1
|
Dai Y, Yu C, Zhou L, Cheng L, Ni H, Liang W. Chemokine receptor CXCR4 interacts with nuclear receptor Nur77 and promote glioma invasion and progression. Brain Res 2024; 1822:148647. [PMID: 37890573 DOI: 10.1016/j.brainres.2023.148647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/15/2023] [Accepted: 10/23/2023] [Indexed: 10/29/2023]
Abstract
BACKGROUND Glioma is the most common primary brain tumor. It is prone to progress and have high rate of mortality regardless of radiation or chemotherapy due to its invasive growth features. Chemokine and its receptor CXCL12 and CXCR4 play important roles in cancer metastasis. METHODS In this study, we investigate the role of CXCR4 in the progression of glioma by various molecular technologies, including qRT-PCR, Western blotting, wound closure assay, transwell assay et al. RESULTS: It was found that CXCR4 was overexpressed in glioma tissues. The expression of CXCR4 was correlated with patients' overall survival. Wound closure assay and transwell invasion assay showed that inhibition of CXCR4 significantly reduced the expression of biomarkers related to the formation of invadopodium, leading to decrease the invasion and migration of glioma tumor cells. Knocking down the nuclear receptor Nur77 remarkably decreased CXCR4 expression and reduced glioma cell invasion and migration. The reduction of glioma cell invasion and migration were observed after Nur77 inhibitor treatment. CONCLUSION Taken together, these results indicated that CXCR4 is critical in promoting glioma migration and invasion. Inhibition of Nur77 reduces CXCR4 related cancer progression.
Collapse
Affiliation(s)
- Yuxiang Dai
- Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, China
| | - Chen Yu
- Department of Neurosurgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, China
| | - Lu Zhou
- Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, China
| | - Longyang Cheng
- Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, China
| | - Hongbin Ni
- Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, China
| | - Weibang Liang
- Department of Neurosurgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, China.
| |
Collapse
|
2
|
Zhang L, Mohankumar K, Martin G, Mariyam F, Park Y, Han SJ, Safe S. Flavonoids Quercetin and Kaempferol Are NR4A1 Antagonists and Suppress Endometriosis in Female Mice. Endocrinology 2023; 164:bqad133. [PMID: 37652054 PMCID: PMC10502789 DOI: 10.1210/endocr/bqad133] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/02/2023]
Abstract
Nuclear receptor 4A1 (NR4A1) plays an important role in endometriosis progression; levels of NR4A1 in endometriotic lesions are higher than in normal endometrium, and substituted bis-indole analogs (NR4A1) antagonists suppress endometriosis progression in mice with endometriosis. In addition, the flavonoids kaempferol and quercetin are natural products that directly bind NR4A1 and significantly repress the intrinsic NR4A1-dependent transcriptional activity in human endometriotic epithelial and stromal cells and Ishikawa endometrial cancer cells. NR4A1 knockdown and inhibition of NR4A1 by kaempferol and quercetin suppressed proliferation of human endometriotic epithelial cells and Ishikawa cells by inhibiting epidermal growth factor receptor/c-Myc/survivin-mediated growth-promoting and survival pathways, The mammalian target of rapamycin (mTOR) signaling and αSMA/CTGF/COL1A1/FN-mediated fibrosis signaling but increasing Thioredoxin domain Containing 5/SESN2-mediated oxidative/estrogen receptors stress signaling. In human endometriotic stromal cells, NR4A1 knockdown and inhibition of NR4A1 by kaempferol and quercetin primarily inhibited mTOR signaling by suppressing proliferation of human endometrial stromal cells. In addition, kaempferol and quercetin treatment also effectively suppressed the growth of endometriotic lesions in mice with endometriosis compared with the vehicle without any body weight changes. Therefore, kaempferol and quercetin are NR4A1 antagonists with potential as nutritional therapy for endometriosis.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, USA
| | - Kumaravel Mohankumar
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, USA
| | - Gregory Martin
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, USA
| | - Fuada Mariyam
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, USA
| | - Yuri Park
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sang Jun Han
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Stephen Safe
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
3
|
Li X, Zeng L, Lu X, Chen K, Yu M, Wang B, Zhao M. Early Brain Injury and Neuroprotective Treatment after Aneurysmal Subarachnoid Hemorrhage: A Literature Review. Brain Sci 2023; 13:1083. [PMID: 37509013 PMCID: PMC10376973 DOI: 10.3390/brainsci13071083] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Early brain injury (EBI) subsequent to subarachnoid hemorrhage (SAH) is strongly associated with delayed cerebral ischemia and poor patient prognosis. Based on investigations into the molecular mechanisms underlying EBI, neurovascular dysfunction resulting from SAH can be attributed to a range of pathological processes, such as microvascular alterations in brain tissue, ionic imbalances, blood-brain barrier disruption, immune-inflammatory responses, oxidative stress, and activation of cell death pathways. Research progress presents a variety of promising therapeutic approaches for the preservation of neurological function following SAH, including calcium channel antagonists, endothelin-1 receptor blockers, antiplatelet agents, anti-inflammatory agents, and anti-oxidative stress agents. EBI can be mitigated following SAH through neuroprotective measures. To enhance our comprehension of the relevant molecular pathways involved in brain injury, including brain ischemia-hypoxic injury, neuroimmune inflammation activation, and the activation of various cell-signaling pathways, following SAH, it is essential to investigate the evolution of these multifaceted pathophysiological processes. Facilitating neural repair following a brain injury is critical for improving patient survival rates and quality of life.
Collapse
Affiliation(s)
- Xiaopeng Li
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Lang Zeng
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xuanzhen Lu
- Department of Neurology, The Third Hospital of Wuhan, Wuhan 430073, China
| | - Kun Chen
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Maling Yu
- Department of Neurology, The Third Hospital of Wuhan, Wuhan 430073, China
| | - Baofeng Wang
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Min Zhao
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
4
|
Wang H, Zhang M, Fang F, Xu C, Liu J, Gao L, Zhao C, Wang Z, Zhong Y, Wang X. The nuclear receptor subfamily 4 group A1 in human disease. Biochem Cell Biol 2023; 101:148-159. [PMID: 36861809 DOI: 10.1139/bcb-2022-0331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
Nuclear receptor 4A1 (NR4A1), a member of the NR4A subfamily, acts as a gene regulator in a wide range of signaling pathways and responses to human diseases. Here, we provide a brief overview of the current functions of NR4A1 in human diseases and the factors involved in its function. A deeper understanding of these mechanisms can potentially improve drug development and disease therapy.
Collapse
Affiliation(s)
- Hongshuang Wang
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang 050091, China
| | - Mengjuan Zhang
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang 050091, China
| | - Fang Fang
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang 050091, China
| | - Chang Xu
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang 050091, China
| | - Jiazhi Liu
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang 050091, China
| | - Lanjun Gao
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang 050091, China
| | - Chenchen Zhao
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang 050091, China
| | - Zheng Wang
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns Research, Shijiazhuang 050091, China.,Institute of Integrative Medicine, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Yan Zhong
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns Research, Shijiazhuang 050091, China.,Institute of Integrative Medicine, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Xiangting Wang
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns Research, Shijiazhuang 050091, China
| |
Collapse
|
5
|
Liu L, Ma D, Zhuo L, Pang X, You J, Feng J. Progress and Promise of Nur77-based Therapeutics for Central Nervous System Disorders. Curr Neuropharmacol 2021; 19:486-497. [PMID: 32504502 PMCID: PMC8206462 DOI: 10.2174/1570159x18666200606231723] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/23/2020] [Accepted: 06/02/2020] [Indexed: 11/22/2022] Open
Abstract
Nur77 belongs to the NR4A subgroup of the nuclear receptor superfamily. Unlike other nuclear receptors, a natural ligand for Nur77 has not been identified yet. However, a few small molecules can interact with this receptor and induce a conformational change to mediate its activity. The expression and activation of Nur77 can be rapidly increased using various physiological and pathological stimuli. In vivo and in vitro studies have demonstrated its regulatory role in tissues and cells of multiple systems by means of participation in cell differentiation, apoptosis, metabolism, mitochondrial homeostasis, and other processes. Although research on Nur77 in the pathophysiology of the central nervous system (CNS) is currently limited, the present data support the fact that Nur77 is involved in many neurological disorders such as stroke, multiple sclerosis, Parkinson’s disease. This indicates that activation of Nur77 has considerable potential in treating these diseases. This review summarizes the regulatory mechanisms of Nur77 in CNS diseases and presents available evidence for its potential as targeted therapy, especially for cerebrovascular and inflammation-related CNS diseases.
Collapse
Affiliation(s)
- Lu Liu
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, 130021, Jilin Province, China
| | - Di Ma
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, 130021, Jilin Province, China
| | - La Zhuo
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, 130021, Jilin Province, China
| | - Xinyuan Pang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, 130021, Jilin Province, China
| | - Jiulin You
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, 130021, Jilin Province, China
| | - Jiachun Feng
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, 130021, Jilin Province, China
| |
Collapse
|
6
|
Zeyu Zhang, Yuanjian Fang, Cameron Lenahan, Sheng Chen. The role of immune inflammation in aneurysmal subarachnoid hemorrhage. Exp Neurol 2020; 336:113535. [PMID: 33249033 DOI: 10.1016/j.expneurol.2020.113535] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 11/19/2020] [Accepted: 11/23/2020] [Indexed: 02/07/2023]
Abstract
Aneurysmal subarachnoid hemorrhage (aSAH) is a devastating disease, which mainly caused by the rupture of an intracranial aneurysm. Clinical trials have demonstrated that cerebral vasospasm (CVS) is not the sole contributor to delayed cerebral ischemia (DCI) and poor outcomes in patients with aSAH. Currently, accumulating evidence suggests that early brain injury (EBI), which occurs within 72 h after the onset of aSAH, lays the foundation for subsequent pathophysiological changes and poor outcomes of patients. The pathological mechanisms of EBI mainly include increased intracranial pressure, oxidative stress, neuroinflammation, blood-brain barrier (BBB) disruption, cerebral edema and cell death. Among them, the brain immune inflammatory responses involve a variety of immune cells and active substances, which play an important role in EBI after aSAH and may be related to DCI and long-term outcomes. Thus, attention should be paid to strategies targeting cerebral immune inflammatory responses. In this review, we discuss the role of immune inflammatory responses in the occurrence and development of aSAH, as well as some inflammatory biomarkers related to CVS, DCI, and aSAH outcomes. In addition, we also summarize the potential therapeutic drugs that target cerebral immune inflammatory responses for patients with aSAH in current research.
Collapse
Affiliation(s)
- Zeyu Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yuanjian Fang
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Cameron Lenahan
- Burrell College of Osteopathic Medicine, Las Cruces, NM, USA
| | - Sheng Chen
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
7
|
Estrada SM, Thagard AS, Dehart MJ, Damicis JR, Dornisch EM, Ippolito DL, Burd I, Napolitano PG, Ieronimakis N. The orphan nuclear receptor Nr4a1 mediates perinatal neuroinflammation in a murine model of preterm labor. Cell Death Dis 2020; 11:11. [PMID: 31907354 PMCID: PMC6944691 DOI: 10.1038/s41419-019-2196-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 12/06/2019] [Accepted: 12/09/2019] [Indexed: 12/25/2022]
Abstract
Prematurity is associated with perinatal neuroinflammation and injury. Screening for genetic modulators in an LPS murine model of preterm birth revealed the upregulation of Nr4a1, an orphan nuclear transcription factor that is normally absent or limited in embryonic brains. Concurrently, Nr4a1 was downregulated with magnesium sulfate (MgSO4) and betamethasone (BMTZ) treatments administered to LPS exposed dams. To understand the role of Nr4a1 in perinatal brain injury, we compared the preterm neuroinflammatory response in Nr4a1 knockout (KO) versus wild type (wt) mice. Key inflammatory factors Il1b, Il6 and Tnf, and Iba1+ microglia were significantly lower in Nr4a1 KO versus wt brains exposed to LPS in utero. Treatment with MgSO4/BMTZ mitigated the neuroinflammatory process in wt but not Nr4a1 KO brains. These results correspond with a reduction in cerebral hemorrhage in wt but not mutant embryos from dams given MgSO4/BMTZ. Further analysis with Nr4a1-GFP-Cre × tdTomato loxP reporter mice revealed that the upregulation of Nr4a1 with perinatal neuroinflammation occurs in the cerebral vasculature. Altogether, this study implicates Nr4a1 in the developing vasculature as a potent mediator of neuroinflammatory brain injury that occurs with preterm birth. It is also possible that MgSO4/BMTZ mitigates this process by direct or indirect inhibition of Nr4a1.
Collapse
Affiliation(s)
- Sarah M Estrada
- Department of Obstetrics and Gynecology, Division of Maternal Fetal Medicine, Madigan Army Medical Center, Tacoma, WA, USA
| | - Andrew S Thagard
- Department of Obstetrics and Gynecology, Division of Maternal Fetal Medicine, Madigan Army Medical Center, Tacoma, WA, USA
| | - Mary J Dehart
- Department of Clinical Investigation, Madigan Army Medical Center, Tacoma, WA, USA
| | - Jennifer R Damicis
- Department of Clinical Investigation, Madigan Army Medical Center, Tacoma, WA, USA
| | - Elisabeth M Dornisch
- Department of Clinical Investigation, Madigan Army Medical Center, Tacoma, WA, USA
| | | | - Irina Burd
- Integrated Research Center for Fetal Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Peter G Napolitano
- Department of Obstetrics and Gynecology, University of Washington Medical Center, Seattle, WA, USA
| | - Nicholas Ieronimakis
- Department of Clinical Investigation, Madigan Army Medical Center, Tacoma, WA, USA.
| |
Collapse
|
8
|
Geraghty JR, Davis JL, Testai FD. Neuroinflammation and Microvascular Dysfunction After Experimental Subarachnoid Hemorrhage: Emerging Components of Early Brain Injury Related to Outcome. Neurocrit Care 2019; 31:373-389. [PMID: 31012056 PMCID: PMC6759381 DOI: 10.1007/s12028-019-00710-x] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Aneurysmal subarachnoid hemorrhage has a high mortality rate and, for those who survive this devastating injury, can lead to lifelong impairment. Clinical trials have demonstrated that cerebral vasospasm of larger extraparenchymal vessels is not the sole contributor to neurological outcome. Recently, the focus of intense investigation has turned to mechanisms of early brain injury that may play a larger role in outcome, including neuroinflammation and microvascular dysfunction. Extravasated blood after aneurysm rupture results in a robust inflammatory response characterized by activation of microglia, upregulation of cellular adhesion molecules, recruitment of peripheral immune cells, as well as impaired neurovascular coupling, disruption of the blood-brain barrier, and imbalances in endogenous vasodilators and vasoconstrictors. Each of these phenomena is either directly or indirectly associated with neuronal death and brain injury. Here, we review recent studies investigating these various mechanisms in experimental models of subarachnoid hemorrhage with special emphasis on neuroinflammation and its effect on microvascular dysfunction. We discuss the various therapeutic targets that have risen from these mechanistic studies and suggest the utility of a multi-targeted approach to preventing delayed injury and improving outcome after subarachnoid hemorrhage.
Collapse
Affiliation(s)
- Joseph R Geraghty
- Department of Neurology and Rehabilitation, College of Medicine, University of Illinois at Chicago, 912 S. Wood St. Suite 174N, Chicago, IL, 60612, USA.
- Medical Scientist Training Program, University of Illinois at Chicago, Chicago, IL, USA.
| | - Joseph L Davis
- Department of Neurology and Rehabilitation, College of Medicine, University of Illinois at Chicago, 912 S. Wood St. Suite 174N, Chicago, IL, 60612, USA
| | - Fernando D Testai
- Department of Neurology and Rehabilitation, College of Medicine, University of Illinois at Chicago, 912 S. Wood St. Suite 174N, Chicago, IL, 60612, USA
| |
Collapse
|
9
|
Lu G, Jia Z, Zu Q, Zhang J, Zhao L, Shi H. Inhibition of the cyclophilin A-CD147 interaction attenuates right ventricular injury and dysfunction after acute pulmonary embolism in rats. J Biol Chem 2018; 293:12199-12208. [PMID: 29914983 DOI: 10.1074/jbc.ra118.002845] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 05/30/2018] [Indexed: 12/11/2022] Open
Abstract
Acute pulmonary embolism (APE)-induced inflammation contributes to cardiomyocyte injury and dysfunction in the right ventricle (RV) of the heart. The interactions of cyclophilin A with its ligand extracellular matrix metalloproteinase inducer (EMMPRIN or CD147) may be involved in this inflammatory process. To this end, here we induced APE by intravenous injections of microspheres in Sprague-Dawley rats. We found that after the APE, cyclophilin A and CD147 levels increased synchronously in RV tissue following APE and peaked at 24 h. The cyclophilin A inhibitor cyclosporine A attenuated the APE-induced cyclophilin A levels, and a monoclonal antibody of CD147 (anti-CD147) abrogated the elevation of CD147 in the RV but not the increase of cyclophilin A. Importantly, treatment with cyclosporine A, anti-CD147, or both attenuated APE-induced increases in RV systolic pressure, plasma cardiac troponin-I (cTnI) concentrations, the RV/left ventricle diameter ratio, and the Tei index, measured by echocardiography 24 h after APE induction. These beneficial effects were associated with reduced RV neutrophil infiltration and prevention of matrix metalloproteinase 9 (MMP-9) and MMP-2 activation. These findings suggested that inhibiting the cyclophilin A-CD147 interaction attenuates APE-associated RV cardiomyocyte injury and dysfunction by suppressing inflammation. We further proposed that cyclophilin A and CD147 might participate in APE-induced pathological processes by partly activating the ERK1/2 kinase-nuclear factor-κB pathway. We conclude that the cyclophilin A-CD147 interaction may represent a potential therapeutic target for managing APE.
Collapse
Affiliation(s)
- Guangdong Lu
- Department of Interventional Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Zhenyu Jia
- Department of Interventional Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Qingquan Zu
- Department of Interventional Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Jinxing Zhang
- Department of Interventional Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Linbo Zhao
- Department of Interventional Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Haibin Shi
- Department of Interventional Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.
| |
Collapse
|
10
|
Chen ZR, Ma Y, Guo HH, Lu ZD, Jin QH. Therapeutic efficacy of cyclosporin A against spinal cord injury in rats with hyperglycemia. Mol Med Rep 2018; 17:4369-4375. [PMID: 29328412 PMCID: PMC5802210 DOI: 10.3892/mmr.2018.8422] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 07/24/2017] [Indexed: 01/20/2023] Open
Abstract
The present study aimed to explore the therapeutic effects of cyclosporin A (CsA) on spinal cord injury (SCI) in rats with hyperglycemia and to identify a novel potential method to treat SCI in the presence of hyperglycemia. Female Sprague‑Dawley (SD) rats were randomly allocated into four groups: Sham, SCI, SCI+hyperglycemia and SCI+hyperglycemia+CsA groups. Streptozotocin‑induced hyperglycemic SD rats and a weight‑drop contusion SCI model were established. The Basso, Beattie, Bresnahan scale and inclined plane test were used to evaluate the neurological function of the rats. Flow cytometric assay was performed to detect the apoptotic rates of cells in the spinal cord. ELISA and western blot analysis were performed to determine the levels of interleukin (IL)‑10, tumor necrosis factor (TNF)‑α, cyclophilin‑D (Cyp‑D) and apoptosis‑inducing factor (AIF). The results demonstrated that CsA significantly improved the neurological function of the SCI rats with hyperglycemia. CsA markedly reduced the number of apoptotic cells exaggerated by hyperglycemia in the spinal cord of the SCI rats. CsA significantly decreased the expression levels of IL‑10, TNF‑α, Cyp‑D and AIF in the spinal cord of the SCI rats. Overall, the present study revealed a significant role of CsA in the treatment of SCI in the presence of hyperglycemia by inhibiting the apoptosis of spinal cord cells.
Collapse
Affiliation(s)
- Zhi-Rong Chen
- Department of Orthopedics, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Yi Ma
- Department of Pathology and Physiology, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Hao-Hui Guo
- Department of Orthopedics, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Zhi-Dong Lu
- Department of Orthopedics, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Qun-Hua Jin
- Department of Orthopedics, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| |
Collapse
|
11
|
Pan P, Zhang X, Li Q, Zhao H, Qu J, Zhang JH, Liu X, Feng H, Chen Y. Cyclosporine A alleviated matrix metalloproteinase 9 associated blood-brain barrier disruption after subarachnoid hemorrhage in mice. Neurosci Lett 2017; 649:7-13. [PMID: 28373092 DOI: 10.1016/j.neulet.2017.03.050] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Revised: 03/29/2017] [Accepted: 03/30/2017] [Indexed: 11/29/2022]
Abstract
The aim of this study was to investigate whether Cyclosporine A (CsA) attenuates early brain injury by alleviating matrix metalloproteinase 9 (MMP-9) associated blood-brain barrier (BBB) disruption after subarachnoid hemorrhage (SAH). A standard intravascular perforation model was used to produce the experimental SAH in C57B6J mice. Dosages of 5mg/kg, 10mg/kg and 15mg/kg CsA were evaluated for effects on neurological score, brain water content, Evans blue extravasation and fluorescence, P-p65, MMP-9 and BBB components' alterations after SAH. We found that CsA 15mg/kg is effective in attenuating BBB disruption, lowering edema, and improving neurological outcomes. In addition, Collagen IV, ZO-1, Occludin and Claudin 5 expressions in ipsilateral/left hemisphere were downregulated after SAH, but increased after CsA treatment. Our results suggest that CsA exert a neuroprotective role in SAH pathophysiology, possibly by alleviating MMP-9 associated BBB disruption.
Collapse
Affiliation(s)
- Pengyu Pan
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Xuan Zhang
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Qiang Li
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Hengli Zhao
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Jie Qu
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - John H Zhang
- Neuroscience Research Center, Loma Linda University, Loma Linda, CA, USA
| | - Xin Liu
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Hua Feng
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, China.
| | - Yujie Chen
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, China.
| |
Collapse
|
12
|
Tian Y, Guo SX, Li JR, Du HG, Wang CH, Zhang JM, Wu Q. Topiramate attenuates early brain injury following subarachnoid haemorrhage in rats via duplex protection against inflammation and neuronal cell death. Brain Res 2015; 1622:174-85. [PMID: 26086367 DOI: 10.1016/j.brainres.2015.06.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 06/04/2015] [Accepted: 06/07/2015] [Indexed: 01/31/2023]
Abstract
Early brain injury (EBI) following aneurysmal subarachnoid haemorrhage (SAH) insults contributes to the poor prognosis and high mortality observed in SAH patients. Topiramate (TPM) is a novel, broad-spectrum, antiepileptic drug with a reported protective effect against several brain injuries. The current study aimed to investigate the potential of TPM for neuroprotection against EBI after SAH and the possible dose-dependency of this effect. An endovascular perforation SAH model was established in rats, and TPM was administered by intraperitoneal injection after surgery at three different doses (20mg/kg, 40mg/kg, and 80mg/kg). The animals' neurological scores and brain water content were evaluated, and ELISA, Western blotting and immunostaining assays were conducted to assess the effect of TPM. The results revealed that TPM lowers the elevated levels of myeloperoxidase and proinflammatory mediators observed after SAH in a dose-related fashion, and the nuclear factor-kappa B (NF-κB) signalling pathway is the target of neuroinflammation regulation. In addition, TPM ameliorated SAH-induced cortical neuronal apoptosis by influencing Bax, Bcl-2 and cleaved caspase-3 protein expression, and the effect of TPM was enhanced in a dose-dependent manner. Various dosages of TPM also upregulated the protein expression of the γ-aminobutyric acid (GABA)-ergic signalling molecules, GABAA receptor (GABAAR) α1, GABAAR γ2, and K(+)-Cl(-) co-transporter 2 (KCC2) together and downregulated Na(+)-K(+)-Cl(-) co-transporter 1 (NKCC1) expression. Thus, TPM may be an effective neuroprotectant in EBI after SAH by regulating neuroinflammation and neuronal cell death.
Collapse
Affiliation(s)
- Yong Tian
- Department of Neurosurgery, Second Affiliated Hospital, Zhejiang Chinese Medical University, 318 Chaowang Road, Hangzhou 310005, Zhejiang, China; Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, Zhejiang, China
| | - Song-Xue Guo
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, Zhejiang, China; Department of Burns, Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, Zhejiang, China
| | - Jian-Ru Li
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, Zhejiang, China
| | - Hang-Gen Du
- Department of Neurosurgery, Second Affiliated Hospital, Zhejiang Chinese Medical University, 318 Chaowang Road, Hangzhou 310005, Zhejiang, China
| | - Chao-Hui Wang
- Department of Neurosurgery, Ruian People's Hospital, 108 Wansong Road, Ruian 325200, Zhejiang, China
| | - Jian-Min Zhang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, Zhejiang, China
| | - Qun Wu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, Zhejiang, China.
| |
Collapse
|
13
|
Yan H, Hao S, Sun X, Zhang D, Gao X, Yu Z, Li K, Hang CH. Blockage of mitochondrial calcium uniporter prevents iron accumulation in a model of experimental subarachnoid hemorrhage. Biochem Biophys Res Commun 2014; 456:835-40. [PMID: 25529443 DOI: 10.1016/j.bbrc.2014.12.073] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 12/14/2014] [Indexed: 12/13/2022]
Abstract
Previous studies have shown that iron accumulation is involved in the pathogenesis of brain injury following subarachnoid hemorrhage (SAH) and chelation of iron reduced mortality and oxidative DNA damage. We previously reported that blockage of mitochondrial calcium uniporter (MCU) provided benefit in the early brain injury after experimental SAH. This study was undertaken to identify whether blockage of MCU could ameliorate iron accumulation-associated brain injury following SAH. Therefore, we used two reagents ruthenium red (RR) and spermine (Sper) to inhibit MCU. Sprague-Dawley (SD) rats were randomly divided into four groups including sham, SAH, SAH+RR, and SAH+Sper. Biochemical analysis and histological assays were performed. The results confirmed the iron accumulation in temporal lobe after SAH. Interestingly, blockage of MCU dramatically reduced the iron accumulation in this area. The mechanism was revealed that inhibition of MCU reversed the down-regulation of iron regulatory protein (IRP) 1/2 and increase of ferritin. Iron-sulfur cluster dependent-aconitase activity was partially conserved when MCU was blocked. In consistence with this and previous report, ROS levels were notably reduced and ATP supply was rescued; levels of cleaved caspase-3 dropped; and integrity of neurons in temporal lobe was protected. Taken together, our results indicated that blockage of MCU could alleviate iron accumulation and the associated injury following SAH. These findings suggest that the alteration of calcium and iron homeostasis be coupled and MCU be considered to be a therapeutic target for patients suffering from SAH.
Collapse
Affiliation(s)
- Huiying Yan
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, 305 East Zhongshan Road, Nanjing 210002, Jiangsu Province, China
| | - Shuangying Hao
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, 22 Hankou Road, Nanjing 210093, Jiangsu Province, China
| | - Xiaoyan Sun
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, 22 Hankou Road, Nanjing 210093, Jiangsu Province, China
| | - Dingding Zhang
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, 305 East Zhongshan Road, Nanjing 210002, Jiangsu Province, China
| | - Xin Gao
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, 305 East Zhongshan Road, Nanjing 210002, Jiangsu Province, China
| | - Zhuang Yu
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, 305 East Zhongshan Road, Nanjing 210002, Jiangsu Province, China
| | - Kuanyu Li
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, 22 Hankou Road, Nanjing 210093, Jiangsu Province, China.
| | - Chun-Hua Hang
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, 305 East Zhongshan Road, Nanjing 210002, Jiangsu Province, China.
| |
Collapse
|
14
|
Yan H, Zhang D, Hao S, Li K, Hang CH. Role of Mitochondrial Calcium Uniporter in Early Brain Injury After Experimental Subarachnoid Hemorrhage. Mol Neurobiol 2014; 52:1637-1647. [DOI: 10.1007/s12035-014-8942-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 10/16/2014] [Indexed: 11/24/2022]
|
15
|
Hao XK, Wu W, Wang CX, Xie GB, Li T, Wu HM, Huang LT, Zhou ML, Hang CH, Shi JX. Ghrelin alleviates early brain injury after subarachnoid hemorrhage via the PI3K/Akt signaling pathway. Brain Res 2014; 1587:15-22. [PMID: 25199591 DOI: 10.1016/j.brainres.2014.08.069] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 08/25/2014] [Accepted: 08/29/2014] [Indexed: 12/25/2022]
Abstract
Early brain injury (EBI) plays a key role in the pathogenesis of subarachnoid hemorrhage (SAH). Although the neuroprotective effects of ghrelin have been demonstrated in several studies, whether ghrelin reduces EBI after SAH remains unknown. In this study, we hypothesized that treatment with ghrelin would attenuate EBI after SAH, and that this protection would be mediated, at least in part, by activation of the PI3K/Akt signaling pathway. Adult male Sprague-Dawley rats (n=100) were randomly divided into the following groups: control group (n=20), SAH group (n=20), SAH+vehicle group (n=20), SAH+ghrelin group (n=20) and SAH+ghrelin+LY294002 group (n=20). The rats were injected with autologous blood (0.3mL) into the prechiasmatic cistern to induce SAH. Ghrelin (80μg/kg, IP), or an equal volume of vehicle, was administered immediately after surgery. The PI3K inhibitor, LY294002, was applied to manipulate the proposed pathway. Mortality, neurological scores, brain edema, cell apoptosis, and the expression of p-Akt, and cleaved caspase-3 proteins were assayed after 24h SAH. Ghrelin significantly improved neurological function and reduced neuronal apoptosis and brain edema at 24h after SAH. The level of p-Akt, expressed mainly in neurons, was markedly up-regulated. Additionally, the level of cleaved caspase-3 was decreased by ghrelin treatment. The beneficial effects of ghrelin in SAH rats were partially suppressed by LY294002. These results demonstrate that ghrelin may reduce EBI after SAH, via a mechanism involving the PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Xiao-Ke Hao
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Second Military Medical University, Shanghai, China
| | - Wei Wu
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Second Military Medical University, Shanghai, China; Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| | - Chun-Xi Wang
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| | - Guang-Bin Xie
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| | - Tao Li
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| | - He-Ming Wu
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Second Military Medical University, Shanghai, China
| | - Li-Tian Huang
- Department of Neurosurgery, School of Medicine, Southern Medical University (Guangzhou), Jinling Hospital, Nanjing, Jiangsu Province, China
| | - Meng-Liang Zhou
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| | - Chun-Hua Hang
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Second Military Medical University, Shanghai, China; Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| | - Ji-Xin Shi
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Second Military Medical University, Shanghai, China; Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| |
Collapse
|