1
|
Younger DS. Spinal cord motor disorders. HANDBOOK OF CLINICAL NEUROLOGY 2023; 196:3-42. [PMID: 37620076 DOI: 10.1016/b978-0-323-98817-9.00007-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
Spinal cord diseases are frequently devastating due to the precipitous and often permanently debilitating nature of the deficits. Spastic or flaccid paraparesis accompanied by dermatomal and myotomal signatures complementary to the incurred deficits facilitates localization of the insult within the cord. However, laboratory studies often employing disease-specific serology, neuroradiology, neurophysiology, and cerebrospinal fluid analysis aid in the etiologic diagnosis. While many spinal cord diseases are reversible and treatable, especially when recognized early, more than ever, neuroscientists are being called to investigate endogenous mechanisms of neural plasticity. This chapter is a review of the embryology, neuroanatomy, clinical localization, evaluation, and management of adult and childhood spinal cord motor disorders.
Collapse
Affiliation(s)
- David S Younger
- Department of Clinical Medicine and Neuroscience, CUNY School of Medicine, New York, NY, United States; Department of Medicine, Section of Internal Medicine and Neurology, White Plains Hospital, White Plains, NY, United States.
| |
Collapse
|
2
|
Jermakowicz WJ, Carballosa-Gautam MM, Vitores AA, Hentall ID. Brainstem-Evoked Transcription of Defensive Genes After Spinal Cord Injury. Front Cell Neurosci 2019; 13:510. [PMID: 31803022 PMCID: PMC6877476 DOI: 10.3389/fncel.2019.00510] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 10/29/2019] [Indexed: 12/13/2022] Open
Abstract
The spinal cord after injury shows altered transcription in numerous genes. We tested in a pilot study whether the nucleus raphé magnus, a descending serotonergic brainstem region whose stimulation improves recovery after incomplete spinal cord injury (SCI), can influence these transcriptional changes. Rats received 2 h of low-frequency electrical stimulation in the raphé magnus 3 days after an impact contusion at segment T8. Comparison groups lacked injuries or activated stimulators or both. Immediately following stimulation, spinal cords were extracted, their RNA transcriptome sequenced, and differential gene expression quantified. Confirming many previous studies, injury primarily increased inflammatory and immune transcripts and decreased those related to lipid and cholesterol synthesis and neuronal signaling. Stimulation plus injury, contrasted with injury alone, caused significant changes in 43 transcripts (39 increases, 4 decreases), all protein-coding. Injury itself decreased only four of these 43 transcripts, all reversed by stimulation, and increased none of them. The non-specific 5-HT7 receptor antagonist pimozide reversed 25 of the 43 changes. Stimulation in intact rats principally caused decreases in transcripts related to oxidative phosphorylation, none of which were altered by stimulation in injury. Gene ontology (biological process) annotations comparing stimulation with either no stimulation or pimozide treatment in injured rats highlighted defense responses to lipopolysaccharides and microorganisms, and also erythrocyte development and oxygen transport (possibly yielding cellular oxidant detoxification). Connectivity maps of human orthologous genes generated in the CLUE database of perturbagen-response transcriptional signatures showed that drug classes whose effects in injured rats most closely resembled stimulation without pimozide include peroxisome proliferator-activated receptor agonists and angiotensin receptor blockers, which are reportedly beneficial in SCI. Thus the initial transcriptional response of the injured spinal cord to raphé magnus stimulation is upregulation of genes that in various ways are mostly protective, some probably located in recently arrived myeloid cells.
Collapse
Affiliation(s)
- Walter J Jermakowicz
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami, Miami, FL, United States
| | - Melissa M Carballosa-Gautam
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami, Miami, FL, United States
| | - Alberto A Vitores
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami, Miami, FL, United States
| | - Ian D Hentall
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami, Miami, FL, United States
| |
Collapse
|
3
|
Cellular Changes in Injured Rat Spinal Cord Following Electrical Brainstem Stimulation. Brain Sci 2019; 9:brainsci9060124. [PMID: 31142050 PMCID: PMC6628227 DOI: 10.3390/brainsci9060124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 05/23/2019] [Accepted: 05/27/2019] [Indexed: 01/06/2023] Open
Abstract
Spinal cord injury (SCI) is a major cause of disability and pain, but little progress has been made in its clinical management. Low-frequency electrical stimulation (LFS) of various anti-nociceptive targets improves outcomes after SCI, including motor recovery and mechanical allodynia. However, the mechanisms of these beneficial effects are incompletely delineated and probably multiple. Our aim was to explore near-term effects of LFS in the hindbrain's nucleus raphe magnus (NRM) on cellular proliferation in a rat SCI model. Starting 24 h after incomplete contusional SCI at C5, intermittent LFS at 8 Hz was delivered wirelessly to NRM. Controls were given inactive stimulators. At 48 h, 5-bromodeoxyuridine (BrdU) was administered and, at 72 h, spinal cords were extracted and immunostained for various immune and neuroglial progenitor markers and BrdU at the level of the lesion and proximally and distally. LFS altered cell marker counts predominantly at the dorsal injury site. BrdU cell counts were decreased. Individually and in combination with BrdU, there were reductions in CD68 (monocytes) and Sox2 (immature neural precursors) and increases in Blbp (radial glia) expression. CD68-positive cells showed increased co-staining with iNOS. No differences in the expression of GFAP (glia) and NG2 (oligodendrocytes) or in GFAP cell morphology were found. In conclusion, our work shows that LFS of NRM in subacute SCI influences the proliferation of cell types implicated in inflammation and repair, thus providing mechanistic insight into deep brain stimulation as a neuromodulatory treatment for this devastating pathology.
Collapse
|
4
|
Pozzi S, Thammisetty SS, Julien JP. Chronic Administration of Pimozide Fails to Attenuate Motor and Pathological Deficits in Two Mouse Models of Amyotrophic Lateral Sclerosis. Neurotherapeutics 2018; 15:715-727. [PMID: 29790082 PMCID: PMC6095790 DOI: 10.1007/s13311-018-0634-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease which presently does not have any efficient therapeutic approach. Pimozide, a Food and Drug Administration (FDA)-approved neuroepileptic drug, has been recently proposed as a promising treatment for ALS patients based on apparent stabilization of right hand muscles after a short-time administration. A new clinical trial started at the end of 2017 to recruit patients with a prolonged drug delivery schedule. Here, our aim was to investigate the effects of chronic administration of pimozide on disease progression and pathological events in two mouse models of ALS. Pimozide was administered every 2 days to transgenic mice bearing the ALS-linked A315T mutation on the human TAR DNA-binding protein 43 (TDP-43) gene and to mice carrying the human superoxide dismutase 1 (SOD1) gene with the ALS-linked G93A mutation. Chronic administration of pimozide exacerbated motor performances in both animal models and reduced survival in SOD1G93A mice. In TDP-43A315T, it decreased the percentage of innervated neuromuscular junctions (NMJs) and increased the accumulation of insoluble TDP-43. In SOD1G93A mice, pimozide had no effects on NMJ innervation or motoneuron loss, but it increased the levels of misfolded SOD1. We conclude that a chronic administration of pimozide did not confer beneficial effects on disease progression in two mouse models of ALS. In light of a new clinical trial on ALS patients with a chronic regime of pimozide, these results with mouse models suggest prudence and careful monitoring of ALS patients subjected to pimozide treatment.
Collapse
Affiliation(s)
- Silvia Pozzi
- CERVO Brain Research Center, 2601 Chemin de la Canardière, Québec, Québec, G1J 2G3, Canada
| | | | - Jean-Pierre Julien
- CERVO Brain Research Center, 2601 Chemin de la Canardière, Québec, Québec, G1J 2G3, Canada.
- Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Québec City, G1V 0A6, Canada.
| |
Collapse
|
5
|
Vitores AA, Sloley SS, Martinez C, Carballosa-Gautam MM, Hentall ID. Some Autonomic Deficits of Acute or Chronic Cervical Spinal Contusion Reversed by Interim Brainstem Stimulation. J Neurotrauma 2017; 35:560-572. [PMID: 29160143 DOI: 10.1089/neu.2017.5123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Prolonged electrical stimulation of the hindbrain's nucleus raphe magnus (NRM) or of its major midbrain input region, the periaqueductal gray (PAG), was previously found in rats to promote recovery from sensory-motor and histological deficits of acute thoracic spinal cord injury (SCI). Here, some visceral deficits of acute and chronic midline cervical (C5) contusion are similarly examined. Cranially implanted wireless stimulators delivered intermittent 8 Hz, 30-70 μA cathodal pulse trains to a brainstem microelectrode. Injured controls were given inactive stimulators; rats without injuries or implants were also compared. Rectal distension or squeezing of the forepaws caused an exaggerated rise in mean arterial pressure in injured, untreated rats under anesthesia on post-injury week 6, probably reflecting autonomic dysreflexia (AD). These pressor responses became normal when 7 days of unilateral PAG stimulation was started on the injury day. Older untreated injuries (weeks 18-19) showed normal pressor responses, but unexpectedly had significant resting and nociceptive bradycardia, which was reversed by 3 weeks of PAG stimulation started on weeks 7 or 12. Subsequent chronic studies examined gastric emptying (GE), as indicated by intestinal transit of gavaged dye, and serum chemistry. GE and fasting serum insulin were reduced on injury weeks 14-15, and were both normalized by ∼5 weeks of PAG stimulation begun in weeks 7-8. Increases in calcitonin gene-related peptide, a prominent visceral afferent neurotransmitter, measured near untreated injuries (first thoracic segment) in superficial dorsal laminae were reversed by acutely or chronically initiated PAG stimulation. The NRM, given 2-3 weeks of stimulation beginning 2 days after SCI, prevented abnormalities in both pressor responses and GE on post-injury week 9, consistent with its relaying of repair commands from the PAG. The descending PAG-NRM axis thus exhibits broadly restorative influences on visceral as well as sensory-motor deficits, improving chronic as well as acute signs of injury.
Collapse
Affiliation(s)
- Alberto A Vitores
- Department of Neurological Surgery and The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine , Miami, Florida
| | - Stephanie S Sloley
- Department of Neurological Surgery and The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine , Miami, Florida
| | - Catalina Martinez
- Department of Neurological Surgery and The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine , Miami, Florida
| | - Melissa M Carballosa-Gautam
- Department of Neurological Surgery and The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine , Miami, Florida
| | - Ian D Hentall
- Department of Neurological Surgery and The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine , Miami, Florida
| |
Collapse
|
6
|
Jermakowicz WJ, Hentall ID, Jagid JR, Luca CC, Adcock J, Martinez-Arizala A, Widerström-Noga E. Deep Brain Stimulation Improves the Symptoms and Sensory Signs of Persistent Central Neuropathic Pain from Spinal Cord Injury: A Case Report. Front Hum Neurosci 2017; 11:177. [PMID: 28428749 PMCID: PMC5382156 DOI: 10.3389/fnhum.2017.00177] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 03/27/2017] [Indexed: 01/05/2023] Open
Abstract
Central neuropathic pain (CNP) is a significant problem after spinal cord injury (SCI). Pharmacological and non-pharmacological approaches may reduce the severity, but relief is rarely substantial. While deep brain stimulation (DBS) has been used to treat various chronic pain types, the technique has rarely been used to attenuate CNP after SCI. Here we present the case of a 54-year-old female with incomplete paraplegia who had severe CNP in the lower limbs and buttock areas since her injury 30 years prior. She was treated with bilateral DBS of the midbrain periaqueductal gray (PAG). The effects of this stimulation on CNP characteristics, severity and pain-related sensory function were evaluated using the International SCI Pain Basic Data Set (ISCIPBDS), Neuropathic Pain Symptom Inventory (NPSI), Multidimensional Pain Inventory and Quantitative Sensory Testing before and periodically after initiation of DBS. After starting DBS treatment, weekly CNP severity ratings rapidly decreased from severe to minimal, paralleled by a substantial reduction in size of the painful area, reduced pain impact and reversal of pain-related neurological abnormalities, i.e., dynamic-mechanical and cold allodynia. She discontinued pain medication on study week 24. The improvement has been consistent. The present study expands on previous findings by providing in-depth assessments of symptoms and signs associated with CNP. The results of this study suggest that activation of endogenous pain inhibitory systems linked to the PAG can eliminate CNP in some people with SCI. More research is needed to better-select appropriate candidates for this type of therapy. We discuss the implications of these findings for understanding the brainstem's control of chronic pain and for future progress in using analgesic DBS in the central gray.
Collapse
Affiliation(s)
- Walter J Jermakowicz
- The Miami Project to Cure Paralysis, Miller School of Medicine, University of MiamiMiami, FL, USA.,Department of Neurological Surgery, Miller School of Medicine, University of MiamiMiami, FL, USA
| | - Ian D Hentall
- The Miami Project to Cure Paralysis, Miller School of Medicine, University of MiamiMiami, FL, USA.,Department of Neurological Surgery, Miller School of Medicine, University of MiamiMiami, FL, USA.,Research Service, Bruce W. Carter Department of Veterans Affairs Medical CenterMiami, FL, USA
| | - Jonathan R Jagid
- The Miami Project to Cure Paralysis, Miller School of Medicine, University of MiamiMiami, FL, USA.,Research Service, Bruce W. Carter Department of Veterans Affairs Medical CenterMiami, FL, USA
| | - Corneliu C Luca
- Research Service, Bruce W. Carter Department of Veterans Affairs Medical CenterMiami, FL, USA.,Department of Neurology, Miller School of Medicine, University of MiamiMiami, FL, USA
| | - James Adcock
- The Miami Project to Cure Paralysis, Miller School of Medicine, University of MiamiMiami, FL, USA.,Research Service, Bruce W. Carter Department of Veterans Affairs Medical CenterMiami, FL, USA
| | - Alberto Martinez-Arizala
- The Miami Project to Cure Paralysis, Miller School of Medicine, University of MiamiMiami, FL, USA.,Department of Neurological Surgery, Miller School of Medicine, University of MiamiMiami, FL, USA.,Research Service, Bruce W. Carter Department of Veterans Affairs Medical CenterMiami, FL, USA.,Department of Neurology, Miller School of Medicine, University of MiamiMiami, FL, USA
| | - Eva Widerström-Noga
- The Miami Project to Cure Paralysis, Miller School of Medicine, University of MiamiMiami, FL, USA.,Department of Neurological Surgery, Miller School of Medicine, University of MiamiMiami, FL, USA.,Research Service, Bruce W. Carter Department of Veterans Affairs Medical CenterMiami, FL, USA
| |
Collapse
|
7
|
Madsen PM, Sloley SS, Vitores AA, Carballosa-Gautam MM, Brambilla R, Hentall ID. Prolonged stimulation of a brainstem raphe region attenuates experimental autoimmune encephalomyelitis. Neuroscience 2017; 346:395-402. [PMID: 28147248 PMCID: PMC5337132 DOI: 10.1016/j.neuroscience.2017.01.037] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 01/17/2017] [Accepted: 01/23/2017] [Indexed: 12/22/2022]
Abstract
Multiple sclerosis (MS), a neuroinflammatory disease, has few treatment options, none entirely adequate. We studied whether prolonged electrical microstimulation of a hindbrain region (the nucleus raphe magnus) can attenuate experimental autoimmune encephalomyelitis, a murine model of MS induced by MOG35-55 injection. Eight days after symptoms emerged, a wireless electrical stimulator with an attached microelectrode was implanted cranially, and daily intermittent stimulation was begun in awake, unrestrained mice. The thoracic spinal cord was analyzed for changes in histology (on day 29) and gene expression (on day 37), with a focus on myelination and cytokine production. Controls, with inactive implants, showed a phase of disease exacerbation on days 19-25 that stimulation for >16days eliminated. Prolonged stimulation also reduced numbers of infiltrating immune cells and increased numbers of myelinated axons. It additionally lowered genetic expression of some pro-inflammatory cytokines (interferon gamma and tumor necrosis factor) and platelet-derived growth factor receptor alpha, a marker of oligodendrocyte precursors, while raising expression of myelin basic protein. Studies of restorative treatments for MS might profitably consider ways to stimulate the raphe magnus, directly or via its inputs, or to emulate its serotonergic and peptidergic output.
Collapse
Affiliation(s)
- Pernille M Madsen
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, USA; Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Stephanie S Sloley
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, USA
| | - Alberto A Vitores
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, USA
| | | | - Roberta Brambilla
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, USA.
| | - Ian D Hentall
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, USA.
| |
Collapse
|
8
|
Surgical Neurostimulation for Spinal Cord Injury. Brain Sci 2017; 7:brainsci7020018. [PMID: 28208601 PMCID: PMC5332961 DOI: 10.3390/brainsci7020018] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 01/30/2017] [Accepted: 02/02/2017] [Indexed: 01/07/2023] Open
Abstract
Traumatic spinal cord injury (SCI) is a devastating neurological condition characterized by a constellation of symptoms including paralysis, paraesthesia, pain, cardiovascular, bladder, bowel and sexual dysfunction. Current treatment for SCI involves acute resuscitation, aggressive rehabilitation and symptomatic treatment for complications. Despite the progress in scientific understanding, regenerative therapies are lacking. In this review, we outline the current state and future potential of invasive and non-invasive neuromodulation strategies including deep brain stimulation (DBS), spinal cord stimulation (SCS), motor cortex stimulation (MCS), transcutaneous direct current stimulation (tDCS) and repetitive transcranial magnetic stimulation (rTMS) in the context of SCI. We consider the ability of these therapies to address pain, sensorimotor symptoms and autonomic dysregulation associated with SCI. In addition to the potential to make important contributions to SCI treatment, neuromodulation has the added ability to contribute to our understanding of spinal cord neurobiology and the pathophysiology of SCI.
Collapse
|