behavioral dysfunctions and mental disorders. Results from clinical as well as experimental studies in animal models support the hypothesis that ELS can induce functional “scars” in prefrontal and limbic brain areas, regions that are essential for emotional control, learning and memory functions. On the other hand, the concept of “stress inoculation” is emerging from more recent research, which revealed positive functional adaptations in response to ELS resulting in resilience against stress and other adversities later in life. Moreover, recent studies indicate that early life experiences and the resulting behavioral consequences can be transmitted to the next generation, leading to a transgenerational cycle of adverse or positive adaptations of brain function and behavior. In this review we propose a unifying view of stress vulnerability and resilience by connecting genetic predisposition and programming sensitivity to the context of experience-expectancy and transgenerational epigenetic traits. The adaptive maturation of stress responsive neural and endocrine systems requires environmental challenges to optimize their functions. Repeated environmental challenges can be viewed within the framework of the match/mismatch hypothesis, the outcome, psychopathology or resilience, depends on the respective predisposition and on the context later in life.
Collapse
Affiliation(s)
- Jörg Bock
- PG "Epigenetics and Structural Plasticity", Institute of Biology, Otto von Guericke University Magdeburg Magdeburg, Germany ; Center for Behavioral Brain Sciences Magdeburg, Germany
| | - Kathy Rether
- PG "Epigenetics and Structural Plasticity", Institute of Biology, Otto von Guericke University Magdeburg Magdeburg, Germany ; Department of Zoology/Developmental Neurobiology, Institute of Biology, Otto von Guericke University Magdeburg Magdeburg, Germany
| | - Nicole Gröger
- Department of Zoology/Developmental Neurobiology, Institute of Biology, Otto von Guericke University Magdeburg Magdeburg, Germany
| | - Lan Xie
- PG "Epigenetics and Structural Plasticity", Institute of Biology, Otto von Guericke University Magdeburg Magdeburg, Germany ; Department of Zoology/Developmental Neurobiology, Institute of Biology, Otto von Guericke University Magdeburg Magdeburg, Germany
| | - Katharina Braun
- Center for Behavioral Brain Sciences Magdeburg, Germany ; Department of Zoology/Developmental Neurobiology, Institute of Biology, Otto von Guericke University Magdeburg Magdeburg, Germany
| |
Collapse
|
32
|
Guizzetti M, Zhang X, Goeke C, Gavin DP. Glia and neurodevelopment: focus on fetal alcohol spectrum disorders. Front Pediatr 2014; 2:123. [PMID: 25426477 PMCID: PMC4227495 DOI: 10.3389/fped.2014.00123] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 10/24/2014] [Indexed: 12/03/2022] Open
Abstract
During the last 20 years, new and exciting roles for glial cells in brain development have been described. Moreover, several recent studies implicated glial cells in the pathogenesis of neurodevelopmental disorders including Down syndrome, Fragile X syndrome, Rett Syndrome, Autism Spectrum Disorders, and Fetal Alcohol Spectrum Disorders (FASD). Abnormalities in glial cell development and proliferation and increased glial cell apoptosis contribute to the adverse effects of ethanol on the developing brain and it is becoming apparent that the effects of fetal alcohol are due, at least in part, to effects on glial cells affecting their ability to modulate neuronal development and function. The three major classes of glial cells, astrocytes, oligodendrocytes, and microglia as well as their precursors are affected by ethanol during brain development. Alterations in glial cell functions by ethanol dramatically affect neuronal development, survival, and function and ultimately impair the development of the proper brain architecture and connectivity. For instance, ethanol inhibits astrocyte-mediated neuritogenesis and oligodendrocyte development, survival and myelination; furthermore, ethanol induces microglia activation and oxidative stress leading to the exacerbation of ethanol-induced neuronal cell death. This review article describes the most significant recent findings pertaining the effects of ethanol on glial cells and their significance in the pathophysiology of FASD and other neurodevelopmental disorders.
Collapse
Affiliation(s)
- Marina Guizzetti
- Department of Psychiatry, University of Illinois at Chicago , Chicago, IL , USA ; Jesse Brown VA Medical Center, U.S. Department of Veterans Affairs , Chicago, IL , USA ; Department of Environmental and Occupational Health Sciences, University of Washington , Seattle, WA , USA
| | - Xiaolu Zhang
- Department of Psychiatry, University of Illinois at Chicago , Chicago, IL , USA ; Jesse Brown VA Medical Center, U.S. Department of Veterans Affairs , Chicago, IL , USA
| | - Calla Goeke
- Department of Psychiatry, University of Illinois at Chicago , Chicago, IL , USA ; Jesse Brown VA Medical Center, U.S. Department of Veterans Affairs , Chicago, IL , USA
| | - David P Gavin
- Department of Psychiatry, University of Illinois at Chicago , Chicago, IL , USA ; Jesse Brown VA Medical Center, U.S. Department of Veterans Affairs , Chicago, IL , USA
| |
Collapse
|
33
|
Investigation into the effects of prenatal alcohol exposure on postnatal spine development and expression of synaptophysin and PSD95 in rat hippocampus. Int J Dev Neurosci 2013; 33:106-14. [DOI: 10.1016/j.ijdevneu.2013.12.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 11/28/2013] [Accepted: 12/12/2013] [Indexed: 01/07/2023] Open
|