1
|
Xie Y, Chang H, Zhang Y, Wang C, Zhang Y, Chen L, Geng F, Ku Y, Menon V, Chen F. Long-term abacus training gains in children are predicted by medial temporal lobe anatomy and circuitry. Dev Sci 2024; 27:e13489. [PMID: 38421061 PMCID: PMC11161333 DOI: 10.1111/desc.13489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 03/02/2024]
Abstract
Abacus-based mental calculation (AMC) is a widely used educational tool for enhancing math learning, offering an accessible and cost-effective method for classroom implementation. Despite its universal appeal, the neurocognitive mechanisms that drive the efficacy of AMC training remain poorly understood. Notably, although abacus training relies heavily on the rapid recall of number positions and sequences, the role of memory systems in driving long-term AMC learning remains unknown. Here, we sought to address this gap by investigating the role of the medial temporal lobe (MTL) memory system in predicting long-term AMC training gains in second-grade children, who were longitudinally assessed up to fifth grade. Leveraging multimodal neuroimaging data, we tested the hypothesis that MTL systems, known for their involvement in associative memory, are instrumental in facilitating AMC-induced improvements in math skills. We found that gray matter volume in bilateral MTL, along with functional connectivity between the MTL and frontal and ventral temporal-occipital cortices, significantly predicted learning gains. Intriguingly, greater gray matter volume but weaker connectivity of the posterior parietal cortex predicted better learning outcomes, offering a more nuanced view of brain systems at play in AMC training. Our findings not only underscore the critical role of the MTL memory system in AMC training but also illuminate the neurobiological factors contributing to individual differences in cognitive skill acquisition. A video abstract of this article can be viewed at https://youtu.be/StVooNRc7T8. RESEARCH HIGHLIGHTS: We investigated the role of medial temporal lobe (MTL) memory system in driving children's math learning following abacus-based mental calculation (AMC) training. AMC training improved math skills in elementary school children across their second and fifth grade. MTL structural integrity and functional connectivity with prefrontal and ventral temporal-occipital cortices predicted long-term AMC training-related gains.
Collapse
Affiliation(s)
- Ye Xie
- Bio-X Laboratory, School of Physics, Zhejiang University, Hangzhou, 310027, PR China
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, United States
- Center for Brain and Mental Well-being, Department of Psychology, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Hyesang Chang
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, United States
| | - Yi Zhang
- Bio-X Laboratory, School of Physics, Zhejiang University, Hangzhou, 310027, PR China
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310027, PR China
| | - Chunjie Wang
- Bio-X Laboratory, School of Physics, Zhejiang University, Hangzhou, 310027, PR China
- Institute of Brain Science and Department of Physiology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Yuan Zhang
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, United States
| | - Lang Chen
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, United States
- Department of Psychology, Santa Clara University, Santa Clara, CA 95053, United States
| | - Fengji Geng
- Department of Curriculum and Learning Sciences, Zhejiang University, Hangzhou, 310058, PR China
- Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310003, PR China
| | - Yixuan Ku
- Center for Brain and Mental Well-being, Department of Psychology, Sun Yat-sen University, Guangzhou, 510006, PR China
- Peng Cheng Laboratory, Shenzhen, 518040, PR China
| | - Vinod Menon
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, United States
- Department of Neurology & Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, United States
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, United States
| | - Feiyan Chen
- Bio-X Laboratory, School of Physics, Zhejiang University, Hangzhou, 310027, PR China
| |
Collapse
|
2
|
Zhao B, Liu Y, Wang Z, Zhang Q, Bai X. Long-Term Bridge Training Induces Functional Plasticity Changes in the Brain of Early-Adult Individuals. Behav Sci (Basel) 2024; 14:469. [PMID: 38920802 PMCID: PMC11200855 DOI: 10.3390/bs14060469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/17/2024] [Accepted: 05/29/2024] [Indexed: 06/27/2024] Open
Abstract
The aim of this study was to investigate the impact of extended bridge expertise on rapid perceptual processing and brain functional plasticity in early adulthood, utilizing functional magnetic resonance imaging (fMRI). In this investigation, we compared 6 high-level college bridge players with 25 college students lacking bridge experience, assessing their intelligence and working memory. Additionally, we scrutinized behavioral performance and whole-brain activation patterns during an image perceptual judgment task. Findings indicated significant group and interaction effects at the behavioral level. Bridge players exhibited prolonged reaction times and enhanced accuracy on card tasks. At the neural level, the activation level of bridge players in the occipital lobe exceeded that of ordinary college students, with more pronounced group effects in the motor area and inferior parietal lobule during card tasks. This implies that bridge expertise in early adulthood induces functional plasticity changes in regions associated with visual processing and automated mathematical computation.
Collapse
Affiliation(s)
- Bingjie Zhao
- Key Research Base of Humanities and Social Sciences of the Ministry of Education, Academy of Psychology and Behavior, Tianjin Normal University, Tianjin 300387, China
- Faculty of Psychology, Tianjin Normal University, Tianjin 300387, China
| | - Yan Liu
- Institute of Sports Science, Tianjin Normal University, Tianjin 300387, China
| | - Zheng Wang
- Inner Mongolia Mental Health Center, Brain Hospital of Inner Mongolia Autonomous Region, Hohhot 010000, China
- School of Psychology, Inner Mongolia Normal University, Hohhot 010000, China
| | - Qihan Zhang
- Key Research Base of Humanities and Social Sciences of the Ministry of Education, Academy of Psychology and Behavior, Tianjin Normal University, Tianjin 300387, China
- Faculty of Psychology, Tianjin Normal University, Tianjin 300387, China
| | - Xuejun Bai
- Key Research Base of Humanities and Social Sciences of the Ministry of Education, Academy of Psychology and Behavior, Tianjin Normal University, Tianjin 300387, China
- Faculty of Psychology, Tianjin Normal University, Tianjin 300387, China
| |
Collapse
|
3
|
Xu T, Wu Y, Zhang Y, Zuo XN, Chen F, Zhou C. Reshaping the Cortical Connectivity Gradient by Long-Term Cognitive Training During Development. Neurosci Bull 2024; 40:50-64. [PMID: 37715923 PMCID: PMC10774512 DOI: 10.1007/s12264-023-01108-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 06/01/2023] [Indexed: 09/18/2023] Open
Abstract
The organization of the brain follows a topological hierarchy that changes dynamically during development. However, it remains unknown whether and how cognitive training administered over multiple years during development can modify this hierarchical topology. By measuring the brain and behavior of school children who had carried out abacus-based mental calculation (AMC) training for five years (starting from 7 years to 12 years old) in pre-training and post-training, we revealed the reshaping effect of long-term AMC intervention during development on the brain hierarchical topology. We observed the development-induced emergence of the default network, AMC training-promoted shifting, and regional changes in cortical gradients. Moreover, the training-induced gradient changes were located in visual and somatomotor areas in association with the visuospatial/motor-imagery strategy. We found that gradient-based features can predict the math ability within groups. Our findings provide novel insights into the dynamic nature of network recruitment impacted by long-term cognitive training during development.
Collapse
Affiliation(s)
- Tianyong Xu
- Bio-X Laboratory, School of Physics, Zhejiang University, Hangzhou, 310027, China
| | - Yunying Wu
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, 310027, China
| | - Yi Zhang
- Bio-X Laboratory, School of Physics, Zhejiang University, Hangzhou, 310027, China
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xi-Nian Zuo
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
- Developmental Population Neuroscience Research Center, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Feiyan Chen
- Bio-X Laboratory, School of Physics, Zhejiang University, Hangzhou, 310027, China.
- Zhejiang Province Key Laboratory of Quantum Technology and Devices, Zhejiang University, Hangzhou, 310027, China.
| | - Changsong Zhou
- Bio-X Laboratory, School of Physics, Zhejiang University, Hangzhou, 310027, China.
- Zhejiang Province Key Laboratory of Quantum Technology and Devices, Zhejiang University, Hangzhou, 310027, China.
- Department of Physics, Centre for Nonlinear Studies and Beijing-Hong Kong-Singapore Joint Centre for Nonlinear and Complex Systems (Hong Kong), Institute of Computational and Theoretical Studies, Hong Kong Baptist University, Hong Kong, 999077, China.
| |
Collapse
|
4
|
Yu H. The neuroscience basis and educational interventions of mathematical cognitive impairment and anxiety: a systematic literature review. Front Psychol 2023; 14:1282957. [PMID: 38098529 PMCID: PMC10720715 DOI: 10.3389/fpsyg.2023.1282957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/17/2023] [Indexed: 12/17/2023] Open
Abstract
Introduction Mathematics is a fundamental subject with significant implications in education and neuroscience. Understanding the cognitive processes underlying mathematical cognition is crucial for enhancing educational practices. However, mathematical cognitive impairment and anxiety significantly hinder learning and application in this field. This systematic literature review aims to investigate the neuroscience basis and effective educational interventions for these challenges. Methods The review involved a comprehensive screening of 62 research articles that meet the ESSA evidence levels from multiple databases. The selection criteria focused on studies employing various methodologies, including behavioral experiments and neuroimaging techniques, to explore the neuroscience underpinnings and educational interventions related to mathematical cognitive impairment and anxiety. Results The review identified key themes and insights into the neuroscience basis of mathematical cognitive impairment and anxiety. It also examined their impact on educational practices, highlighting the interplay between cognitive processes and educational outcomes. The analysis of these studies revealed significant findings on how these impairments and anxieties manifest and can be addressed in educational settings. Discussion The review critically analyzes the shortcomings of existing research, noting gaps and limitations in current understanding and methodologies. It emphasizes the need for more comprehensive and diverse studies to better understand these phenomena. The discussion also suggests new directions and potential improvement strategies for future research, aiming to contribute to more effective educational interventions and enhanced learning experiences in mathematics. Conclusion This systematic review provides valuable insights into the neuroscience basis of mathematical cognitive impairment and anxiety, offering a foundation for developing more effective educational strategies. It underscores the importance of continued research in this area to improve educational outcomes and support learners facing these challenges.
Collapse
Affiliation(s)
- Hao Yu
- Faculty of Education, Shaanxi Normal University, Xi'an, Shaanxi, China
| |
Collapse
|
5
|
Syeda A, Nisha KV, Jain C. Test-Retest Reliability of Virtual Acoustic Space Identification Test in School-Going Children. Am J Audiol 2023; 32:574-582. [PMID: 37540719 DOI: 10.1044/2023_aja-22-00238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2023] Open
Abstract
PURPOSE The virtual acoustic space identification (VASI) test was designed to assess spatial-hearing acuity by simulating sound location perception in a closed field (under headphones). The utility of this tool in children can be asserted only if the test results are consistent across measurement sessions, which is evaluated in this study using test-retest reliability assessments. METHOD The VASI test assessed the spatial abilities of 40 typically developing school-aged children aged 7-13 years (M age = 10.47 ± 1.83 years, 22 boys, 18 girls). The test consisted of eight virtual location percepts (with 45° separation) produced under headphones (Sennheiser HD 569). Each spatial percept was presented randomly 7 times at 65 dB SPL. Each participant completed the assessment in three measurement sessions (baseline, intrasession, and intersession). The accuracy scores at each location and overall accuracy scores were compared across the sessions. RESULTS The Shapiro-Wilk test indicated that the VASI data were not normally distributed. Intraclass correlation coefficient analysis revealed excellent test-retest reliability of the overall accuracy scores and moderate-to-high reliability of location-specific scores. This was complimented by the low response variability of the overall and location-specific accuracy scores. The Bland-Altman analysis also indicated minimal bias in VASI accuracy scores across the three sessions. CONCLUSIONS It can be concluded from the results that VASI is a reliable tool for assessing spatial-hearing acuity in school-aged children. The high test-retest reliability and ease of portability make the test highly relevant for classroom setups where early diagnosis and intervention of spatial deficits can play a critical role in determining the academic success of school-going children.
Collapse
Affiliation(s)
- Aisha Syeda
- All India Institute of Speech and Hearing, Mysuru, India
| | - K V Nisha
- All India Institute of Speech and Hearing, Mysuru, India
| | - Chandni Jain
- All India Institute of Speech and Hearing, Mysuru, India
| |
Collapse
|
6
|
Wilkey ED, Gupta I, Peiris A, Ansari D. The mathematical brain at rest. Curr Opin Behav Sci 2023. [DOI: 10.1016/j.cobeha.2022.101246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
7
|
Sanjana M, Nisha KV. Effects of Abacus Training on Auditory Spatial Maturation in Children with Normal Hearing. Int Arch Otorhinolaryngol 2022; 27:e56-e66. [PMID: 36714899 PMCID: PMC9879648 DOI: 10.1055/s-0041-1741434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 09/11/2021] [Indexed: 02/01/2023] Open
Abstract
Introduction The spatial auditory system, though developed at birth, attains functional maturity in the late childhood (12 years). Spatial changes during childhood affect navigation in the environment and source segregation. Accommodation of a new skill through learning, especially during childhood, can expedite this process. Objective To explore the auditory spatial benefits of abacus training on psychoacoustic metrics in children. The study also aimed to identify the most sensitive metric to abacus training related changes in spatial processing, and utilize this metric for a detailed spatial error profiling. Methods A standard group comparison analysis with 90 participants divided into three groups: I: children with abacus training (C-AT); II: children with no training (C-UT); III: adults with no training (A-UT). The groups underwent a series of psychoacoustic tests, such as interaural time difference (ITD), interaural level difference (ILD), and virtual auditory space identification (VASI), as well as perceptual tests such as the Kannada version of the speech, spatial, and quality questionnaire (K-SSQ). Results Significant group differences were observed in the multivariate analysis of variance (MANOVA) and post-hoc tests, with the C-AT group showing significantly lower ILD scores ( p = 0.01) and significantly higher VASI scores ( p <0.001) compared to the C-UT group, which is indicative of better spatial processing abilities in the former group. The discriminant function (DF) analyses showed that the VASI was the most sensitive metric for training-related changes, based on which elaborate error analyses were performed. Conclusions Despite the physiological limits of the immature neural framework, the performance of the C-AT group was equivalent to that of untrained adults on psychoacoustic tests, which is reflective of the positive role of abacus training in expediting auditory spatial maturation.
Collapse
Affiliation(s)
- M. Sanjana
- Department of Speech and Hearing, Manipal College of Health Professions (MCHP), Manipal, Karnataka, India.
| | - K. V. Nisha
- Center for Hearing Sciences, Center of Excellence, All India Institute of Speech and Hearing (AIISH), Naimisham Campus, Manasagangothri, Mysore, Karnataka, India.,Address for correspondence K. V. Nisha, PhD Department of Audiology, All India Institute of Speech and Hearing (AIISH)Mysore 570006, KarnatakaIndia
| |
Collapse
|
8
|
Wang CC, Sun YC, Zhang Y, Xin YW, Gao WX, Jia LP, Liu XQ. An ERP study on the influence of mental abacus calculation on subthreshold arithmetic priming in children. Neuroreport 2022; 33:116-128. [PMID: 35139060 DOI: 10.1097/wnr.0000000000001761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE The objective of this study was to investigate the influence of mental abacus calculation training (MACT) on subliminal cognitive processes. METHODS Twenty children with intensive MACT (MACT group) and 20 children without MACT (non-MACT group) were selected. The two groups of children were matched in age, sex, handedness and academic grade. The participants were tested with subthreshold arithmetic priming task while their neural activities were recorded with a 32-channel electroencephalogram system. RESULTS We found that MACT changed the subliminal cognitive mechanism of computational processing, speeding up the computation. MACT affected the computational processing mode. Specifically, in the identification stage, both groups of children adopted the visual space processing mode, while in the computing stage, the MACT group adopted a visual space processing mode, but the non-MACT group adopted a semantic processing mode. Moreover, MACT improved children's executive functions. CONCLUSION These results yielded insights into the effect of early abacus training on children's cognitive processing, providing a theoretical basis for the development and promotion of abacus training.
Collapse
Affiliation(s)
- Cong-Cong Wang
- Department of Psychology, Weifang Medical University, Weifang, Shandong, China
| | | | | | | | | | | | | |
Collapse
|
9
|
Lima-Silva TB, Barbosa MEDC, Zumkeller MG, Verga CER, Prata PL, Cardoso NP, de Moraes LC, Brucki SMD. Cognitive training using the abacus: a literature review study on the benefits for different age groups. Dement Neuropsychol 2021; 15:256-266. [PMID: 34345368 PMCID: PMC8283869 DOI: 10.1590/1980-57642021dn15-020014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 01/07/2021] [Indexed: 11/30/2022] Open
Abstract
The literature indicates that cognitive stimulation interventions have shown promising results. Abacus represents a tool with great potential in such interventions.
Collapse
Affiliation(s)
- Thais Bento Lima-Silva
- Group of Cognitive and Behavioral Neurology, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo - São Paulo, SP, Brazil
| | | | | | | | - Patrícia Lessa Prata
- Group of Cognitive and Behavioral Neurology, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo - São Paulo, SP, Brazil
| | | | | | - Sonia Maria Dozzi Brucki
- Group of Cognitive and Behavioral Neurology, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo - São Paulo, SP, Brazil
| |
Collapse
|
10
|
Jia X, Zhang Y, Yao Y, Chen F, Liang P. Neural correlates of improved inductive reasoning ability in abacus-trained children: A resting state fMRI study. Psych J 2021; 10:566-573. [PMID: 33709543 DOI: 10.1002/pchj.439] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 12/27/2020] [Accepted: 01/19/2021] [Indexed: 11/09/2022]
Abstract
Abacus-based mental calculation (AMC) training may improve mathematics-related abilities and transfer to other cognitive domains. Thus, it was hypothesized that inductive reasoning abilities can be improved by AMC training given the overlapping cognitive processes and neural correlates between AMC and inductive reasoning. The aim of the current study was to examine the underlying neurobiological mechanisms of this possible adaption by resting-state functional magnetic resonance imaging (rs-fMRI). Sixty-three children were randomly assigned to either the AMC-trained or the nontrained group. The AMC-trained group was required to perform abacus training for 2 hours per week for 5 years whereas the nontrained group was not required to perform any abacus training. Each participant's rs-fMRI data were collected after abacus training, and regional homogeneity (ReHo) analysis was performed to determine the neural activity differences between groups. The participants' posttraining mathematical ability, intelligence quotients, and inductive reasoning ability were recorded and evaluated. The results revealed that AMC-trained children exhibited a significantly higher mathematical ability and inductive reasoning performance and higher ReHo in the rostrolateral prefrontal cortex (RLPFC) compared to the nontrained group. In particular, the increased ReHo in the RLPFC was found to be positively correlated with improved inductive reasoning performance. Our findings suggest that rs-fMRI may reflect the modulation of training in task-related networks.
Collapse
Affiliation(s)
- Xiuqin Jia
- School of Psychology, Beijing Key Laboratory of Learning and Cognition, Capital Normal University, Beijing, China.,Department of Radiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Yi Zhang
- Bio-X Laboratory, Department of Physics, Zhejiang University, Hangzhou, China
| | - Yuzhao Yao
- Bio-X Laboratory, Department of Physics, Zhejiang University, Hangzhou, China
| | - Feiyan Chen
- Bio-X Laboratory, Department of Physics, Zhejiang University, Hangzhou, China
| | - Peipeng Liang
- School of Psychology, Beijing Key Laboratory of Learning and Cognition, Capital Normal University, Beijing, China
| |
Collapse
|
11
|
Lu Y, Ma M, Chen G, Zhou X. Can abacus course eradicate developmental dyscalculia. PSYCHOLOGY IN THE SCHOOLS 2020. [DOI: 10.1002/pits.22441] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yujie Lu
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research Beijing Normal University Beijing China
- Advanced Innovation Center for Future Education Beijing Normal University Beijing China
- Siegler Center for Innovative Learning Beijing Normal University Beijing China
| | - Mei Ma
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research Beijing Normal University Beijing China
- Advanced Innovation Center for Future Education Beijing Normal University Beijing China
- Siegler Center for Innovative Learning Beijing Normal University Beijing China
| | - Guozhong Chen
- Educational, Scientific and Cultural Division, The Jiangsu Abacus Association Department of Finance of Jiangsu Province Jiangsu China
| | - Xinlin Zhou
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research Beijing Normal University Beijing China
- Advanced Innovation Center for Future Education Beijing Normal University Beijing China
- Siegler Center for Innovative Learning Beijing Normal University Beijing China
| |
Collapse
|
12
|
Le TM, Huang AS, O'Rawe J, Leung HC. Functional neural network configuration in late childhood varies by age and cognitive state. Dev Cogn Neurosci 2020; 45:100862. [PMID: 32920279 PMCID: PMC7494462 DOI: 10.1016/j.dcn.2020.100862] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 07/31/2020] [Accepted: 08/26/2020] [Indexed: 12/12/2022] Open
Abstract
fMRI data from 60 children aged 9–12 during resting and tasks involving decision making, visual perception, and working memory were examined. At rest, the child brain exhibited network organization similar to adults though the degree of similarity was age- and network-dependent. During tasks, brain network configurations showed task-induced and age-related changes in integration. Frontoparietal network showed flexible connectivity pattern across states while networks for sensory and motor processing remained stable. Findings demonstrate that network connectivity characteristics may serve as markers for neural and cognitive maturation.
Late childhood and early adolescence is characterized by substantial brain maturation which contributes to both adult-like and age-dependent resting-state network connectivity patterns. However, it remains unclear whether these functional network characteristics in children are subject to differential modulation by distinct cognitive demands as previously found in adults. We conducted network analyses on fMRI data from 60 children (aged 9–12) during resting and during three distinct tasks involving decision making, visual perception, and spatial working memory. Graph measures of network architecture, functional integration, and flexibility were calculated for each of the four states. During resting state, the children’s network architecture was similar to that in young adults (N = 60, aged 20–23) but the degree of similarity was age- and network-dependent. During the task states, the children's whole-brain network exhibited enhanced integration in response to increased cognitive demand. Additionally, the frontoparietal network showed flexibility in connectivity patterns across states while networks implicated in motor and visual processing remained relatively stable. Exploratory analyses suggest different relationships between behavioral performance and connectivity profiles for the working memory and perceptual tasks. Together, our findings demonstrate state- and age-dependent features in functional network connectivity during late childhood, potentially providing markers for brain and cognitive development.
Collapse
Affiliation(s)
- Thang M Le
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06519, USA.
| | - Anna S Huang
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University School of Medicine, Nashville, TN 37212, USA
| | - Jonathan O'Rawe
- Department of Psychology, Integrative Neuroscience Program, Stony Brook University, Stony Brook, NY 11790, USA
| | - Hoi-Chung Leung
- Department of Psychology, Integrative Neuroscience Program, Stony Brook University, Stony Brook, NY 11790, USA.
| |
Collapse
|
13
|
Belkacem AN, Kiso K, Uokawa E, Goto T, Yorifuji S, Hirata M. Neural Processing Mechanism of Mental Calculation Based on Cerebral Oscillatory Changes: A Comparison Between Abacus Experts and Novices. Front Hum Neurosci 2020; 14:137. [PMID: 32351373 PMCID: PMC7176303 DOI: 10.3389/fnhum.2020.00137] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 03/23/2020] [Indexed: 11/15/2022] Open
Abstract
Background: Abacus experts could mentally calculate fast some mathematical operations using multi-digit numbers. The temporal dynamics of abacus mental calculation are still unknown although some behavioral and neuroimaging studies have suggested a visuospatial and visuomotor neural process during abacus mental calculation. Therefore, this contribution aims to clarify the significant similarities and the differences between experts and novices by investigating calculation-induced neuromagnetic responses based on cerebral oscillatory changes. Methods: Twelve to 13 healthy abacus experts and 17 non-experts participated in two experimental paradigms using non-invasive neuromagnetic measurements. In experiments 1 and 2, the spatial distribution of oscillatory changes presented mental calculations and temporal frequency profiles during addition while examining multiplication tasks. The MEG data were analyzed using synthetic aperture magnetometry (SAM) with an adaptive beamformer to calculate the group average of the spatial distribution of oscillatory changes and their temporal frequency profiles in source-level analyses. Results: Using a group average of the spatial distribution of oscillatory changes, we observed some common brain activities in both right-handed abacus experts and non-experts. In non-experts, we detected the right dorsolateral prefrontal cortex (DLPFC) and bilateral Intraparietal sulcus (IPS); whereas in experts, detected the bilateral parieto-occipital sulcus (POS), right inferior frontal gyrus (IFG), and left sensorimotor areas mainly. Based on the findings generated, we could propose calculation processing models for both abacus experts and non- experts conveniently. Conclusion: The proposed model of calculation processing in abacus experts and novices revealed that the novices could calculate logically depending on numerical processing in the left IPS. In contrast, abacus experts are utilizing spatial processing using a memorized imaginary abacus, which distributed over the bilateral hemispheres in the IFG and sensorimotor areas.
Collapse
Affiliation(s)
- Abdelkader Nasreddine Belkacem
- Department of Computer and Network Engineering, College of Information Technology, United Arab Emirates University, Al Ain, United Arab Emirates.,Department of Neurological Diagnosis and Restoration, Osaka University Graduate School of Medicine, Suita, Japan
| | - Kanako Kiso
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Etsuko Uokawa
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Tetsu Goto
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Shiro Yorifuji
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Masayuki Hirata
- Department of Neurological Diagnosis and Restoration, Osaka University Graduate School of Medicine, Suita, Japan.,Department of Neurosurgery, Osaka University Graduate School of Medicine, Suita, Japan.,Endowed Research Department of Clinical Neuroengineering, Global Center for Medical Engineering and Informatics, Osaka University, Suita, Japan.,Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology, Osaka University, Suita, Japan
| |
Collapse
|
14
|
Wang C, Xu T, Geng F, Hu Y, Wang Y, Liu H, Chen F. Training on Abacus-Based Mental Calculation Enhances Visuospatial Working Memory in Children. J Neurosci 2019; 39:6439-6448. [PMID: 31209171 PMCID: PMC6697396 DOI: 10.1523/jneurosci.3195-18.2019] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 06/05/2019] [Accepted: 06/11/2019] [Indexed: 12/11/2022] Open
Abstract
Abacus-based mental calculation (AMC) involves temporary storage and manipulation of an imaginary abacus closely related to the function of visuospatial working memory (VSWM). The present study thus investigated the effects of AMC training on VSWM and its neural correlates. A total of 144 human subjects (67 boys) were assigned to AMC or control groups at their entry to primary school. The AMC group received 2 h AMC training per week for 5 school years, whereas the control group spent the time in activities, such as conventional calculation and reading. Raven's Intelligence Test was administered both before and after training. Two arithmetic tests and a VSWM task were conducted after training. Among these participants, fMRI data were collected from 64 children for the VSWM task. Behavioral results indicated that the AMC group outperformed controls on both arithmetic and VSWM tasks, but not on Raven's Intelligence Test. While the two groups activated similar regions during the VSWM task, the AMC group showed greater activation than the controls in frontal, parietal, and occipital areas. Interestingly, the activation of right middle frontal gyrus mediated the relation between the arithmetic ability and the VSWM performance in the AMC group, suggesting that the frontal region may be the neural substrate underlying the transfer effect from AMC training to VSWM. Although the transfer effects seem quite limited considering the length and intensity of the training, these findings suggest that long-term AMC training not only improves arithmetic ability but also has a potential positive effect on VSWM.SIGNIFICANCE STATEMENT Plasticity of working memory is one of the most rapidly expanding research fields in the developmental and cognitive sciences. Previous studies suggest that abacus-based mental calculation (AMC) relies on a visuospatial imaginary strategy, which is closely related to visuospatial working memory (VSWM). However, the impacts of AMC training on VSWM and the underlying neural basis remain unclear. Here, we found that AMC training enhanced VSWM in children, which was accompanied by altered activation in frontal, parietal, and occipital areas. Moreover, we observed that activation in right middle frontal gyrus played a significant mediation role in the transfer of AMC training to VSWM. These findings provide a new perspective to VSWM training and also advance our understanding of related brain plasticity.
Collapse
Affiliation(s)
- Chunjie Wang
- Bio-X Laboratory, Department of Physics, Zhejiang University, Hangzhou 310027, China
- State Key Laboratory of Modern Optical Instrumentation, Department of Optical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Tianyong Xu
- Bio-X Laboratory, Department of Physics, Zhejiang University, Hangzhou 310027, China
| | - Fengji Geng
- Department of Curriculum and Learning Sciences, College of Education, Zhejiang University, Hangzhou 310027, China
| | - Yuzheng Hu
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou 310027, China, and
| | - Yunqi Wang
- School of International Studies, Zhejiang University, Hangzhou 310058, China
| | - Huafeng Liu
- State Key Laboratory of Modern Optical Instrumentation, Department of Optical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Feiyan Chen
- Bio-X Laboratory, Department of Physics, Zhejiang University, Hangzhou 310027, China,
| |
Collapse
|
15
|
Xie Y, Weng J, Wang C, Xu T, Peng X, Chen F. The impact of long-term abacus training on modular properties of functional brain network. Neuroimage 2018; 183:811-817. [PMID: 30149141 DOI: 10.1016/j.neuroimage.2018.08.057] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 08/17/2018] [Accepted: 08/23/2018] [Indexed: 01/22/2023] Open
Abstract
Training induces cognitive and neural plasticity, and understanding of the neural mechanisms of training-induced brain plasticity has significant implications for improving children's academic achievement. Previous studies have indicated that training in abacus-based mental calculation (AMC) improves arithmetical capacities and results in brain plasticity within visuospatial brain regions. However, previous studies have reported alterations within distributed brain regions. Thus, it remains unclear whether and how AMC training influences the functional integration and separation between and/or within networks. The current study aimed to address these questions using graph theory, engaging 162 children, 90 of whom were given long-term AMC training. The AMC group exhibited greater local efficiency and intra-module connections within the visual network and less local efficiency and intra-module connections in the cingulo-opercular network (CON). Interestingly, in the AMC group, negative correlations were found between local efficiency and intra-module connections across the two networks. Furthermore, both network characteristics of the CON were negatively correlated with math ability in the AMC group. No such correlations were found in the control group. The current study delineated the enhanced neural mechanisms of visuospatial-related brain regions at an intermediate level and highlighted the intrinsic association between different brain ensembles in neural plasticity, thus furthering the understanding of the effects of AMC training on brain network reconfiguration.
Collapse
Affiliation(s)
- Ye Xie
- Bio-X Laboratory, Department of Physics, Zhejiang University, Hangzhou, 310027, PR China
| | - Jian Weng
- Bio-X Laboratory, Department of Physics, Zhejiang University, Hangzhou, 310027, PR China; Center of Brain Imaging Science and Technology, Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrumental Science, Zhejiang University, Hangzhou, Zhejiang, PR China
| | - Chunjie Wang
- Bio-X Laboratory, Department of Physics, Zhejiang University, Hangzhou, 310027, PR China; State Key Laboratory of Modern Optical Instrumentation, Department of Optical Engineering, Zhejiang University, Hangzhou, PR China
| | - Tianyong Xu
- Bio-X Laboratory, Department of Physics, Zhejiang University, Hangzhou, 310027, PR China
| | - Xiaogang Peng
- The First Hospital of Qiqihar, Qiqihar, Heilongjiang, PR China
| | - Feiyan Chen
- Bio-X Laboratory, Department of Physics, Zhejiang University, Hangzhou, 310027, PR China.
| |
Collapse
|
16
|
Cho PS, So WC. A Feel for Numbers: The Changing Role of Gesture in Manipulating the Mental Representation of an Abacus Among Children at Different Skill Levels. Front Psychol 2018; 9:1267. [PMID: 30131733 PMCID: PMC6090447 DOI: 10.3389/fpsyg.2018.01267] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Accepted: 07/02/2018] [Indexed: 11/13/2022] Open
Abstract
Abacus mental arithmetic involves the skilled acquisition of a set of gestures representing mathematical algorithms to properly manipulate an imaginary abacus. The present study examined how the beneficial effect of abacus co-thought gestures varied at different skill and problem difficulty levels. We compared the mental arithmetic performance of 6- to 8-year-old beginning (N = 57), intermediate (N = 65), and advanced (N = 54) learners under three conditions: a physical abacus, hands-free (spontaneous gesture) mental arithmetic, and hands-restricted mental arithmetic. We adopted a mixed-subject design, with level of difficulty and skill level as the within-subject independent variables and condition as the between-subject independent variable. Our results showed a clear contrast in calculation performance and gesture accuracy among learners at different skill levels. Learners first mastered how to calculate using a physical abacus and later benefitted from using abacus gestures to aid mental arithmetic. Hand movement and gesture accuracy indicated that the beneficial effect of gestures may be related to motor learning. Beginners were proficient with a physical abacus, but performed poorly and had low gesture accuracy during mental arithmetic. Intermediates relied on gestures to do mental arithmetic and had accurate hand movements, but performed more poorly when restricted from gesturing. Advanced learners could perform mental arithmetic with accurate gestures and scored just as well without gesturing. These findings suggest that for intermediate and advanced learners, motor-spatial representation through abacus co-thought gestures may complement visual-spatial representation of a mental abacus to reduce working memory load.
Collapse
Affiliation(s)
- Philip S Cho
- Underwood International College, Yonsei University, Songdo, South Korea.,Institute of Convergence Science, Center for Science and Engineering Applications in Social Science, Yonsei University, Seoul, South Korea
| | - Wing Chee So
- Department of Educational Psychology, The Chinese University of Hong Kong, Shatin, Hong Kong
| |
Collapse
|
17
|
Srinivasan M, Wagner K, Frank MC, Barner D. The Role of Design and Training in Artifact Expertise: The Case of the Abacus and Visual Attention. Cogn Sci 2018; 42 Suppl 3:757-782. [DOI: 10.1111/cogs.12611] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 09/19/2017] [Accepted: 02/19/2018] [Indexed: 11/29/2022]
Affiliation(s)
| | - Katie Wagner
- Department of Psychology; University of California, San Diego
| | | | - David Barner
- Department of Psychology; University of California, San Diego
| |
Collapse
|
18
|
An event-related potential investigation of spatial attention orientation in children trained with mental abacus calculation. Neuroreport 2018; 28:35-41. [PMID: 27831960 PMCID: PMC5142367 DOI: 10.1097/wnr.0000000000000705] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The objective of this study was to investigate the effects of long-term mental abacus calculation training (MACT) on children’s spatial attention orientation. Fifteen children with intensive MACT (MACT group) and 15 children without MACT (non-MACT group) were selected. The two groups of children were matched in age, sex, handedness, and academic grade. The participants were tested with a Posner spatial cueing task while their neural activities were recorded with a 32-channel electroencephalogram system. The participants’ behavior scores (reaction time and accuracy) as well as early components of event-related potential (ERP) during the tests were statistically analyzed. The behavioral scores showed no significant difference between the two groups of children, although the MACT group tended to have a shorter reaction time. The early ERP components showed that under valid cueing condition, the MACT group had significantly higher P1 amplitude [F(1, 28)=5.06, P<0.05, effective size=0.72] and lower N1 amplitude [F(1, 28)=6.05, P<0.05, effective size=0.82] in the occipital region compared with the non-MACT group. In the centrofrontal brain region, the MACT group had lower N1 amplitude [F(1, 28)=4.89, P<0.05, effect size=0.70] and longer N1 latency [F(1, 28)=6.26, P<0.05, effect size=0.80] than the non-MACT group. In particular, the MACT group also showed a higher centrofrontal P2 amplitude in the right hemisphere [F(1, 28)=4.82, P<0.05, effect size 0.81] compared with the left hemisphere and the middle location. MACT enhances the children’s spatial attention orientation, which can be detected in the early components of ERP.
Collapse
|
19
|
Wang C, Weng J, Yao Y, Dong S, Liu Y, Chen F. Effect of abacus training on executive function development and underlying neural correlates in Chinese children. Hum Brain Mapp 2017; 38:5234-5249. [PMID: 28727223 PMCID: PMC6867117 DOI: 10.1002/hbm.23728] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 06/17/2017] [Accepted: 07/07/2017] [Indexed: 01/19/2023] Open
Abstract
Executive function (EF) refers to a set of cognitive abilities involved in self-regulated behavior. Given the critical role of EF in cognition, strategies for improving EF have attracted intensive attention in recent years. Previous studies have explored the effects of abacus-based mental calculation (AMC) training on several cognitive abilities. However, it remains unclear whether AMC training affects EF and its neural correlates. In this study, participants were randomly assigned to AMC or control groups upon starting primary school. The AMC group received 2 h AMC training every week, while the control group did not have any abacus experience. Neural activity during an EF task was examined using functional MRI for both groups in their 4th and 6th grades. Our results showed that the AMC group performed better and faster than the control group in both grades. They also had lower activation in the frontoparietal reigons than the control group in the 6th grade. From the 4th to the 6th grade, the AMC group showed activation decreases in the frontoparietal regions, while the control group exhibited an opposite pattern. Furthermore, voxel-wise regression analyses revealed that better performance was associated with lower task-relevant brain activity in the AMC group but associated with greater task-relevant brain activity in the control group. These results suggest that long-term AMC training, with calculation ability as its original target, may improve EF and enhance neural efficiency of the frontoparietal regions during development. Hum Brain Mapp 38:5234-5249, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Chunjie Wang
- Bio‐X LaboratoryDepartment of Physics, Zhejiang UniversityHangzhouChina
| | - Jian Weng
- Bio‐X LaboratoryDepartment of Physics, Zhejiang UniversityHangzhouChina
| | - Yuan Yao
- Department of PsychologySuzhou University of Science and TechnologySuzhouChina
| | - Shanshan Dong
- Bio‐X LaboratoryDepartment of Physics, Zhejiang UniversityHangzhouChina
| | - Yuqiu Liu
- Bio‐X LaboratoryDepartment of Physics, Zhejiang UniversityHangzhouChina
| | - Feiyan Chen
- Bio‐X LaboratoryDepartment of Physics, Zhejiang UniversityHangzhouChina
| |
Collapse
|
20
|
Brooks NB, Barner D, Frank M, Goldin‐Meadow S. The Role of Gesture in Supporting Mental Representations: The Case of Mental Abacus Arithmetic. Cogn Sci 2017; 42:554-575. [DOI: 10.1111/cogs.12527] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 07/04/2017] [Accepted: 07/10/2017] [Indexed: 11/30/2022]
Affiliation(s)
| | - David Barner
- Department of Psychology University of California, San Diego
| | | | | |
Collapse
|
21
|
The Effects of Long-term Abacus Training on Topological Properties of Brain Functional Networks. Sci Rep 2017; 7:8862. [PMID: 28821846 PMCID: PMC5562922 DOI: 10.1038/s41598-017-08955-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 07/20/2017] [Indexed: 11/08/2022] Open
Abstract
Previous studies in the field of abacus-based mental calculation (AMC) training have shown that this training has the potential to enhance a wide variety of cognitive abilities. It can also generate specific changes in brain structure and function. However, there is lack of studies investigating the impact of AMC training on the characteristics of brain networks. In this study, utilizing graph-based network analysis, we compared topological properties of brain functional networks between an AMC group and a matched control group. Relative to the control group, the AMC group exhibited higher nodal degrees in bilateral calcarine sulcus and increased local efficiency in bilateral superior occipital gyrus and right cuneus. The AMC group also showed higher nodal local efficiency in right fusiform gyrus, which was associated with better math ability. However, no relationship was significant in the control group. These findings provide evidence that long-term AMC training may improve information processing efficiency in visual-spatial related regions, which extend our understanding of training plasticity at the brain network level.
Collapse
|
22
|
Matías-Guiu J, Pérez-Martínez D, Matías-Guiu J. A pilot study of a new method of cognitive stimulation using abacus arithmetic in healthy and cognitively impaired elderly subjects. NEUROLOGÍA (ENGLISH EDITION) 2016. [DOI: 10.1016/j.nrleng.2015.02.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
23
|
Barner D, Alvarez G, Sullivan J, Brooks N, Srinivasan M, Frank MC. Learning Mathematics in a Visuospatial Format: A Randomized, Controlled Trial of Mental Abacus Instruction. Child Dev 2016; 87:1146-58. [PMID: 27062391 DOI: 10.1111/cdev.12515] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mental abacus (MA) is a technique of performing fast, accurate arithmetic using a mental image of an abacus; experts exhibit astonishing calculation abilities. Over 3 years, 204 elementary school students (age range at outset: 5-7 years old) participated in a randomized, controlled trial to test whether MA expertise (a) can be acquired in standard classroom settings, (b) improves students' mathematical abilities (beyond standard math curricula), and (c) is related to changes in basic cognitive capacities like working memory. MA students outperformed controls on arithmetic tasks, suggesting that MA expertise can be achieved by children in standard classrooms. MA training did not alter basic cognitive abilities; instead, differences in spatial working memory at the beginning of the study mediated MA learning.
Collapse
|
24
|
Neural Plasticity following Abacus Training in Humans: A Review and Future Directions. Neural Plast 2016; 2016:1213723. [PMID: 26881089 PMCID: PMC4736326 DOI: 10.1155/2016/1213723] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 09/24/2015] [Accepted: 09/28/2015] [Indexed: 01/28/2023] Open
Abstract
The human brain has an enormous capacity to adapt to a broad variety of environmental demands. Previous studies in the field of abacus training have shown that this training can induce specific changes in the brain. However, the neural mechanism underlying these changes remains elusive. Here, we reviewed the behavioral and imaging findings of comparisons between abacus experts and average control subjects and focused on changes in activation patterns and changes in brain structure. Finally, we noted the limitations and the future directions of this field. We concluded that although current studies have provided us with information about the mechanisms of abacus training, more research on abacus training is needed to understand its neural impact.
Collapse
|
25
|
Abacus Training Affects Math and Task Switching Abilities and Modulates Their Relationships in Chinese Children. PLoS One 2015; 10:e0139930. [PMID: 26444689 PMCID: PMC4596702 DOI: 10.1371/journal.pone.0139930] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Accepted: 09/19/2015] [Indexed: 11/23/2022] Open
Abstract
Our previous work demonstrated that abacus-based mental calculation (AMC), a traditional Chinese calculation method, could help children improve their math abilities (e.g. basic arithmetical ability) and executive function (e.g. working memory). This study further examined the effects of long-term AMC training on math ability in visual-spatial domain and the task switching component of executive function. More importantly, this study investigated whether AMC training modulated the relationship between math abilities and task switching. The participants were seventy 7-year-old children who were randomly assigned into AMC and control groups at primary school entry. Children in AMC group received 2-hour AMC training every week since primary school entry. On the contrary, children in the control group had never received any AMC training. Math and task switching abilities were measured one year and three years respectively after AMC training began. The results showed that AMC children performed better than their peers on math abilities in arithmetical and visual-spatial domains. In addition, AMC group responded faster than control group in the switching task, while no group difference was found in switch cost. Most interestingly, group difference was present in the relationships between math abilities and switch cost. These results implied the effect of AMC training on math abilities as well as its relationship with executive function.
Collapse
|
26
|
Weng J, Dong S, He H, Chen F, Peng X. Reducing Individual Variation for fMRI Studies in Children by Minimizing Template Related Errors. PLoS One 2015. [PMID: 26207985 PMCID: PMC4514841 DOI: 10.1371/journal.pone.0134195] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Spatial normalization is an essential process for group comparisons in functional MRI studies. In practice, there is a risk of normalization errors particularly in studies involving children, seniors or diseased populations and in regions with high individual variation. One way to minimize normalization errors is to create a study-specific template based on a large sample size. However, studies with a large sample size are not always feasible, particularly for children studies. The performance of templates with a small sample size has not been evaluated in fMRI studies in children. In the current study, this issue was encountered in a working memory task with 29 children in two groups. We compared the performance of different templates: a study-specific template created by the experimental population, a Chinese children template and the widely used adult MNI template. We observed distinct differences in the right orbitofrontal region among the three templates in between-group comparisons. The study-specific template and the Chinese children template were more sensitive for the detection of between-group differences in the orbitofrontal cortex than the MNI template. Proper templates could effectively reduce individual variation. Further analysis revealed a correlation between the BOLD contrast size and the norm index of the affine transformation matrix, i.e., the SFN, which characterizes the difference between a template and a native image and differs significantly across subjects. Thereby, we proposed and tested another method to reduce individual variation that included the SFN as a covariate in group-wise statistics. This correction exhibits outstanding performance in enhancing detection power in group-level tests. A training effect of abacus-based mental calculation was also demonstrated, with significantly elevated activation in the right orbitofrontal region that correlated with behavioral response time across subjects in the trained group.
Collapse
Affiliation(s)
- Jian Weng
- Bio-X Laboratory, Department of Physics, Zhejiang University, Hangzhou, Zhejiang, P.R. China
| | - Shanshan Dong
- Bio-X Laboratory, Department of Physics, Zhejiang University, Hangzhou, Zhejiang, P.R. China
| | - Hongjian He
- Center for Brain Imaging Science and Technology, Department of Biomedical Engineering, Zhejiang University, Hangzhou, Zhejiang, P.R. China
- * E-mail:
| | - Feiyan Chen
- Bio-X Laboratory, Department of Physics, Zhejiang University, Hangzhou, Zhejiang, P.R. China
| | - Xiaogang Peng
- The First Hospital of Qiqihar, Qiqihar, Heilongjiang, P.R. China
| |
Collapse
|
27
|
A pilot study of a new method of cognitive stimulation using abacus arithmetic in healthy and cognitively impaired elderly subjects. Neurologia 2015; 31:326-31. [PMID: 25840607 DOI: 10.1016/j.nrl.2015.02.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2014] [Accepted: 02/07/2015] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND This study explores the applicability of a cognitive stimulation method based on abacus arithmetic in elderly people with and without cognitive impairment. METHODS This observational and prospective pilot study was performed in 2 hospitals. The study assessed the applicability of a programme of arithmetic training developed for use in the elderly population. The primary endpoint was an evaluation of the stimulation programme, in terms of usability, satisfaction, and participation, in healthy elderly controls and elderly patients with mild cognitive impairment or Alzheimer disease. Secondary endpoints were family satisfaction, caregiver burden, and the behaviour and cognition of patients. RESULTS Usability, satisfaction, and degree of participation were high. The Mini-Mental State Examination showed significant changes (23.1±4.8 before the intervention vs 24.9±4.2 afterwards, P=.002); there were no changes on the Trail Making Test parts A and B, Yesavage Geriatric Depression scale, and Zarit caregiver burden scale. CONCLUSIONS The study suggests that cognitive stimulation with abacus arithmetic may be used in elderly people with and without cognitive impairment. Further studies will be needed to evaluate the efficacy of this kind of programmes.
Collapse
|
28
|
Byrge L, Sporns O, Smith LB. Developmental process emerges from extended brain-body-behavior networks. Trends Cogn Sci 2014; 18:395-403. [PMID: 24862251 PMCID: PMC4112155 DOI: 10.1016/j.tics.2014.04.010] [Citation(s) in RCA: 171] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 04/17/2014] [Accepted: 04/21/2014] [Indexed: 11/28/2022]
Abstract
Studies of brain connectivity have focused on two modes of networks: structural networks describing neuroanatomy and the intrinsic and evoked dependencies of functional networks at rest and during tasks. Each mode constrains and shapes the other across multiple timescales and each also shows age-related changes. Here we argue that understanding how brains change across development requires understanding the interplay between behavior and brain networks: changing bodies and activities modify the statistics of inputs to the brain; these changing inputs mold brain networks; and these networks, in turn, promote further change in behavior and input.
Collapse
Affiliation(s)
- Lisa Byrge
- Psychological and Brain Sciences, Indiana University, 1101 E. 10th Street, Bloomington, IN 47405, USA.
| | - Olaf Sporns
- Psychological and Brain Sciences, Indiana University, 1101 E. 10th Street, Bloomington, IN 47405, USA
| | - Linda B Smith
- Psychological and Brain Sciences, Indiana University, 1101 E. 10th Street, Bloomington, IN 47405, USA
| |
Collapse
|