1
|
Montes P, Ortíz-Islas E, Rodríguez-Pérez CE, Ruiz-Sánchez E, Silva-Adaya D, Pichardo-Rojas P, Campos-Peña V. Neuroprotective-Neurorestorative Effects Induced by Progesterone on Global Cerebral Ischemia: A Narrative Review. Pharmaceutics 2023; 15:2697. [PMID: 38140038 PMCID: PMC10747486 DOI: 10.3390/pharmaceutics15122697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/14/2023] [Accepted: 11/18/2023] [Indexed: 12/24/2023] Open
Abstract
Progesterone (P4) is a neuroactive hormone having pleiotropic effects, supporting its pharmacological potential to treat global (cardiac-arrest-related) cerebral ischemia, a condition associated with an elevated risk of dementia. This review examines the current biochemical, morphological, and functional evidence showing the neuroprotective/neurorestorative effects of P4 against global cerebral ischemia (GCI). Experimental findings show that P4 may counteract pathophysiological mechanisms and/or regulate endogenous mechanisms of plasticity induced by GCI. According to this, P4 treatment consistently improves the performance of cognitive functions, such as learning and memory, impaired by GCI. This functional recovery is related to the significant morphological preservation of brain structures vulnerable to ischemia when the hormone is administered before and/or after a moderate ischemic episode; and with long-term adaptive plastic restoration processes of altered brain morphology when treatment is given after an episode of severe ischemia. The insights presented here may be a guide for future basic research, including the study of P4 administration schemes that focus on promoting its post-ischemia neurorestorative effect. Furthermore, considering that functional recovery is a desired endpoint of pharmacological strategies in the clinic, they could support the study of P4 treatment for decreasing dementia in patients who have suffered an episode of GCI.
Collapse
Affiliation(s)
- Pedro Montes
- Laboratorio de Neuroinmunoendocrinología, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City 14269, Mexico
| | - Emma Ortíz-Islas
- Laboratorio de Neurofarmacología Molecular y Nanotecnología, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City 14269, Mexico; (E.O.-I.); (C.E.R.-P.)
| | - Citlali Ekaterina Rodríguez-Pérez
- Laboratorio de Neurofarmacología Molecular y Nanotecnología, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City 14269, Mexico; (E.O.-I.); (C.E.R.-P.)
| | - Elizabeth Ruiz-Sánchez
- Laboratorio de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City 14269, Mexico;
| | - Daniela Silva-Adaya
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City 14269, Mexico;
| | - Pavel Pichardo-Rojas
- The Vivian L. Smith Department of Neurosurgery, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX 77030, USA;
| | - Victoria Campos-Peña
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City 14269, Mexico;
| |
Collapse
|
2
|
Zhao S, Li X, Wang J, Wang H. The Role of the Effects of Autophagy on NLRP3 Inflammasome in Inflammatory Nervous System Diseases. Front Cell Dev Biol 2021; 9:657478. [PMID: 34079796 PMCID: PMC8166298 DOI: 10.3389/fcell.2021.657478] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/08/2021] [Indexed: 12/21/2022] Open
Abstract
Autophagy is a stable self-sustaining process in eukaryotic cells. In this process, pathogens, abnormal proteins, and organelles are encapsulated by a bilayer membrane to form autophagosomes, which are then transferred to lysosomes for degradation. Autophagy is involved in many physiological and pathological processes. Nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) inflammasome, containing NLRP3, apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) and pro-caspase-1, can activate caspase-1 to induce pyroptosis and lead to the maturation and secretion of interleukin-1 β (IL-1 β) and IL-18. NLRP3 inflammasome is related to many diseases. In recent years, autophagy has been reported to play a vital role by regulating the NLRP3 inflammasome in inflammatory nervous system diseases. However, the related mechanisms are not completely clarified. In this review, we sum up recent research about the role of the effects of autophagy on NLRP3 inflammasome in Alzheimer’s disease, chronic cerebral hypoperfusion, Parkinson’s disease, depression, cerebral ischemia/reperfusion injury, early brain injury after subarachnoid hemorrhage, and experimental autoimmune encephalomyelitis and analyzed the related mechanism to provide theoretical reference for the future research of inflammatory neurological diseases.
Collapse
Affiliation(s)
- Shizhen Zhao
- Henan International Joint Laboratory of Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Xiaotian Li
- Henan International Joint Laboratory of Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Jie Wang
- Henan International Joint Laboratory of Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Honggang Wang
- Henan International Joint Laboratory of Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China
| |
Collapse
|
3
|
Amirkhosravi L, Khaksari M, Sheibani V, Shahrokhi N, Ebrahimi MN, Amiresmaili S, Salmani N. Improved spatial memory, neurobehavioral outcomes, and neuroprotective effect after progesterone administration in ovariectomized rats with traumatic brain injury: Role of RU486 progesterone receptor antagonist. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2021; 24:349-359. [PMID: 33995946 PMCID: PMC8087858 DOI: 10.22038/ijbms.2021.50973.11591] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 12/22/2020] [Indexed: 12/27/2022]
Abstract
OBJECTIVES The contribution of classic progesterone receptors (PR) in interceding the neuroprotective efficacy of progesterone (P4) on the prevention of brain edema and long-time behavioral disturbances was assessed in traumatic brain injury (TBI). MATERIALS AND METHODS Female Wistar rats were ovariectomized and apportioned into 6 groups: sham, TBI, oil, P4, vehicle, and RU486. P4 or oil was injected following TBI. The antagonist of PR (RU486) or DMSO was administered before TBI. The brain edema and destruction of the blood-brain barrier (BBB) were determined. Intracranial pressure (ICP), cerebral perfusion pressure (CPP), and beam walk (BW) task were evaluated previously and at various times post-trauma. Long-time locomotor and cognitive consequences were measured one day before and on days 3, 7, 14, and 21 after the trauma. RESULTS RU486 eliminated the inhibitory effects of P4 on brain edema and BBB leakage (P<0.05, P<0.001, respectively). RU486 inhibited the decremental effect of P4 on ICP as well as the increasing effect of P4 on CPP (P<0.001) after TBI. Also, RU486 inhibited the effect of P4 on the increase in traversal time and reduction in vestibulomotor score in the BW task (P<0.001). TBI induced motor, cognitive, and anxiety-like disorders, which lasted for 3 weeks after TBI; but, P4 prevented these cognitive and behavioral abnormalities (P<0.05), and RU486 opposed this P4 effect (P<0.001). CONCLUSION The classic progesterone receptors have neuroprotective effects and prevent long-time behavioral and memory deficiency after brain trauma.
Collapse
Affiliation(s)
- Ladan Amirkhosravi
- Neuroscience Research and Physiology Research Centers, Kerman University of Medical Sciences, Kerman, Iran
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Khaksari
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Vahid Sheibani
- Neuroscience Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Nader Shahrokhi
- Physiology Research Centers, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Navid Ebrahimi
- Neuroscience Research and Physiology Research Centers, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Neda Salmani
- Department of Psychology, Genetic Institute, Islamic Azad University- Zarand Branch, Kerman, Iran
| |
Collapse
|
4
|
Feng YS, Tan ZX, Wu LY, Dong F, Zhang F. The involvement of NLRP3 inflammasome in the treatment of Alzheimer's disease. Ageing Res Rev 2020; 64:101192. [PMID: 33059089 DOI: 10.1016/j.arr.2020.101192] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/04/2020] [Accepted: 10/05/2020] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is one of the most common neurodegenerative diseases, and it is characterised by progressive deterioration in cognitive and memory abilities, which can severely influence the elderly population's daily living abilities. Although researchers have made great efforts in the field of AD, there are still no well-established strategies to prevent and treat this disease. Therefore, better clarification of the molecular mechanisms associated with the onset and progression of AD is critical to provide a theoretical basis for the establishment of novel preventive and therapeutic strategies. Currently, it is generally believed that neuroinflammation plays a key role in the pathogenesis of AD. Inflammasome, a multiprotein complex, is involved in the innate immune system, and it can mediate inflammatory responses and pyroptosis, which lead to neurodegeneration. Among the various types of inflammasomes, the NLRP3 inflammasome is the most characterised in neurodegenerative diseases, especially in AD. The activation of the NLRP3 inflammasome causes the generation of caspase-1-mediated interleukin (IL)-1β and IL-18 in microglia cells, where neuroinflammation is involved in the development and progression of AD. Thus, the NLRP3 inflammasome is likely to be a crucial therapeutic molecular target for AD via regulating neuroinflammation. In this review, we summarise the current knowledge on the role and regulatory mechanisms of the NLRP3 inflammasome in the pathogenic mechanisms of AD. We also focus on a series of potential therapeutic treatments targeting NLRP3 inflammasome for AD. Further clarification of the regulatory mechanisms of the NLRP3 inflammasome in AD may provide more useful clues to develop novel AD treatment strategies.
Collapse
|
5
|
Cho KS, Lee JH, Cho J, Cha GH, Song GJ. Autophagy Modulators and Neuroinflammation. Curr Med Chem 2020; 27:955-982. [PMID: 30381067 DOI: 10.2174/0929867325666181031144605] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 08/20/2018] [Accepted: 10/21/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND Neuroinflammation plays a critical role in the development and progression of various neurological disorders. Therefore, various studies have focused on the development of neuroinflammation inhibitors as potential therapeutic tools. Recently, the involvement of autophagy in the regulation of neuroinflammation has drawn substantial scientific interest, and a growing number of studies support the role of impaired autophagy in the pathogenesis of common neurodegenerative disorders. OBJECTIVE The purpose of this article is to review recent research on the role of autophagy in controlling neuroinflammation. We focus on studies employing both mammalian cells and animal models to evaluate the ability of different autophagic modulators to regulate neuroinflammation. METHODS We have mostly reviewed recent studies reporting anti-neuroinflammatory properties of autophagy. We also briefly discussed a few studies showing that autophagy modulators activate neuroinflammation in certain conditions. RESULTS Recent studies report neuroprotective as well as anti-neuroinflammatory effects of autophagic modulators. We discuss the possible underlying mechanisms of action of these drugs and their potential limitations as therapeutic agents against neurological disorders. CONCLUSION Autophagy activators are promising compounds for the treatment of neurological disorders involving neuroinflammation.
Collapse
Affiliation(s)
- Kyoung Sang Cho
- Department of Biological Sciences, Konkuk University, Seoul, Korea
| | - Jang Ho Lee
- Translational Brain Research Center, International St. Mary's Hospital, Catholic Kwandong University, Incheon, Korea
| | - Jeiwon Cho
- Translational Brain Research Center, International St. Mary's Hospital, Catholic Kwandong University, Incheon, Korea.,Department of Medical Science, College of Medicine, Catholic Kwandong University, Gangneung, Gangwon-do, Korea
| | - Guang-Ho Cha
- Department of Medical Science, College of Medicine, Chungnam National University, 35015 Daejeon, Korea
| | - Gyun Jee Song
- Translational Brain Research Center, International St. Mary's Hospital, Catholic Kwandong University, Incheon, Korea.,Department of Medical Science, College of Medicine, Catholic Kwandong University, Gangneung, Gangwon-do, Korea
| |
Collapse
|
6
|
Hong Y, Liu Y, Yu D, Wang M, Hou Y. The neuroprotection of progesterone against Aβ-induced NLRP3-Caspase-1 inflammasome activation via enhancing autophagy in astrocytes. Int Immunopharmacol 2019; 74:105669. [PMID: 31176046 DOI: 10.1016/j.intimp.2019.05.054] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 05/17/2019] [Accepted: 05/27/2019] [Indexed: 12/21/2022]
Abstract
Neuroinflammation and autophagy dysfunction are known to be involved in the pathological procession of Alzheimer's disease (AD). Progesterone (PG), neuroactive steroids, exerts a characteristic neuroprotective function in improving AD syndrome. The NOD-like receptor pyrin 3 (NLRP3)-Caspase-1 inflammasome has specific relevance to AD pathological procession. However, the exact role of PG in regulating NLRP3-Caspase-1 inflammasome remains to be elucidated. We demonstrated Aβ up-regulated IL-1β expression in astrocytes by activating NLRP3-Caspase-1 inflammasome. However, pharmacological activation of autophagy by Rapamycin (RAPA) efficiently suppressed Aβ-, lipopolysaccharides (LPS)-induced IL-1β expression via regulating NLRP3-Caspase-1 inflammasome in astrocytes. Remarkably, PG significantly inhibited Aβ-induced NLRP3-Caspase-1 inflammasome activation. Autophagy inhibitor 3-MA blocked the protective effects of PG in mediating NLRP3 inflammasome and IL-1β processing. Taken together, our observations suggest that autophagy-lysosome pathway is one specific molecular mechanism in regulating Aβ-induced NLRP3-Caspase-1 inflammasome activation in astrocytes, particularly uncover the potential neuroprotection of PG in regulating upstream signaling leading to the sequence events of neuroinflammation. That neuroprotective mechanism of PG in regulating NLRP3-Caspase-1 inflammasome can be a potential therapeutic target for ameliorating the pathological procession of AD.
Collapse
Affiliation(s)
- Yang Hong
- Department of Clinical Pharmacology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Yunjiang Liu
- Breast Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China.
| | - Dongzhen Yu
- Physical Education Department, Quanzhou Normal University, Quanzhou, Fujian Province, China
| | - Mingxia Wang
- Department of Clinical Pharmacology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Yanning Hou
- Department of Pharmacy, Bethune International Peace Hospital, Shijiazhuang, Hebei Province, China
| |
Collapse
|
7
|
Montes P, Vigueras-Villaseñor RM, Rojas-Castañeda JC, Monfil T, Cervantes M, Moralí G. Progesterone treatment in rats after severe global cerebral ischemia promotes hippocampal dentate gyrus neurogenesis and functional recovery. Neurol Res 2019; 41:429-436. [PMID: 30762490 DOI: 10.1080/01616412.2019.1576356] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
OBJECTIVE Rats treated with progesterone (P4) after ischemia show an adequate functional performance despite a significant loss of hippocampal pyramidal neurons, suggesting that P4 could favour a permissive microenvironment for cerebral plasticity mechanisms. The possibility of P4 treatment promoting the survival of newly generated hippocampal neurons, in relation to the performance of ischemic rats in a spatial learning task, was assessed in this study. METHODS Adult male rats were subjected to a severe global cerebral ischemia episode (30 min) and treated with P4 or its vehicle at 15 min, 2, 6, 24, 48 and 72 h of reperfusion. From day 4 to 8 post-ischemia 5-bromo-2-deoxyuridine (BrdU) was administered to label proliferating cells. Twenty-one days post-ischemia, the rats were exposed to the Morris water maze to assess behavioral parameters of spatial learning and memory. Subsequently, the brain was perfusion-fixed and immunofluorescence procedures were performed to quantify the number of new mature neurons (BrdU+/NeuN+) in the dentate gyrus (DG) of the hippocampus. RESULTS Rats subjected to severe global cerebral ischemia and treated with P4 had a significantly better performance in spatial learning-memory tests, than those treated with vehicle, and a significantly higher number of new mature neurons (BrdU+/NeuN+) in the DG. CONCLUSION These findings show that post-ischemia P4 treatment, following an episode of severe global cerebral ischemia, promotes the survival of newly generated hippocampal neurons in the DG, which may be one of the mechanisms of cerebral plasticity induced by the hormone, that underlie a successful functional performance in learning and memory tests.
Collapse
Affiliation(s)
- Pedro Montes
- a Unidad de Investigación Médica en Farmacología , CMN Siglo XXI, IMSS , México , México
| | | | | | - Tomas Monfil
- a Unidad de Investigación Médica en Farmacología , CMN Siglo XXI, IMSS , México , México
| | - Miguel Cervantes
- c Facultad de Ciencias Médicas y Biológicas "Dr. Ignacio Chávez" , UMSNH , Morelia , México
| | - Gabriela Moralí
- a Unidad de Investigación Médica en Farmacología , CMN Siglo XXI, IMSS , México , México
| |
Collapse
|
8
|
Co-Administration of Progesterone and Melatonin Attenuates Ischemia-Induced Hippocampal Damage in Rats. J Mol Neurosci 2018; 66:251-260. [DOI: 10.1007/s12031-018-1163-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 08/20/2018] [Indexed: 01/05/2023]
|
9
|
Progesterone suppresses Aβ 42-induced neuroinflammation by enhancing autophagy in astrocytes. Int Immunopharmacol 2017; 54:336-343. [PMID: 29197800 DOI: 10.1016/j.intimp.2017.11.044] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 11/13/2017] [Accepted: 11/28/2017] [Indexed: 12/24/2022]
Abstract
Autophagy is an intracellular catabolic mechanism essential for recycling intracellular unfolding protein and eliminating toxic protein aggregates. Several studies have shown that deficient autophagy is implicated in the development of Alzheimer's disease (AD) progression. To date, rapidly emerging evidence suggests that neurosteroid progesterone (PG) may play an important role in ameliorating AD. However, the role of PG and its neuroprotective mechanism in regulating autophagy still require further investigation. Here, we investigated the protective effects of PG against Aβ-induced inflammatory responses in astrocytes and its underlying mechanism in mediating autophagy. Remarkably, Aβ induced astrocyte dysfunction in autophagic activation and up-regulated inflammatory secretion. However, the autophagy inducer rapamycin (RAPA) significantly suppressed Aβ-induced inflammation in astrocytes. In astrocytes, treatment with Aβ caused autophagy deficiency, whereas PG significantly increased autophagy activation. Finally, PG suppressed Aβ-induced neuroinflammatory production via enhancing autophagy together with regulating mTOR signaling. Taken together, these results show that autophagy is a vital mechanism against Aβ-induced neuroinflammatory responses in astrocytes and demonstrate the potential neuroprotective mechanism of PG in suppressing neuroinflammatory responses by enhancing autophagy. Therefore, uncovering the neuroprotective mechanism of PG may provide new insight into novel therapies for the amelioration of AD.
Collapse
|
10
|
Espinosa-Garcia C, Sayeed I, Yousuf S, Atif F, Sergeeva EG, Neigh GN, Stein DG. Stress primes microglial polarization after global ischemia: Therapeutic potential of progesterone. Brain Behav Immun 2017. [PMID: 28648389 DOI: 10.1016/j.bbi.2017.06.012] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Despite the fact that stress is associated with increased risk of stroke and worsened outcome, most preclinical studies have ignored this comorbid factor, especially in the context of testing neuroprotective treatments. Preclinical research suggests that stress primes microglia, resulting in an enhanced reactivity to a subsequent insult and potentially increasing vulnerability to stroke. Ischemia-induced activated microglia can be polarized into a harmful phenotype, M1, which produces pro-inflammatory cytokines, or a protective phenotype, M2, which releases anti-inflammatory cytokines and neurotrophic factors. Selective modulation of microglial polarization by inhibiting M1 or stimulating M2 may be a potential therapeutic strategy for treating cerebral ischemia. Our laboratory and others have shown progesterone to be neuroprotective against ischemic stroke in rodents, but it is not known whether it will be as effective under a comorbid condition of chronic stress. Here we evaluated the neuroprotective effect of progesterone on the inflammatory response in the hippocampus after exposure to stress followed by global ischemia. We focused on the effects of microglial M1/M2 polarization and pro- and anti-inflammatory mediators in stressed ischemic animals. Male Sprague-Dawley rats were exposed to 8 consecutive days of social defeat stress and then subjected to global ischemia or sham surgery. The rats received intraperitoneal injections of progesterone (8mg/kg) or vehicle at 2h post-ischemia followed by subcutaneous injections at 6h and once every 24h post-injury for 7days. The animals were killed at 7 and 14days post-ischemia, and brains were removed and processed to assess outcome measures using histological, immunohistochemical and molecular biology techniques. Pre-ischemic stress (1) exacerbated neuronal loss and neurodegeneration as well as microglial activation in the selectively vulnerable CA1 hippocampal region, (2) dysregulated microglial polarization, leading to upregulation of both M1 and M2 phenotype markers, (3) increased pro-inflammatory cytokine expression, and (4) reduced anti-inflammatory cytokine and neurotrophic factor expression in the ischemic hippocampus. Treatment with progesterone significantly attenuated stress-induced microglia priming by modulating polarized microglia and the inflammatory environment in the hippocampus, the area most vulnerable to ischemic injury. Our findings can be taken to suggest that progesterone holds potential as a candidate for clinical testing in ischemic stroke where high stress may be a contributing factor.
Collapse
Affiliation(s)
| | - Iqbal Sayeed
- Department of Emergency Medicine, Emory University, Atlanta, GA 30322, USA.
| | - Seema Yousuf
- Department of Emergency Medicine, Emory University, Atlanta, GA 30322, USA.
| | - Fahim Atif
- Department of Emergency Medicine, Emory University, Atlanta, GA 30322, USA.
| | - Elena G Sergeeva
- Department of Emergency Medicine, Emory University, Atlanta, GA 30322, USA.
| | - Gretchen N Neigh
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA 30322, USA.
| | - Donald G Stein
- Department of Emergency Medicine, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
11
|
Wyse-Jackson AC, Roche SL, Ruiz-Lopez AM, Moloney JN, Byrne AM, Cotter TG. Progesterone analogue protects stressed photoreceptors via bFGF-mediated calcium influx. Eur J Neurosci 2016; 44:3067-3079. [PMID: 27763693 DOI: 10.1111/ejn.13445] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Revised: 10/14/2016] [Accepted: 10/17/2016] [Indexed: 01/16/2023]
Abstract
Retinitis pigmentosa (RP) is a degenerative retinal disease leading to photoreceptor cell loss. In 2011, our group identified the synthetic progesterone 'Norgestrel' as a potential treatment for RP. Subsequent research showed Norgestrel to work through progesterone receptor membrane component 1 (PGRMC1) activation and upregulation of neuroprotective basic fibroblast growth factor (bFGF). Using trophic factor deprivation of 661W photoreceptor-like cells, we aimed to further elucidate the mechanism leading to Norgestrel-induced neuroprotection. In the present manuscript, we show by flow cytometry and live-cell immunofluorescence that Norgestrel induces an increase in cytosolic calcium in both healthy and stressed 661Ws over 24 h. Specific PGRMC1 inhibition by AG205 (1 μm) showed this rise to be PGRMC1-dependent, primarily utilizing calcium from extracellular sources, for blockade of L-type calcium channels by verapamil (50 μm) prevented a Norgestrel-induced calcium influx in stressed cells. Calcium influx was also shown to be bFGF-dependent, for siRNA knock down of bFGF prevented Norgestrel-PGRMC1 induced changes in cytosolic calcium. Notably, we demonstrate PGRMC1-activation is necessary for Norgestrel-induced bFGF upregulation. We propose that Norgestrel protects through the following pathway: binding to and activating PGRMC1 expressed on the surface of photoreceptor cells, PGRMC1 activation drives bFGF upregulation and subsequent calcium influx. Importantly, raised intracellular calcium is critical to Norgestrel's protective efficacy, for extracellular calcium chelation by EGTA abrogates the protective effects of Norgestrel on stressed 661W cells in vitro.
Collapse
Affiliation(s)
- Alice C Wyse-Jackson
- Cell Development and Disease Laboratory, Biochemistry Department, Bioscience Research Institute, University College Cork, Western Road, Cork, Ireland
| | - Sarah L Roche
- Cell Development and Disease Laboratory, Biochemistry Department, Bioscience Research Institute, University College Cork, Western Road, Cork, Ireland
| | - Ana M Ruiz-Lopez
- Cell Development and Disease Laboratory, Biochemistry Department, Bioscience Research Institute, University College Cork, Western Road, Cork, Ireland
| | - Jennifer N Moloney
- Cell Development and Disease Laboratory, Biochemistry Department, Bioscience Research Institute, University College Cork, Western Road, Cork, Ireland
| | - Ashleigh M Byrne
- Cell Development and Disease Laboratory, Biochemistry Department, Bioscience Research Institute, University College Cork, Western Road, Cork, Ireland
| | - Thomas G Cotter
- Cell Development and Disease Laboratory, Biochemistry Department, Bioscience Research Institute, University College Cork, Western Road, Cork, Ireland
| |
Collapse
|
12
|
Hong Y, Wang X, Sun S, Xue G, Li J, Hou Y. Progesterone exerts neuroprotective effects against Aβ-induced neuroinflammation by attenuating ER stress in astrocytes. Int Immunopharmacol 2016; 33:83-9. [DOI: 10.1016/j.intimp.2016.02.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 01/14/2016] [Accepted: 02/01/2016] [Indexed: 01/24/2023]
|
13
|
Wyse Jackson AC, Cotter TG. The synthetic progesterone Norgestrel is neuroprotective in stressed photoreceptor-like cells and retinal explants, mediating its effects via basic fibroblast growth factor, protein kinase A and glycogen synthase kinase 3β signalling. Eur J Neurosci 2016; 43:899-911. [PMID: 26750157 DOI: 10.1111/ejn.13166] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 12/17/2015] [Accepted: 12/29/2015] [Indexed: 01/19/2023]
Abstract
The synthetic progesterone Norgestrel has been shown to have proven neuroprotective efficacy in two distinct models of retinitis pigmentosa: the rd10/rd10 (B6.CXBI-Pde6b(rd10)/J) mouse model and the Balb/c light-damage model. However, the cellular mechanism underlying this neuroprotection is still largely unknown. Therefore, this study aimed to examine the downstream signalling pathways associated with Norgestrel both in vitro and ex vivo. In this work, we identify the potential of Norgestrel to rescue stressed 661W photoreceptor-like cells and ex vivo retinal explants from cell death over 24 h. Norgestel is thought to work through an upregulation of neuroprotective basic fibroblast growth factor (bFGF). Analysis of 661W cells in vitro by real-time polymerase chain reaction (rt-PCR), enzyme-linked immunosorbent assay (ELISA) and Western blotting revealed an upregulation of bFGF in response to Norgestrel over 6 h. Specific siRNA knockdown of bFGF abrogated the protective properties of Norgestrel on damaged photoreceptors, thus highlighting the crucial importance of bFGF in Norgestrel-mediated protection. Furthermore, Norgestrel initiated a bFGF-dependent inactivation of glycogen synthase kinase 3β (GSK3β) through phosphorylation at serine 9. The effects of Norgestrel on GSK3β were dependent on protein kinase A (PKA) pathway activation. Specific inhibition of both the PKA and GSK3β pathways prevented Norgestrel-mediated neuroprotection of stressed photoreceptor cells in vitro. Involvement of the PKA pathway following Norgestrel treatment was also confirmed ex vivo. Therefore, these results indicate that the protective efficacy of Norgestrel is, at least in part, due to the bFGF-mediated activation of the PKA pathway, with subsequent inactivation of GSK3β.
Collapse
Affiliation(s)
- Alice C Wyse Jackson
- Biochemistry Department, Cell Development and Disease Laboratory, Bioscience Research Institute, University College Cork, College Road, Cork City Centre, Cork, Ireland
| | - Thomas G Cotter
- Biochemistry Department, Cell Development and Disease Laboratory, Bioscience Research Institute, University College Cork, College Road, Cork City Centre, Cork, Ireland
| |
Collapse
|
14
|
Qin Y, Chen Z, Han X, Wu H, Yu Y, Wu J, Liu S, Hou Y. Progesterone attenuates Aβ(25-35)-induced neuronal toxicity via JNK inactivation and progesterone receptor membrane component 1-dependent inhibition of mitochondrial apoptotic pathway. J Steroid Biochem Mol Biol 2015; 154:302-11. [PMID: 25576906 DOI: 10.1016/j.jsbmb.2015.01.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 12/25/2014] [Accepted: 01/05/2015] [Indexed: 11/21/2022]
Abstract
Progesterone, which acts as a neurosteroid in nervous system, has been shown to have neuroprotective effects in different experiments in vitro and in vivo. Our previous study demonstrates that progesterone exerts neuroprotections in Alzheimer's disease-like rats. Present study attempted to evaluate the protective effects of progesterone on Aβ-treated neurons and potential mechanisms involved in neuroprotection. Results showed that treatment with progesterone protected primary cultured rat cortical neurons against Aβ(25-35)-induced apoptosis. Furthermore, we observed that progesterone alleviated mitochondrial dysfunction by rescuing mitochondrial membrane potential under Aβ challenge. Moreover, progesterone could also attenuate Bax/Bcl-2 proteins ratio upregulation and inhibit the activation of caspase-3 in Aβ-treated neurons. These indicate that progesterone attenuates Aβ(25-35)-induced neuronal toxicity by inhibiting mitochondria-associated apoptotic pathway. Both classic progesterone receptors (classic PR) and progesterone receptor membrane component 1 (PGRMC1), a special progesterone membrane receptor, are broadly expressed throughout the brain. The protective effect of progesterone was partially abolished by PGRMC1 inhibitor AG205 rather than classic PR antagonist RU486 in this study. Additionally, progesterone protected neurons by inhibiting Aβ-induced activation of JNK, which was an upstream signaling component in Aβ-induced mitochondria-associated apoptotic pathway. But this process was independent of PGRMC1. Taken together, these results suggest that progesterone exerts a protective effect against Aβ(25-35)-induced insults at least in part by two complementary pathways: (1) progesterone receptor membrane component 1-dependent inhibition of mitochondrial apoptotic pathway, and (2) blocking Aβ-induced JNK activation. The present study provides new insights into the mechanism by which progesterone brings neuroprotection. This article is part of a Special Issue entitled 'Steroids & Nervous System'.
Collapse
Affiliation(s)
- Yabin Qin
- Hebei Medical University, Shijiazhuang 050017, Hebei Province, China
| | - Zesha Chen
- Hebei Medical University, Shijiazhuang 050017, Hebei Province, China
| | - Xiaolei Han
- Department of Pharmacy, Bethune International Peace Hospital of Chinese PLA, Shijiazhuang 050082, Hebei Province, China
| | - Honghai Wu
- Department of Pharmacy, Bethune International Peace Hospital of Chinese PLA, Shijiazhuang 050082, Hebei Province, China
| | - Yang Yu
- Department of Pharmacy, Bethune International Peace Hospital of Chinese PLA, Shijiazhuang 050082, Hebei Province, China
| | - Jie Wu
- Hebei Medical University, Shijiazhuang 050017, Hebei Province, China
| | - Sha Liu
- Hebei Medical University, Shijiazhuang 050017, Hebei Province, China
| | - Yanning Hou
- Hebei Medical University, Shijiazhuang 050017, Hebei Province, China; Department of Pharmacy, Bethune International Peace Hospital of Chinese PLA, Shijiazhuang 050082, Hebei Province, China.
| |
Collapse
|
15
|
Jackson ACW, Roche SL, Byrne AM, Ruiz-Lopez AM, Cotter TG. Progesterone receptor signalling in retinal photoreceptor neuroprotection. J Neurochem 2015; 136:63-77. [PMID: 26447367 DOI: 10.1111/jnc.13388] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 09/29/2015] [Accepted: 10/02/2015] [Indexed: 11/29/2022]
Abstract
'Norgestrel', a synthetic form of the female hormone progesterone has been identified as potential drug candidate for the treatment of the degenerative eye disease retinitis pigmentosa. However, to date, no work has looked at the compound's specific cellular target. Therefore, this study aimed to identify the receptor target of Norgestrel and begin to examine its potential mechanism of action in the retina. In this work, we identify and characterize the expression of progesterone receptors present in the C57 wild type and rd10 mouse model of retinitis pigmentosa. Classical progesterone receptors A and B (PR A/B), progesterone receptor membrane components 1 and 2 (PGRMC1, PGRMC2) and membrane progesterone receptors α, β and γ were found to be expressed. All receptors excluding PR A/B were also found in the 661W photoreceptor cell line. PGRMC1 is a key regulator of apoptosis and its expression is up-regulated in the degenerating rd10 mouse retina. Activated by Norgestrel through nuclear trafficking, siRNA knock down of PGRMC1 abrogated the protective properties of Norgestrel on damaged photoreceptors. Furthermore, specific inhibition of PGRMC1 by AG205 blocked Norgestrel-induced protection in stressed retinal explants. Therefore, we conclude that PGRMC1 is crucial to the neuroprotective effects of Norgestrel on stressed photoreceptors. The synthetic progestin 'Norgestrel' has been identified as a potential therapeutic for the treatment of Retinitis Pigmentosa, a degenerative eye disease. However, the mechanism behind this neuroprotection is currently unknown. In this work, we identify 'Progesterone Receptor Membrane Component 1' as the major progesterone receptor eliciting the protective effects of Norgestrel, both in vitro and ex vivo. This furthers our understanding of Norgestrel's molecular mechanism, which we hope will help bring Norgestrel one step closer to the clinic.
Collapse
Affiliation(s)
- Alice C Wyse Jackson
- Cell Development and Disease Laboratory, Biochemistry Department, Bioscience Research Institute, University College Cork, Cork, Ireland
| | - Sarah L Roche
- Cell Development and Disease Laboratory, Biochemistry Department, Bioscience Research Institute, University College Cork, Cork, Ireland
| | - Ashleigh M Byrne
- Cell Development and Disease Laboratory, Biochemistry Department, Bioscience Research Institute, University College Cork, Cork, Ireland
| | - Ana M Ruiz-Lopez
- Cell Development and Disease Laboratory, Biochemistry Department, Bioscience Research Institute, University College Cork, Cork, Ireland
| | - Thomas G Cotter
- Cell Development and Disease Laboratory, Biochemistry Department, Bioscience Research Institute, University College Cork, Cork, Ireland
| |
Collapse
|
16
|
Cai J, Cao S, Chen J, Yan F, Chen G, Dai Y. Progesterone alleviates acute brain injury via reducing apoptosis and oxidative stress in a rat experimental subarachnoid hemorrhage model. Neurosci Lett 2015; 600:238-43. [DOI: 10.1016/j.neulet.2015.06.023] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 05/25/2015] [Accepted: 06/11/2015] [Indexed: 11/25/2022]
|
17
|
Hansberg-Pastor V, González-Arenas A, Piña-Medina AG, Camacho-Arroyo I. Sex Hormones Regulate Cytoskeletal Proteins Involved in Brain Plasticity. Front Psychiatry 2015; 6:165. [PMID: 26635640 PMCID: PMC4653291 DOI: 10.3389/fpsyt.2015.00165] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 11/02/2015] [Indexed: 01/22/2023] Open
Abstract
In the brain of female mammals, including humans, a number of physiological and behavioral changes occur as a result of sex hormone exposure. Estradiol and progesterone regulate several brain functions, including learning and memory. Sex hormones contribute to shape the central nervous system by modulating the formation and turnover of the interconnections between neurons as well as controlling the function of glial cells. The dynamics of neuron and glial cells morphology depends on the cytoskeleton and its associated proteins. Cytoskeletal proteins are necessary to form neuronal dendrites and dendritic spines, as well as to regulate the diverse functions in astrocytes. The expression pattern of proteins, such as actin, microtubule-associated protein 2, Tau, and glial fibrillary acidic protein, changes in a tissue-specific manner in the brain, particularly when variations in sex hormone levels occur during the estrous or menstrual cycles or pregnancy. Here, we review the changes in structure and organization of neurons and glial cells that require the participation of cytoskeletal proteins whose expression and activity are regulated by estradiol and progesterone.
Collapse
Affiliation(s)
- Valeria Hansberg-Pastor
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México , Mexico City , Mexico
| | - Aliesha González-Arenas
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México , Mexico City , Mexico
| | - Ana Gabriela Piña-Medina
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México , Mexico City , Mexico
| | - Ignacio Camacho-Arroyo
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México , Mexico City , Mexico
| |
Collapse
|
18
|
Yousuf S, Atif F, Sayeed I, Tang H, Stein DG. Progesterone in transient ischemic stroke: a dose-response study. Psychopharmacology (Berl) 2014; 231:3313-23. [PMID: 24752655 PMCID: PMC4134953 DOI: 10.1007/s00213-014-3556-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 03/20/2014] [Indexed: 02/06/2023]
Abstract
RATIONALE Previous studies demonstrate the neuroprotective effects of progesterone in numerous animal injury models, but a systematic dose-response study in a transient ischemic stroke model is lacking. OBJECTIVES We investigated the effects of progesterone at different doses on post-stroke brain infarction and functional deficits in middle-aged rats. METHODS Cerebral ischemia was induced in 13-month-old male Sprague-Dawley rats by right middle cerebral artery occlusion for 2 h followed by reperfusion. Rats received intraperitoneal injections of 8, 16, or 32 mg/kg of progesterone (P8, P16, P32) or vehicle at 2 h post-occlusion followed by subcutaneous injections at 6 h and every 24 h post-injury for 7 days. Functional recovery was evaluated at intervals over 22 days using motor, sensory, and cognitive tests. Infarct size was evaluated at 22 days post-stroke. RESULTS Repeated-measures ANOVA showed significant group effects on grip strength, rotarod, and sensory neglect. All progesterone-treated groups had improved (p < 0.05) spatial memory performance. The P8 and P16 groups showed maximum improvement in long-term memory compared to vehicle. Significant (p < 0.05) gait impairments were observed in the vehicle group compared to shams. Animals receiving the P8 dose showed maximum gait improvement compared to vehicle. Post hoc analysis revealed that the P8 and P16 groups showed significant attenuation in infarct volume compared to vehicle. Animals receiving the P32 dose did not show any effect on infarct volume. CONCLUSIONS Although all doses were somewhat effective, progesterone given at 8 mg/kg led to the most consistent improvements across a panel of behavioral/functional tests and reduced the severity of ischemic infarct injury.
Collapse
MESH Headings
- Animals
- Behavior, Animal/drug effects
- Dose-Response Relationship, Drug
- Gait Disorders, Neurologic/drug therapy
- Hand Strength
- Infarction, Middle Cerebral Artery/drug therapy
- Infarction, Middle Cerebral Artery/pathology
- Infarction, Middle Cerebral Artery/psychology
- Ischemic Attack, Transient/drug therapy
- Ischemic Attack, Transient/pathology
- Ischemic Attack, Transient/psychology
- Male
- Maze Learning/drug effects
- Memory/drug effects
- Neuroprotective Agents/administration & dosage
- Neuroprotective Agents/therapeutic use
- Perceptual Disorders/drug therapy
- Perceptual Disorders/psychology
- Postural Balance/drug effects
- Progesterone/administration & dosage
- Progesterone/therapeutic use
- Rats
- Rats, Sprague-Dawley
Collapse
Affiliation(s)
- Seema Yousuf
- Department of Emergency Medicine, Brain Research Laboratory, Emory University, 1365B Clifton Road NE, Suite 5100, Atlanta, GA, 30322, USA,
| | | | | | | | | |
Collapse
|