1
|
Jiang L, Li J, Reilly S, Xin H, Guo N, Zhang X. Role of organellar Ca2+-activated K+ channels in disease development. Life Sci 2023; 316:121433. [PMID: 36708987 DOI: 10.1016/j.lfs.2023.121433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/16/2023] [Accepted: 01/19/2023] [Indexed: 01/27/2023]
Abstract
The organellar Ca2+-activated K+ channels share a similar ability to transfer the alteration of Ca2+ concentration to membrane conductance of potassium. Multiple effects of Ca2+-activated K+ channels on cell metabolism and complex signaling pathways during organ development have been explored. The organellar Ca2+-activated K+ channels are able to control the ionic equilibrium and are always associated with oxidative stress in different organelles and the whole cells. Some drugs targeting Ca2+-activated K+ channels have been tested for various diseases in clinical trials. In this review, the known roles of organellar Ca2+-activated K+ channels were described, and their effects on different diseases, particularly on diabetes, cardiovascular diseases, and neurological diseases were discussed. It was attempted to summarize the currently known operational modes with the involvement of organellar Ca2+-activated K+ channels. This review may assist scholars to more comprehensively understand organellar Ca2+-activated K+ channels and related diseases.
Collapse
Affiliation(s)
- Lan Jiang
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Jiawei Li
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Svetlana Reilly
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Hong Xin
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Nan Guo
- Department of Pharmacy, Minhang hospital, Fudan University, Shanghai, China.
| | - Xuemei Zhang
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China.
| |
Collapse
|
2
|
Mechanism of Manganese Dysregulation of Dopamine Neuronal Activity. J Neurosci 2020; 40:5871-5891. [PMID: 32576620 DOI: 10.1523/jneurosci.2830-19.2020] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 05/27/2020] [Accepted: 05/29/2020] [Indexed: 01/01/2023] Open
Abstract
Manganese exposure produces Parkinson's-like neurologic symptoms, suggesting a selective dysregulation of dopamine transmission. It is unknown, however, how manganese accumulates in dopaminergic brain regions or how it regulates the activity of dopamine neurons. Our in vivo studies in male C57BLJ mice suggest that manganese accumulates in dopamine neurons of the VTA and substantia nigra via nifedipine-sensitive Ca2+ channels. Manganese produces a Ca2+ channel-mediated current, which increases neurotransmitter release and rhythmic firing activity of dopamine neurons. These increases are prevented by blockade of Ca2+ channels and depend on downstream recruitment of Ca2+-activated potassium channels to the plasma membrane. These findings demonstrate the mechanism of manganese-induced dysfunction of dopamine neurons, and reveal a potential therapeutic target to attenuate manganese-induced impairment of dopamine transmission.SIGNIFICANCE STATEMENT Manganese is a trace element critical to many physiological processes. Overexposure to manganese is an environmental risk factor for neurologic disorders, such as a Parkinson's disease-like syndrome known as manganism. We found that manganese concentration-dependently increased the excitability of dopamine neurons, decreased the amplitude of action potentials, and narrowed action potential width. Blockade of Ca2+ channels prevented these effects as well as manganese accumulation in the mouse midbrain in vivo Our data provide a potential mechanism for manganese regulation of dopaminergic neurons.
Collapse
|
3
|
Zhao H, Xue Q, Li C, Wang Q, Han S, Zhou Y, Yang T, Xie Y, Fu H, Lu C, Meng F, Zhang M, Zhang Y, Wu X, Wu S, Zhuo M, Xu H. Upregulation of Beta4 subunit of BK Ca channels in the anterior cingulate cortex contributes to mechanical allodynia associated anxiety-like behaviors. Mol Brain 2020; 13:22. [PMID: 32070382 PMCID: PMC7029562 DOI: 10.1186/s13041-020-0555-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 01/19/2020] [Indexed: 12/02/2022] Open
Abstract
The anterior cingulate cortex (ACC) serves as a critical hub for the anxiety and pain perception. The large-conductance Ca2+-activated potassium channels, or BKCa channels, are ubiquitously expressed throughout the central nervous system including the cingulate cortex. However, what changes of cortical BKCa channels undergo in the ACC remains unknown in pain-related anxiety. In the present study, a significant upregulation of synaptic and non-synaptic BKCa channel accessory β4 subunits in the ACC was accompanied with pain-associated anxiety-like behaviors in the chronic compression of multiple dorsal root ganglia (mCCD) of the rat. NS1619, an opener of BKCa channels, significantly rescued the alteration of fAHP and AP duration of ACC pyramidal neurons in mCCD rats. The mRNA expression of BKCa β4 subunits was extremely upregulated in the ACC after mCCD with the increased amount of both synaptic and non-synaptic BKCa β4 subunit protein. Meanwhile, NS1619 reversed the enhanced AMPA receptor-mediated spontaneous excitatory postsynaptic current (sEPSC) frequency and the attenuated PPR of ACC neurons in mCCD rats. Local activation of BKCa channels in the ACC reversed mechanical allodynia and anxiety-like behaviors. These results suggest that the upregulation of postsynaptic and presynaptic BKCa β4 subunit may contribute to neuronal hyperexcitability and the enhanced synaptic transmission in the ACC in neuropathic pain state, and then may result in anxiety-like behavior induced by neuropathic pain.
Collapse
Affiliation(s)
- Huan Zhao
- Department of Neurobiology and Collaborative Innovation Center for Brain Science, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China.,Center for Neuron and Disease, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.,Department of Anesthesiology, Heze Municipal Hospital, Heze, 274031, Shandong, China
| | - Qian Xue
- Department of Neurobiology and Collaborative Innovation Center for Brain Science, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Cong Li
- Department of Neurobiology and Collaborative Innovation Center for Brain Science, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China.,Department of Anesthesiology, Heze Municipal Hospital, Heze, 274031, Shandong, China.,Shandong First Medcial University & Shandong Academy of Medical Sciences, Taian, 271000, Shandong, China
| | - Qingchuan Wang
- Department of Neurobiology and Collaborative Innovation Center for Brain Science, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China.,Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Shichao Han
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Yongsheng Zhou
- Department of Neurobiology and Collaborative Innovation Center for Brain Science, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Tao Yang
- Department of Neurobiology and Collaborative Innovation Center for Brain Science, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Yingli Xie
- Department of Neurobiology and Collaborative Innovation Center for Brain Science, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Hao Fu
- Department of Neurobiology and Collaborative Innovation Center for Brain Science, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Changbo Lu
- Department of Neurobiology and Collaborative Innovation Center for Brain Science, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Fancheng Meng
- Department of Neurobiology and Collaborative Innovation Center for Brain Science, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Ming Zhang
- Department of Neurobiology and Collaborative Innovation Center for Brain Science, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Yan Zhang
- Department of Anesthesiology, Heze Municipal Hospital, Heze, 274031, Shandong, China
| | - Xianglong Wu
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Shengxi Wu
- Department of Neurobiology and Collaborative Innovation Center for Brain Science, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Min Zhuo
- Center for Neuron and Disease, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.,Department of Phsyiology, University of Toronto, Toronto, Canada
| | - Hui Xu
- Department of Neurobiology and Collaborative Innovation Center for Brain Science, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China. .,Center for Neuron and Disease, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
| |
Collapse
|
4
|
Leanza L, Checchetto V, Biasutto L, Rossa A, Costa R, Bachmann M, Zoratti M, Szabo I. Pharmacological modulation of mitochondrial ion channels. Br J Pharmacol 2019; 176:4258-4283. [PMID: 30440086 DOI: 10.1111/bph.14544] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 10/15/2018] [Accepted: 10/22/2018] [Indexed: 12/17/2022] Open
Abstract
The field of mitochondrial ion channels has undergone a rapid development during the last three decades, due to the molecular identification of some of the channels residing in the outer and inner membranes. Relevant information about the function of these channels in physiological and pathological settings was gained thanks to genetic models for a few, mitochondria-specific channels. However, many ion channels have multiple localizations within the cell, hampering a clear-cut determination of their function by pharmacological means. The present review summarizes our current knowledge about the ins and outs of mitochondrial ion channels, with special focus on the channels that have received much attention in recent years, namely, the voltage-dependent anion channels, the permeability transition pore (also called mitochondrial megachannel), the mitochondrial calcium uniporter and some of the inner membrane-located potassium channels. In addition, possible strategies to overcome the difficulties of specifically targeting mitochondrial channels versus their counterparts active in other membranes are discussed, as well as the possibilities of modulating channel function by small peptides that compete for binding with protein interacting partners. Altogether, these promising tools along with large-scale chemical screenings set up to identify new, specific channel modulators will hopefully allow us to pinpoint the actual function of most mitochondrial ion channels in the near future and to pharmacologically affect important pathologies in which they are involved, such as neurodegeneration, ischaemic damage and cancer. LINKED ARTICLES: This article is part of a themed section on Mitochondrial Pharmacology: Featured Mechanisms and Approaches for Therapy Translation. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.22/issuetoc.
Collapse
Affiliation(s)
- Luigi Leanza
- Department of Biology, University of Padova, Padova, Italy
| | | | - Lucia Biasutto
- CNR Institute of Neurosciences, Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Andrea Rossa
- Department of Chemical Sciences, University of Padova, Padova, Italy
| | - Roberto Costa
- Department of Biology, University of Padova, Padova, Italy
| | | | - Mario Zoratti
- CNR Institute of Neurosciences, Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Ildiko Szabo
- Department of Biology, University of Padova, Padova, Italy.,CNR Institute of Neurosciences, Department of Biomedical Sciences, University of Padova, Padova, Italy
| |
Collapse
|
5
|
Pratt CP, Kuljis DA, Homanics GE, He J, Kolodieznyi D, Dudem S, Hollywood MA, Barth AL, Bruchez MP. Tagging of Endogenous BK Channels with a Fluorogen-Activating Peptide Reveals β4-Mediated Control of Channel Clustering in Cerebellum. Front Cell Neurosci 2017; 11:337. [PMID: 29163049 PMCID: PMC5671578 DOI: 10.3389/fncel.2017.00337] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Accepted: 10/12/2017] [Indexed: 01/10/2023] Open
Abstract
BK channels are critical regulators of neuronal activity, controlling firing, neurotransmitter release, cerebellar function, and BK channel mutations have been linked to seizure disorders. Modulation of BK channel gating is well characterized, regulated by accessory subunit interactions, intracellular signaling pathways, and membrane potential. In contrast, the role of intracellular trafficking mechanisms in controlling BK channel function, especially in live cells, has been less studied. Fluorogen-activating peptides (FAPs) are well-suited for trafficking and physiological studies due to the binding of malachite green (MG)-based dyes with sub-nanomolar affinity to the FAP, resulting in bright, photostable, far-red fluorescence. Cell-excluded MG dyes enable the selective tagging of surface protein and tracking through endocytic pathways. We used CRISPR to insert the FAP at the extracellular N-terminus of BKα in the first exon of its native locus, enabling regulation by the native promoter elements and tag incorporation into multiple splice isoforms. Motor coordination was found to be normal; however, BK channel expression seems to be reduced in some locations. Alternate start site selection or post-translational proteolytic processing resulted in incomplete FAP tagging of the BKα proteins in brain tissues. In Purkinje cell somata, FAP revealed BK channel clustering previously only observed by electron microscopy. Measurement of these clusters in β4+/- and β4-/- mice showed that puncta number and cluster fluorescence intensity on the soma are reduced in β4-/- knockout animals. This novel mouse line provides a versatile fluorescent platform for studying endogenous BK channels in living and fixed tissues. Future studies could apply this line to ex vivo neuronal cultures to study live-cell channel trafficking.
Collapse
Affiliation(s)
- Christopher P Pratt
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, United States.,Molecular Biosensor and Imaging Center, Carnegie Mellon University, Pittsburgh, PA, United States.,Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Dika A Kuljis
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Gregg E Homanics
- Department of Anesthesiology, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Jianjun He
- Molecular Biosensor and Imaging Center, Carnegie Mellon University, Pittsburgh, PA, United States.,Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Dmytro Kolodieznyi
- Molecular Biosensor and Imaging Center, Carnegie Mellon University, Pittsburgh, PA, United States.,Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Srikanth Dudem
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Dundalk, Ireland
| | - Mark A Hollywood
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Dundalk, Ireland
| | - Alison L Barth
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, United States.,Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Marcel P Bruchez
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, United States.,Molecular Biosensor and Imaging Center, Carnegie Mellon University, Pittsburgh, PA, United States.,Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA, United States
| |
Collapse
|
6
|
Methamphetamine Regulation of Firing Activity of Dopamine Neurons. J Neurosci 2017; 36:10376-10391. [PMID: 27707972 DOI: 10.1523/jneurosci.1392-16.2016] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 08/18/2016] [Indexed: 12/14/2022] Open
Abstract
Methamphetamine (METH) is a substrate for the dopamine transporter that increases extracellular dopamine levels by competing with dopamine uptake and increasing reverse transport of dopamine via the transporter. METH has also been shown to alter the excitability of dopamine neurons. The mechanism of METH regulation of the intrinsic firing behaviors of dopamine neurons is less understood. Here we identified an unexpected and unique property of METH on the regulation of firing activity of mouse dopamine neurons. METH produced a transient augmentation of spontaneous spike activity of midbrain dopamine neurons that was followed by a progressive reduction of spontaneous spike activity. Inspection of action potential morphology revealed that METH increased the half-width and produced larger coefficients of variation of the interspike interval, suggesting that METH exposure affected the activity of voltage-dependent potassium channels in these neurons. Since METH has been shown to affect Ca2+ homeostasis, the unexpected findings that METH broadened the action potential and decreased the amplitude of afterhyperpolarization led us to ask whether METH alters the activity of Ca2+-activated potassium (BK) channels. First, we identified BK channels in dopamine neurons by their voltage dependence and their response to a BK channel blocker or opener. While METH suppressed the amplitude of BK channel-mediated unitary currents, the BK channel opener NS1619 attenuated the effects of METH on action potential broadening, afterhyperpolarization repression, and spontaneous spike activity reduction. Live-cell total internal reflection fluorescence microscopy, electrophysiology, and biochemical analysis suggest METH exposure decreased the activity of BK channels by decreasing BK-α subunit levels at the plasma membrane. SIGNIFICANCE STATEMENT Methamphetamine (METH) competes with dopamine uptake, increases dopamine efflux via the dopamine transporter, and affects the excitability of dopamine neurons. Here, we identified an unexpected property of METH on dopamine neuron firing activity. METH transiently increased the spontaneous spike activity of dopamine neurons followed by a progressive reduction of the spontaneous spike activity. METH broadened the action potentials, increased coefficients of variation of the interspike interval, and decreased the amplitude of afterhyperpolarization, which are consistent with changes in the activity of Ca2+-activated potassium (BK) channels. We found that METH decreased the activity of BK channels by stimulating BK-α subunit trafficking. Thus, METH modulation of dopamine neurotransmission and resulting behavioral responses is, in part, due to METH regulation of BK channel activity.
Collapse
|
7
|
The Slo(w) path to identifying the mitochondrial channels responsible for ischemic protection. Biochem J 2017; 474:2067-2094. [PMID: 28600454 DOI: 10.1042/bcj20160623] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 02/10/2017] [Accepted: 02/13/2017] [Indexed: 12/19/2022]
Abstract
Mitochondria play an important role in tissue ischemia and reperfusion (IR) injury, with energetic failure and the opening of the mitochondrial permeability transition pore being the major causes of IR-induced cell death. Thus, mitochondria are an appropriate focus for strategies to protect against IR injury. Two widely studied paradigms of IR protection, particularly in the field of cardiac IR, are ischemic preconditioning (IPC) and volatile anesthetic preconditioning (APC). While the molecular mechanisms recruited by these protective paradigms are not fully elucidated, a commonality is the involvement of mitochondrial K+ channel opening. In the case of IPC, research has focused on a mitochondrial ATP-sensitive K+ channel (mitoKATP), but, despite recent progress, the molecular identity of this channel remains a subject of contention. In the case of APC, early research suggested the existence of a mitochondrial large-conductance K+ (BK, big conductance of potassium) channel encoded by the Kcnma1 gene, although more recent work has shown that the channel that underlies APC is in fact encoded by Kcnt2 In this review, we discuss both the pharmacologic and genetic evidence for the existence and identity of mitochondrial K+ channels, and the role of these channels both in IR protection and in regulating normal mitochondrial function.
Collapse
|
8
|
Li B, Gao TM. Functional Role of Mitochondrial and Nuclear BK Channels. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2016; 128:163-91. [PMID: 27238264 DOI: 10.1016/bs.irn.2016.03.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BK channels are important for the regulation of many cell functions. The significance of plasma membrane BK channels in the control of action potentials, resting membrane potential, and neurotransmitter release is well established; however, the composition and functions of mitochondrial and nuclear BK (nBK) channels are largely unknown. In this chapter, we summarize the recent findings on the subcellular localization, biophysical, and pharmacological properties of mitochondrial and nBK channels and discuss their molecular identity and physiological functions.
Collapse
Affiliation(s)
- B Li
- State Key Laboratory of Organ Failure Research, Key Laboratory of Psychiatric Disorders of Guangdong Province, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - T-M Gao
- State Key Laboratory of Organ Failure Research, Key Laboratory of Psychiatric Disorders of Guangdong Province, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.
| |
Collapse
|
9
|
Pratt CP, He J, Wang Y, Barth AL, Bruchez MP. Fluorogenic Green-Inside Red-Outside (GIRO) Labeling Approach Reveals Adenylyl Cyclase-Dependent Control of BKα Surface Expression. Bioconjug Chem 2015; 26:1963-71. [PMID: 26301573 PMCID: PMC4576318 DOI: 10.1021/acs.bioconjchem.5b00409] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
The
regulation of surface levels of protein is critical for proper
cell function and influences properties including cell adhesion, ion
channel contributions to current flux, and the sensitivity of surface
receptors to ligands. Here we demonstrate a two-color labeling system
in live cells using a single fluorogen activating peptide (FAP) based
fusion tag, which enables the rapid and simultaneous quantification
of surface and internal proteins. In the nervous system, BK channels
can regulate neural excitability and neurotransmitter release, and
the surface trafficking of BK channels can be modulated by signaling
cascades and assembly with accessory proteins. Using this labeling
approach, we examine the dynamics of BK channel surface expression
in HEK293 cells. Surface pools of the pore-forming BKα subunit
were stable, exhibiting a plasma membrane half-life of >10 h. Long-term
activation of adenylyl cyclase by forskolin reduced BKα surface
levels by 30%, an effect that could not be attributed to increased
bulk endocytosis of plasma membrane proteins. This labeling approach
is compatible with microscopic imaging and flow cytometry, providing
a solid platform for examining protein trafficking in living cells.
Collapse
Affiliation(s)
- Christopher P Pratt
- Department of Biological Sciences, ‡Department of Chemistry, §Molecular Biosensor and Imaging Center, and #Center for the Neural Basis of Cognition, Carnegie Mellon University , 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Jianjun He
- Department of Biological Sciences, ‡Department of Chemistry, §Molecular Biosensor and Imaging Center, and #Center for the Neural Basis of Cognition, Carnegie Mellon University , 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Yi Wang
- Department of Biological Sciences, ‡Department of Chemistry, §Molecular Biosensor and Imaging Center, and #Center for the Neural Basis of Cognition, Carnegie Mellon University , 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Alison L Barth
- Department of Biological Sciences, ‡Department of Chemistry, §Molecular Biosensor and Imaging Center, and #Center for the Neural Basis of Cognition, Carnegie Mellon University , 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Marcel P Bruchez
- Department of Biological Sciences, ‡Department of Chemistry, §Molecular Biosensor and Imaging Center, and #Center for the Neural Basis of Cognition, Carnegie Mellon University , 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
10
|
Balderas E, Zhang J, Stefani E, Toro L. Mitochondrial BKCa channel. Front Physiol 2015; 6:104. [PMID: 25873902 PMCID: PMC4379900 DOI: 10.3389/fphys.2015.00104] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 03/13/2015] [Indexed: 12/19/2022] Open
Abstract
Since its discovery in a glioma cell line 15 years ago, mitochondrial BKCa channel (mitoBKCa) has been studied in brain cells and cardiomyocytes sharing general biophysical properties such as high K+ conductance (~300 pS), voltage-dependency and Ca2+-sensitivity. Main advances in deciphering the molecular composition of mitoBKCa have included establishing that it is encoded by the Kcnma1 gene, that a C-terminal splice insert confers mitoBKCa ability to be targeted to cardiac mitochondria, and evidence for its potential coassembly with β subunits. Notoriously, β1 subunit directly interacts with cytochrome c oxidase and mitoBKCa can be modulated by substrates of the respiratory chain. mitoBKCa channel has a central role in protecting the heart from ischemia, where pharmacological activation of the channel impacts the generation of reactive oxygen species and mitochondrial Ca2+ preventing cell death likely by impeding uncontrolled opening of the mitochondrial transition pore. Supporting this view, inhibition of mitoBKCa with Iberiotoxin, enhances cytochrome c release from glioma mitochondria. Many tantalizing questions remain open. Some of them are: how is mitoBKCa coupled to the respiratory chain? Does mitoBKCa play non-conduction roles in mitochondria physiology? Which are the functional partners of mitoBKCa? What are the roles of mitoBKCa in other cell types? Answers to these questions are essential to define the impact of mitoBKCa channel in mitochondria biology and disease.
Collapse
Affiliation(s)
- Enrique Balderas
- Department of Anesthesiology, University of California, Los Angeles Los Angeles, CA, USA
| | - Jin Zhang
- Deparment of Molecular and Medical Pharmacology, University of California, Los Angeles Los Angeles, CA, USA
| | - Enrico Stefani
- Department of Anesthesiology, University of California, Los Angeles Los Angeles, CA, USA ; Department of Physiology, University of California, Los Angeles Los Angeles, CA, USA ; Brain Research Institute, University of California, Los Angeles Los Angeles, CA, USA ; Cardiovascular Research Laboratory, University of California, Los Angeles Los Angeles, CA, USA
| | - Ligia Toro
- Department of Anesthesiology, University of California, Los Angeles Los Angeles, CA, USA ; Deparment of Molecular and Medical Pharmacology, University of California, Los Angeles Los Angeles, CA, USA ; Brain Research Institute, University of California, Los Angeles Los Angeles, CA, USA ; Cardiovascular Research Laboratory, University of California, Los Angeles Los Angeles, CA, USA
| |
Collapse
|
11
|
Wang B, Jaffe DB, Brenner R. Current understanding of iberiotoxin-resistant BK channels in the nervous system. Front Physiol 2014; 5:382. [PMID: 25346692 PMCID: PMC4190997 DOI: 10.3389/fphys.2014.00382] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 09/15/2014] [Indexed: 11/13/2022] Open
Abstract
While most large-conductance, calcium-, and voltage-activated potassium channels (BK or Maxi-K type) are blocked by the scorpion venom iberiotoxin, the so-called “type II” subtype has the property of toxin resistance. This property is uniquely mediated by channel assembly with one member of the BK accessory β subunit family, the neuron-enriched β4 subunit. This review will focus on current understanding of iberiotoxin-resistant, β4-containing BK channel properties and their function in the CNS. Studies have shown that β4 dramatically promotes BK channel opening by shifting voltage sensor activation to more negative voltage ranges, but also slows activation to timescales that theoretically preclude BK ability to shape action potentials (APs). In addition, β4 membrane trafficking is regulated through an endoplasmic retention signal and palmitoylation. More recently, the challenge has been to understand the functional role of the iberiotoxin-resistant BK subtype utilizing computational modeling of neurons and neurophysiological approaches. Utilizing iberiotoxin-resistance as a footprint for these channels, they have been identified in dentate gyrus granule neurons and in purkinje neurons of the cerebellum. In these neurons, the role of these channels is largely consistent with slow-gated channels that reduce excitability either through an interspike conductance, such as in purkinje neurons, or by replacing fast-gating BK channels that otherwise facilitate high frequency AP firing, such as in dentate gyrus neurons. They are also observed in presynaptic mossy fiber terminals of the dentate gyrus and posterior pituitary terminals. More recent studies suggest that β4 subunits may also be expressed in some neurons lacking iberiotoxin-resistant BK channels, such as in CA3 hippocampus neurons. Ongoing research using novel, specific blockers and agonists of BK/β4, and β4 knockout mice, will continue to move the field forward in understanding the function of these channels.
Collapse
Affiliation(s)
- Bin Wang
- Department of Physiology, University of Texas Health Science Center at San Antonio San Antonio, TX, USA
| | - David B Jaffe
- Department of Biology and the UTSA Neurosciences Institute, University of Texas at San Antonio San Antonio, TX, USA
| | - Robert Brenner
- Department of Physiology, University of Texas Health Science Center at San Antonio San Antonio, TX, USA
| |
Collapse
|