1
|
Xiao L, Wang M, Shi Y, Huang X, Zhang W, Wu Y, Deng H, Xiong B, Pan W, Zhang J, Wang W. Neuroinflammation-mediated white matter injury in Parkinson's disease and potential therapeutic strategies targeting NLRP3 inflammasome. Int Immunopharmacol 2024; 143:113483. [PMID: 39488915 DOI: 10.1016/j.intimp.2024.113483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 10/15/2024] [Accepted: 10/21/2024] [Indexed: 11/05/2024]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease in the world, severely affecting the quality of life of patients. Recent studies have shown that white matter (WM) plays a vital role in higher neurological functions such as behavior and cognition. In PD patients, neurodegeneration occurs not only in neuronal soma, but also in WM fiber bundles, which are composed of neural axons. The clinical symptoms of PD patients are related not only to the degeneration of neuronal soma, but also to the degeneration of WM. Most previous studies have focused on neuronal soma in substantia nigra (SN), while WM injury (WMI) in PD has been less studied. Moreover, most previous studies have focused on intracerebral lesions in PD, while less attention has been paid to the spinal cord distal to the brain. The above-mentioned factors may be one of the reasons for the poor treatment of previous drug outcomes. Neuroinflammation has been shown to exert a significant effect on the pathological process of brain and spinal cord neurodegeneration in PD. The NOD-like receptor family, pyrin domain-containing 3 (NLRP3) inflammasome has been shown to activate and mediate neuroinflammation and exacerbate neurodegeneration in PD. NLRP3 inflammasome inhibition may be a potential strategy for the treatment of WMI in PD. This review summarizes recent advances and future directions regarding neuroinflammation-mediated WMI in PD and potential therapeutic strategies for targeting NLRP3 inflammasome in the brain and spinal cord, providing new insights for researchers to develop more effective therapeutic approaches for PD patients.
Collapse
Affiliation(s)
- Linglong Xiao
- Department of Neurosurgery, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu 610041, Sichuan Province, China
| | - Mengqi Wang
- Department of Neurosurgery, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu 610041, Sichuan Province, China
| | - Yifeng Shi
- Department of Neurosurgery, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming 650032, China
| | - Xinyuejia Huang
- Department of Neurosurgery, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu 610041, Sichuan Province, China
| | - Wei Zhang
- Department of Neurosurgery, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu 610041, Sichuan Province, China
| | - Yang Wu
- Department of Neurosurgery, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu 610041, Sichuan Province, China
| | - Hao Deng
- Department of Neurosurgery, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu 610041, Sichuan Province, China
| | - Botao Xiong
- Department of Neurosurgery, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu 610041, Sichuan Province, China
| | - Wei Pan
- Department of Neurosurgery, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu 610041, Sichuan Province, China
| | - Jie Zhang
- Core Facility of West China Hospital, Sichuan University, Chengdu, China
| | - Wei Wang
- Department of Neurosurgery, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu 610041, Sichuan Province, China.
| |
Collapse
|
2
|
Zhou H, Li F, Lin Z, Meng L, Chen D, Zhang Q, Niu L. Holographic Ultrasound Modulates Neural Activity in a 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine-Induced Mouse Model of Parkinson's Disease. RESEARCH (WASHINGTON, D.C.) 2024; 7:0516. [PMID: 39507404 PMCID: PMC11538569 DOI: 10.34133/research.0516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 10/08/2024] [Accepted: 10/08/2024] [Indexed: 11/08/2024]
Abstract
Ultrasound (US) has emerged as a noninvasive neurostimulation method for motor control in Parkinson's disease (PD). Previous in vivo US neuromodulation studies for PD were single-target stimulation. However, the motor symptoms of PD are linked with neural circuit dysfunction, and multi-target stimulation is conducted in clinical treatment for PD. Thus, in the present study, we achieved multi-target US stimulation using holographic lens transducer based on the Rayleigh-Sommerfeld diffraction integral and time-reversal methods. We demonstrated that holographic US stimulation of the bilateral dorsal striatum (DS) could improve the motor function in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced mouse model of PD. The holographic US wave (fundamental frequency: 3 MHz, pulse repetition frequency: 500 Hz, duty cycle: 20%, tone-burst duration: 0.4 ms, sonication duration: 1 s, interstimulus interval: 4 s, spatial-peak temporal-average intensity: 180 mw/cm2) was delivered to the bilateral DS 20 min per day for consecutive 10 d after the last injection of MPTP. Immunohistochemical c-Fos staining demonstrated that holographic US significantly increased the c-Fos-positive neurons in the bilateral DS compared with the sham group (P = 0.003). Moreover, our results suggested that holographic US stimulation of the bilateral DS ameliorated motor dysfunction (P < 0.05) and protected the dopaminergic (DA) neurons (P < 0.001). The neuroprotective effect of holographic US was associated with the prevention of axon degeneration and the reinforcement of postsynaptic densities [growth associated protein-43 (P < 0.001), phosphorylated Akt (P = 0.001), β3-tubulin (P < 0.001), phosphorylated CRMP2 (P = 0.037), postsynaptic density (P = 0.023)]. These data suggested that holographic US-induced acoustic radiation force has the potential to achieve multi-target neuromodulation and could serve as a reliable tool for the treatment of PD.
Collapse
Affiliation(s)
- Hui Zhou
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology,
Chinese Academy of Sciences, Shenzhen, China.
- Tech X Academy,
Shenzhen Polytechnic University, Shenzhen, China
| | - Fei Li
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology,
Chinese Academy of Sciences, Shenzhen, China.
| | - Zhengrong Lin
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology,
Chinese Academy of Sciences, Shenzhen, China.
| | - Long Meng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology,
Chinese Academy of Sciences, Shenzhen, China.
| | - Dan Chen
- Institute of Ultrasonic Technology, Institute of Intelligent Manufacturing Technology,
Shenzhen Polytechnic University, Shenzhen, China
| | - Qingping Zhang
- School of Electronic and Communication Engineering,
Shenzhen Polytechnic University, Shenzhen, China
| | - Lili Niu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology,
Chinese Academy of Sciences, Shenzhen, China.
| |
Collapse
|
3
|
Lu Y, Bu FQ, Wang F, Liu L, Zhang S, Wang G, Hu XY. Recent advances on the molecular mechanisms of exercise-induced improvements of cognitive dysfunction. Transl Neurodegener 2023; 12:9. [PMID: 36850004 PMCID: PMC9972637 DOI: 10.1186/s40035-023-00341-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 02/09/2023] [Indexed: 03/01/2023] Open
Abstract
Physical exercise is of great significance for maintaining human health. Exercise can provide varying degrees of benefits to cognitive function at all stages of life cycle. Currently, with the aging of the world's population and increase of life expectancy, cognitive dysfunction has gradually become a disease of high incidence, which is accompanied by neurodegenerative diseases in elderly individuals. Patients often exhibit memory loss, aphasia and weakening of orientation once diagnosed, and are unable to have a normal life. Cognitive dysfunction largely affects the physical and mental health, reduces the quality of life, and causes a great economic burden to the society. At present, most of the interventions are aimed to maintain the current cognitive level and delay deterioration of cognition. In contrast, exercise as a nonpharmacological therapy has great advantages in its nontoxicity, low cost and universal application. The molecular mechanisms underlying the effect of exercise on cognition are complex, and studies have been extensively centered on neural plasticity, the direct target of exercise in the brain. In addition, mitochondrial stability and energy metabolism are essential for brain status. Meanwhile, the organ-brain axis responds to exercise and induces release of cytokines related to cognition. In this review, we summarize the latest evidence on the molecular mechanisms underlying the effects of exercise on cognition, and point out directions for future research.
Collapse
Affiliation(s)
- Yi Lu
- grid.13291.380000 0001 0807 1581West China School of Nursing, Sichuan University/Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Fa-Qian Bu
- grid.13291.380000 0001 0807 1581West China School of Nursing, Sichuan University/Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Fang Wang
- grid.13291.380000 0001 0807 1581West China School of Nursing, Sichuan University/Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Li Liu
- grid.13291.380000 0001 0807 1581West China School of Nursing, Sichuan University/Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Shuai Zhang
- grid.13291.380000 0001 0807 1581West China School of Nursing, Sichuan University/Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Guan Wang
- West China School of Nursing, Sichuan University/Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Xiu-Ying Hu
- West China School of Nursing, Sichuan University/Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
4
|
Ding H, Ouyang M, Wang J, Xie M, Huang Y, Yuan F, Jia Y, Zhang X, Liu N, Zhang N. Shared genetics between classes of obesity and psychiatric disorders: A large-scale genome-wide cross-trait analysis. J Psychosom Res 2022; 162:111032. [PMID: 36137488 DOI: 10.1016/j.jpsychores.2022.111032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/16/2022] [Accepted: 08/31/2022] [Indexed: 10/31/2022]
Abstract
AIMS Epidemiological studies demonstrate an association between classes of obesity and psychiatric disorders, although little is known about shared genetics and causality of association. Thus, we aimed to investigate shared genetics and causal link between different classes of obesity and psychiatric disorders. METHODS We used genome-wide association study (GWAS) summary data range from 9725 to 500,199 sample sizes of European descent, conducted a large-scale genome-wide cross-trait association study to investigate genetic overlap between the classes of obesity and anorexia nervosa, attention-deficit/hyperactivity disorder, autism spectrum disorder, bipolar disorder, major depressive disorder, obsessive-compulsive disorder, schizophrenia, anxiety disorders and Tourette syndrome. We conducted transcriptome-wide association study analysis (TWAS) to identified variants regulated gene expression in those related disorders. Finally, pathway enrichment analysis to identified major pathways. RESULTS In the combined analysis, we replicated 211 previously reported loci and discovered 58 novel independent loci that were associated with all three classes of obesity and related psychiatric disorders. Functional analysis revealed that the identified variants regulated gene expression in major tissues belonging to exocrine/endocrine, digestive, circulatory, adipose, digestive, respiratory, and nervous systems, such as DCC, NEGR1, INO80E. Mendelian randomization analyses suggested that there may be a two-way or one-way causal relationship between obesity and psychiatric disorders. CONCLUSION This large-scale genome-wide cross-trait analysis identified shared genetics and potential causal links between classes of obesity and psychiatric disorders (attention deficit hyperactivity disorder, autism spectrum disorder, anorexia nervosa, major depressive disorder, schizophrenia, and obsessive-compulsive disorder). Such shared genetics suggests potential new biological functions in common among them.
Collapse
Affiliation(s)
- Hui Ding
- The Affiliated Nanjing Brain Hospital of Nanjing Medical Univesity, 264 Guangzhou Road, Nanjing, Jiangsu 210029, China
| | - Mengyuan Ouyang
- The Affiliated Nanjing Brain Hospital of Nanjing Medical Univesity, 264 Guangzhou Road, Nanjing, Jiangsu 210029, China
| | - Jinyi Wang
- The Affiliated Nanjing Brain Hospital of Nanjing Medical Univesity, 264 Guangzhou Road, Nanjing, Jiangsu 210029, China
| | - Minyao Xie
- The Affiliated Nanjing Brain Hospital of Nanjing Medical Univesity, 264 Guangzhou Road, Nanjing, Jiangsu 210029, China
| | - Yanyuan Huang
- The Affiliated Nanjing Brain Hospital of Nanjing Medical Univesity, 264 Guangzhou Road, Nanjing, Jiangsu 210029, China
| | - Fangzheng Yuan
- School of Psychology, Nanjing Normal University, Nanjing 210023, China
| | - Yunhan Jia
- School of Psychology, Nanjing Normal University, Nanjing 210023, China
| | - Xuedi Zhang
- The Affiliated Nanjing Brain Hospital of Nanjing Medical Univesity, 264 Guangzhou Road, Nanjing, Jiangsu 210029, China
| | - Na Liu
- The Affiliated Nanjing Brain Hospital of Nanjing Medical Univesity, 264 Guangzhou Road, Nanjing, Jiangsu 210029, China.
| | - Ning Zhang
- The Affiliated Nanjing Brain Hospital of Nanjing Medical Univesity, 264 Guangzhou Road, Nanjing, Jiangsu 210029, China.
| |
Collapse
|
5
|
Brief Maternal Separation Promotes Resilience to Anxiety-like and Depressive-like Behaviors in Female C57BL/6J Offspring with Imiquimod-Induced Psoriasis. Brain Sci 2022; 12:brainsci12091250. [PMID: 36138986 PMCID: PMC9497052 DOI: 10.3390/brainsci12091250] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/05/2022] [Accepted: 09/09/2022] [Indexed: 11/18/2022] Open
Abstract
Background: Psoriasis is a common chronic inflammatory skin disease that often causes depression. Early life experience affects brain development and relates to depression. Whether the effect of different MS protocols in early life on anxiety-like and depressive-like behaviors in female offspring with imiquimod (IMQ)-induced psoriasis is unknown. Methods: C57BL/6J mice were subjected to no separation (NMS), brief MS (15 min/day, MS15) or long MS (180 min/day, MS180) from postpartum days (PPD) 1 to PPD21. Then, 5% imiquimod cream was applied for 8 days in adults. Behavioral tests, skin lesions and hippocampal protein expression were also assessed. Results: We found significant psoriasis-like skin lesions in female mice following IMQ application, and mice showed anxiety-like and depressive-like behaviors. Further, increased microglial activation and decreased expression of neuroplasticity were detected in mice following IMQ application. However, after MS15 in early life, mice showed decreased anxiety-like and depressive-like behaviors, indicating resilience. Further, inhibited hippocampal neuroinflammation and increased neuroplasticity were detected. Conclusions: Collectively, this study confirms that brief MS confers resilience to the behavior deficits in female offspring with IMQ-induced psoriasis and reverses the activation of neuroinflammation and the damage of neuroplasticity injury.
Collapse
|
6
|
Zhao J, Zhang W, Wu T, Wang H, Mao J, Liu J, Zhou Z, Lin X, Yan H, Wang Q. Efferocytosis in the Central Nervous System. Front Cell Dev Biol 2021; 9:773344. [PMID: 34926460 PMCID: PMC8678611 DOI: 10.3389/fcell.2021.773344] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 10/25/2021] [Indexed: 11/23/2022] Open
Abstract
The effective clearance of apoptotic cells is essential for maintaining central nervous system (CNS) homeostasis and restoring homeostasis after injury. In most cases of physiological apoptotic cell death, efferocytosis prevents inflammation and other pathological conditions. When apoptotic cells are not effectively cleared, destruction of the integrity of the apoptotic cell membrane integrity, leakage of intracellular contents, and secondary necrosis may occur. Efferocytosis is the mechanism by which efferocytes quickly remove apoptotic cells from tissues before they undergo secondary necrosis. Cells with efferocytosis functions, mainly microglia, help to eliminate apoptotic cells from the CNS. Here, we discuss the impacts of efferocytosis on homeostasis, the mechanism of efferocytosis, the associations of efferocytosis failure and CNS diseases, and the current clinical applications of efferocytosis. We also identify efferocytosis as a novel potential target for exploring the causes and treatments of CNS diseases.
Collapse
Affiliation(s)
- Jiayi Zhao
- Department of Anesthesia, Zhejiang Hospital, Hangzhou, China
| | - Weiqi Zhang
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Tingting Wu
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Hongyi Wang
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Jialiang Mao
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Jian Liu
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Ziheng Zhou
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Xianfeng Lin
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Huige Yan
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qingqing Wang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
7
|
Zhang H, Cai X, Xiang C, Han Y, Niu Q. miR-29a and the PTEN-GSK3β axis are involved in aluminum-induced damage to primary hippocampal neuronal networks. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 224:112701. [PMID: 34461321 DOI: 10.1016/j.ecoenv.2021.112701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/17/2021] [Accepted: 08/23/2021] [Indexed: 06/13/2023]
Abstract
We previously reported that aluminum (Al) can cause a range of neurotoxic injuries including progressive irreversible synaptic structural damage and synaptic dysfunction, and eventually neuronal deaths. Mechanism of Al-induced electrophysiological and neuronal connectivity changes in neurons may indicate damage to the neuronal network. Here, mouse primary hippocampal neurons were cultured on micro-electrode array (MEA)- and high-content analysis (HCA)-related plates, showing that Al exposure significantly inhibited hippocampal neuronal electrical spike activity and neurite outgrowth characterized by a reduction in neurite branching and a decrease in the average total neurite length in relation to both Al dose and time of incubation. In recent years, miR-29a/ phosphatase and tensin homolog (PTEN) have been found to play pivotal roles in the morphogenesis of neurons, it has been confirmed in vitro and in vivo that the PTEN-Glycogen synthase kinase-3β (GSK-3β) axis regulates neurite outgrowth. The present study demonstrated that increases in Al exposure and dose gradually reduce miR-29a expression. Up-regulation of miR-29a in the hippocampal neurons by lentivirus transfection reversed the decrease in electrical spike activity and the reduction in both neurite branching and length induced by Al. Moreover, miR-29a suppressed the expression of PTEN and increased the level of phosphorylated Protein Kinase B (p-AKT) and p-GSK-3β which were inhibited by the Al treatment. This suggests that miR-29a is critically involved in the functional and structural neuronal damage induced by Al and is a potential target for Al neurotoxicity. Moreover, the reduction of neurite length and branching induced by Al exposure was regulated by miR-29a and its target neuronal PTEN-GSK3β signaling pathway, which also represents a possible mechanism of Al-induced the inhibition of the electrical activity. Collectively, Al-induced damage to the neuronal network occurred through miR-29a-mediated alterations of the PTEN-GSK3β signaling pathway.
Collapse
Affiliation(s)
- Huifang Zhang
- Department of Occupational Health, School of Public Health, Shanxi Medical University, China; Key Lab of Environmental Hazard and Health of Shanxi Province, Shanxi Medical University, China.
| | - Xiaoya Cai
- Department of Occupational Health, School of Public Health, Shanxi Medical University, China; Key Lab of Environmental Hazard and Health of Shanxi Province, Shanxi Medical University, China
| | - Changxin Xiang
- Department of Occupational Health, School of Public Health, Shanxi Medical University, China; Key Lab of Environmental Hazard and Health of Shanxi Province, Shanxi Medical University, China
| | - Yingchao Han
- Department of Occupational Health, School of Public Health, Shanxi Medical University, China; Key Lab of Environmental Hazard and Health of Shanxi Province, Shanxi Medical University, China
| | - Qiao Niu
- Department of Occupational Health, School of Public Health, Shanxi Medical University, China; Key Lab of Environmental Hazard and Health of Shanxi Province, Shanxi Medical University, China.
| |
Collapse
|
8
|
Shao L, Jiang GT, Yang XL, Zeng ML, Cheng JJ, Kong S, Dong X, Chen TX, Han S, Yin J, Liu WH, He XH, He C, Peng BW. Silencing of circIgf1r plays a protective role in neuronal injury via regulating astrocyte polarization during epilepsy. FASEB J 2021; 35:e21330. [PMID: 33417289 DOI: 10.1096/fj.202001737rr] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 12/02/2020] [Accepted: 12/14/2020] [Indexed: 01/09/2023]
Abstract
Epilepsy is a common brain disorder, repeated seizures of epilepsy may lead to a series of brain pathological changes such as neuronal or glial damage. However, whether circular RNAs are involved in neuronal injury during epilepsy is not fully understood. Here, we screened circIgf1r in the status epilepticus model through circRNA sequencing, and found that it was upregulated after the status epilepticus model through QPCR analysis. Astrocytes polarizing toward neurotoxic A1 phenotype and neurons loss were observed after status epilepticus. Through injecting circIgf1r siRNA into the lateral ventricle, it was found that knocking down circIgf1r in vivo would induce the polarization of astrocytes to phenotype A2 and reduce neuronal loss. The results in vitro further confirmed that inhibiting the expression of circIgf1r in astrocytes could protect neurons by converting reactive astrocytes from A1 to the protective A2. In addition, knocking down circIgf1r in astrocytes could functionally promote astrocyte autophagy and relieve the destruction of 4-AP-induced autophagy flux. In terms of mechanism, circIgf1r promoted the polarization of astrocytes to phenotype A1 by inhibiting autophagy. Taken together, our results reveal circIgf1r may serve as a potential target for the prevention and treatment of neuron damage after epilepsy.
Collapse
Affiliation(s)
- Lin Shao
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Guang-Tong Jiang
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Xing-Liang Yang
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Meng-Liu Zeng
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Jing-Jing Cheng
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Shuo Kong
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Xin Dong
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Tao-Xiang Chen
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Song Han
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Jun Yin
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Wan-Hong Liu
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Xiao-Hua He
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Chunjiang He
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Wuhan, China.,College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, China
| | - Bi-Wen Peng
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
9
|
Dysregulated CRMP Mediates Circadian Deficits in a Drosophila Model of Fragile X Syndrome. Neurosci Bull 2021; 37:973-984. [PMID: 33856646 DOI: 10.1007/s12264-021-00682-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 11/09/2020] [Indexed: 10/21/2022] Open
Abstract
Fragile X syndrome (FXS) is the leading inherited cause of intellectual disability, resulting from the lack of functional fragile X mental retardation protein (FMRP), an mRNA binding protein mainly serving as a translational regulator. Loss of FMRP leads to dysregulation of target mRNAs. The Drosophila model of FXS show an abnormal circadian rhythm with disruption of the output pathway downstream of the clock network. Yet the FMRP targets involved in circadian regulation have not been identified. Here, we identified collapsing response mediator protein (CRMP) mRNA as a target of FMRP. Knockdown of pan-neuronal CRMP expression ameliorated the circadian defects and abnormal axonal structures of clock neurons (ventral lateral neurons) in dfmr1 mutant flies. Furthermore, specific reduction of CRMP in the downstream output insulin-producing cells attenuated the aberrant circadian behaviors. Molecular analyses revealed that FMRP binds with CRMP mRNA and negatively regulates its translation. Our results indicate that CRMP is an FMRP target and establish an essential role for CRMP in the circadian output in FXS Drosophila.
Collapse
|
10
|
Mechanisms and Therapeutic Implications of GSK-3 in Treating Neurodegeneration. Cells 2021; 10:cells10020262. [PMID: 33572709 PMCID: PMC7911291 DOI: 10.3390/cells10020262] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/23/2021] [Accepted: 01/26/2021] [Indexed: 12/11/2022] Open
Abstract
Neurodegenerative disorders are spreading worldwide and are one of the greatest threats to public health. There is currently no adequate therapy for these disorders, and therefore there is an urgent need to accelerate the discovery and development of effective treatments. Although neurodegenerative disorders are broad ranging and highly complex, they may share overlapping mechanisms, and thus potentially manifest common targets for therapeutic interventions. Glycogen synthase kinase-3 (GSK-3) is now acknowledged to be a central player in regulating mood behavior, cognitive functions, and neuron viability. Indeed, many targets controlled by GSK-3 are critically involved in progressing neuron deterioration and disease pathogenesis. In this review, we focus on three pathways that represent prominent mechanisms linking GSK-3 with neurodegenerative disorders: cytoskeleton organization, the mammalian target of rapamycin (mTOR)/autophagy axis, and mitochondria. We also consider the challenges and opportunities in the development of GSK-3 inhibitors for treating neurodegeneration.
Collapse
|
11
|
Cheng J, Duan Y, Zhang F, Shi J, Li H, Wang F, Li H. The Role of lncRNA TUG1 in the Parkinson Disease and Its Effect on Microglial Inflammatory Response. Neuromolecular Med 2020; 23:327-334. [PMID: 33085068 DOI: 10.1007/s12017-020-08626-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 10/12/2020] [Indexed: 10/23/2022]
Abstract
Parkinson's disease (PD) is a common neurodegenerative disease in the middle-aged and elderly populations. The purpose of this study was to investigate the clinical value of lncRNA TUG1 in PD and its effect on the microglial inflammatory response. A total of 181 subjects were recruited for the study, including 97 patients with PD (male/female 50/47) and 84 healthy individuals (male/female 41/43). There was no significant difference for gender and age distribution between the groups. The expression of serum TUG1 was determined by qRT-PCR. The receiver operating curve (ROC) was applied for diagnostic value analysis. CCK-8 was used to detect the effect of TUG1 on the proliferation of BV2 cells. The motor coordination ability of mice was tested by the rotarod and pole tests. ELISA was used to detect serum pro-inflammatory factors. TUG1 was highly expressed in the serum of PD patients. Serum TUG1 can distinguish PD patients to form healthy controls with the AUC of 0.902. Serum TUG1 was positively correlated with the levels of UPDRS, IL-6, IL-1β, and TNF-α in PD patients. Cell experiment results showed that the downregulation of TUG1 significantly inhibited cell proliferation and the release of TNF-α, IL-6, and IL-1β. Besides, animal experiments suggested that the downregulation of TUG1 significantly improved the motor coordination ability of the PD mice and inhibited the expression of inflammatory factors. lncRNA TUG1 is a latent biomarker of PD patients. TUG1 downregulation may inhibit the inflammatory response in the progression of PD. These findings provide a possible target for the early diagnosis and therapeutic intervention of PD.
Collapse
Affiliation(s)
- Jiang Cheng
- Department of Neurology, General Hospital of Ningxia Medical University, Ningxia Key Laboratory of Cerebrocranial Diseases, Incubation Base of National Key Laboratory, NO.804 Shengli Street, Xingqing District, Yinchuan, 750004, Ningxia, China
| | - Yangyang Duan
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Fengting Zhang
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Jin Shi
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Hui Li
- Department of Computer Science, Jiangsu Ocean University, Lianyungang, 222000, Jiangsu, China
| | - Feng Wang
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Ningxia Key Laboratory of Cerebrocranial Diseases, Incubation Base of National Key Laboratory, NO.804 Shengli Street, Xingqing District, Yinchuan, 750004, Ningxia, China.
| | - Haining Li
- Department of Neurology, General Hospital of Ningxia Medical University, Ningxia Key Laboratory of Cerebrocranial Diseases, Incubation Base of National Key Laboratory, NO.804 Shengli Street, Xingqing District, Yinchuan, 750004, Ningxia, China.
| |
Collapse
|
12
|
Resilience in the LPS-induced acute depressive-like behaviors: Increase of CRMP2 neuroprotection and microtubule dynamics in hippocampus. Brain Res Bull 2020; 162:261-270. [DOI: 10.1016/j.brainresbull.2020.06.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/24/2020] [Accepted: 06/22/2020] [Indexed: 12/11/2022]
|
13
|
Nakamura F, Ohshima T, Goshima Y. Collapsin Response Mediator Proteins: Their Biological Functions and Pathophysiology in Neuronal Development and Regeneration. Front Cell Neurosci 2020; 14:188. [PMID: 32655376 PMCID: PMC7325199 DOI: 10.3389/fncel.2020.00188] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 05/29/2020] [Indexed: 12/19/2022] Open
Abstract
Collapsin response mediator proteins (CRMPs), which consist of five homologous cytosolic proteins, are one of the major phosphoproteins in the developing nervous system. The prominent feature of the CRMP family proteins is a new class of microtubule-associated proteins that play important roles in the whole process of developing the nervous system, such as axon guidance, synapse maturation, cell migration, and even in adult brain function. The CRMP C-terminal region is subjected to posttranslational modifications such as phosphorylation, which, in turn, regulates the interaction between the CRMPs and various kinds of proteins including receptors, ion channels, cytoskeletal proteins, and motor proteins. The gene-knockout of the CRMP family proteins produces different phenotypes, thereby showing distinct roles of all CRMP family proteins. Also, the phenotypic analysis of a non-phosphorylated form of CRMP2-knockin mouse model, and studies of pharmacological responses to CRMP-related drugs suggest that the phosphorylation/dephosphorylation process plays a pivotal role in pathophysiology in neuronal development, regeneration, and neurodegenerative disorders, thus showing CRMPs as promising target molecules for therapeutic intervention.
Collapse
Affiliation(s)
- Fumio Nakamura
- Department of Biochemistry, Tokyo Women's Medical University, Tokyo, Japan
| | - Toshio Ohshima
- Department of Life Science and Medical Bio-Science, Waseda University, Tokyo, Japan
| | - Yoshio Goshima
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| |
Collapse
|
14
|
Sackmann C, Hallbeck M. Oligomeric amyloid-β induces early and widespread changes to the proteome in human iPSC-derived neurons. Sci Rep 2020; 10:6538. [PMID: 32300132 PMCID: PMC7162932 DOI: 10.1038/s41598-020-63398-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 03/23/2020] [Indexed: 01/05/2023] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia globally and is characterized by aberrant accumulations of amyloid-beta (Aβ) and tau proteins. Oligomeric forms of these proteins are believed to be most relevant to disease progression, with oligomeric amyloid-β (oAβ) particularly implicated in AD. oAβ pathology spreads among interconnected brain regions, but how oAβ induces pathology in these previously unaffected neurons requires further study. Here, we use well characterized iPSC-derived human neurons to study the early changes to the proteome and phosphoproteome after 24 h exposure to oAβ 1-42. Using nLC-MS/MS and label-free quantification, we identified several proteins that are differentially regulated in response to acute oAβ challenge. At this early timepoint, oAβ induced the decrease of TDP-43, heterogeneous nuclear ribonucleoproteins (hnRNPs), and coatomer complex I (COPI) proteins. Conversely, increases were observed in 20 S proteasome subunits and vesicle associated proteins VAMP1/2, as well as the differential phosphorylation of tau at serine 208. These changes show that there are widespread alterations to the neuronal proteome within 24 h of oAβ uptake, including proteins previously not shown to be related to neurodegeneration. This study provides new targets for the further study of early mediators of AD pathogenesis.
Collapse
Affiliation(s)
- Christopher Sackmann
- Department of Clinical Pathology and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Martin Hallbeck
- Department of Clinical Pathology and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden.
| |
Collapse
|
15
|
Oxidative-Antioxidant Imbalance and Impaired Glucose Metabolism in Schizophrenia. Biomolecules 2020; 10:biom10030384. [PMID: 32121669 PMCID: PMC7175146 DOI: 10.3390/biom10030384] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/24/2020] [Accepted: 02/26/2020] [Indexed: 02/07/2023] Open
Abstract
Schizophrenia is a neurodevelopmental disorder featuring chronic, complex neuropsychiatric features. The etiology and pathogenesis of schizophrenia are not fully understood. Oxidative-antioxidant imbalance is a potential determinant of schizophrenia. Oxidative, nitrosative, or sulfuric damage to enzymes of glycolysis and tricarboxylic acid cycle, as well as calcium transport and ATP biosynthesis might cause impaired bioenergetics function in the brain. This could explain the initial symptoms, such as the first psychotic episode and mild cognitive impairment. Another concept of the etiopathogenesis of schizophrenia is associated with impaired glucose metabolism and insulin resistance with the activation of the mTOR mitochondrial pathway, which may contribute to impaired neuronal development. Consequently, cognitive processes requiring ATP are compromised and dysfunctions in synaptic transmission lead to neuronal death, preceding changes in key brain areas. This review summarizes the role and mutual interactions of oxidative damage and impaired glucose metabolism as key factors affecting metabolic complications in schizophrenia. These observations may be a premise for novel potential therapeutic targets that will delay not only the onset of first symptoms but also the progression of schizophrenia and its complications.
Collapse
|
16
|
Wu Z, Wang G, Wang H, Xiao L, Wei Y, Yang C. Fluoxetine exposure for more than 2 days decreases the neuronal plasticity mediated by CRMP2 in differentiated PC12 cells. Brain Res Bull 2020; 158:99-107. [PMID: 32070769 DOI: 10.1016/j.brainresbull.2020.02.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 01/22/2020] [Accepted: 02/13/2020] [Indexed: 12/28/2022]
Abstract
BACKGROUND Recent studies indicate that antidepressants treatment restores neuronal plasticity. In contrast, some researchers claim that serotonergic antidepressants, including fluoxetine (FLU), may exacerbate neuronal plasticity, which is contradictory and rarely studied. Since almost those studies exposed cells with drugs for 1-2 days as treatment models of antidepressants, it is possible that FLU exposure for longer periods would have opposite effects on neuronal plasticity. RESULTS In the present study, we examined the effects of FLU exposure (up to 3 days) on the neuronal plasticity in differentiated PC12 cells. The cell viability shown a slight decrease at day 2 (93.5 ± 3.5 %), followed by a highly significant decrease at day 3(71.4 ± 4.4 %). As previously reported, neuronal plasticity was significantly upregulated by FLU exposure at day 1. However, the neurite length, activity-regulated cytoskeleton-associated protein (Arc) and c-Fos mRNA were inhibited with FLU exposure at day 3. Similarly, the expression of tubulin, which play important roles in the neuronal plasticity, was the same result. Furthermore, we found α-tubulin interacted with collapsing response mediator protein 2(CRMP2), which is related to neuronal plasticity, and the regulation of CRMP2 activity influenced the neurite length, Arc, c-Fos and tubulin expression. CONCLUSIONS The results demonstrated that neuronal plasticity was increased by FLU exposure at day 1, but exposure with FLU for more than 2 days had opposite effect on it. The reduction in neuronal plasticity with FLU exposure for more than 2 days might be involved in some aspects of the therapeutic effect of antidepressant on depression.
Collapse
Affiliation(s)
- Zuotian Wu
- Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Road No.238, Wuhan, 430060, China.
| | - Gaohua Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Road No.238, Wuhan, 430060, China.
| | - Huiling Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Road No.238, Wuhan, 430060, China.
| | - Ling Xiao
- Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Road No.238, Wuhan, 430060, China.
| | - Yanyan Wei
- Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Road No.238, Wuhan, 430060, China.
| | - Can Yang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Road No.238, Wuhan, 430060, China.
| |
Collapse
|
17
|
Wen YT, Zhang JR, Kapupara K, Tsai RK. mTORC2 activation protects retinal ganglion cells via Akt signaling after autophagy induction in traumatic optic nerve injury. Exp Mol Med 2019; 51:1-11. [PMID: 31409770 PMCID: PMC6802655 DOI: 10.1038/s12276-019-0298-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 05/01/2019] [Accepted: 05/06/2019] [Indexed: 02/01/2023] Open
Abstract
Traumatic optic neuropathy is an injury to the optic nerve that leads to vision loss. Autophagy is vital for cell survival and cell death in central nervous system injury, but the role of autophagy in traumatic optic nerve injury remains uncertain. Optic nerve crush is a robust model of traumatic optic nerve injury. p62 siRNA and rapamycin are autophagy inducers and have different neuroprotective effects in the central nervous system. In this study, p62 and rapamycin induced autophagy, but only p62 siRNA treatment provided a favorable protective effect in visual function and retinal ganglion cell (RGC) survival. Moreover, the number of macrophages at the optic nerve lesion site was lower in the p62-siRNA-treated group than in the other groups. p62 siRNA induced more M2 macrophage polarization than rapamycin did. Rapamycin inhibited both mTORC1 and mTORC2 activation, whereas p62 siRNA inhibited only mTORC1 activation and maintained mTORC2 and Akt activation. Inhibition of mTORC2-induced Akt activation resulted in blood–optic nerve barrier disruption. Combined treatment with rapamycin and the mTORC2 activator SC79 improved RGC survival. Overall, our findings suggest that mTORC2 activation after autophagy induction is necessary for the neuroprotection of RGCs in traumatic optic nerve injury and may lead to new clinical applications. Regulating molecular signaling pathways that control the degradation of cellular components—a process known as autophagy—could offer a new approach to treating optic nerve damage after traumatic injuries. There is currently no established treatment option for traumatic optic nerve injury. Rong-Kung Tsai and colleagues at Tzu Chi University in Hualien, Taiwan, explored the role of a protein complex called mTORC2 in autophagy during the repair of optic nerves in rats. They investigated mTORC2 activation by small RNA molecules that also activate autophagy, and by drugs that activate autophagy but inhibit mTORC2. The results indicate that autophagy associated with activation of mTORC2 protects damaged retinal neurons and promotes visual recovery. In addition to treating optic nerve injuries, drugs activating mTORC2 and autophagy might help treat nerve-related diseases of the eye, including glaucoma.
Collapse
Affiliation(s)
- Yao-Tseng Wen
- Institute of Eye Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Jia-Rong Zhang
- Department of Ophthalmology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Kishan Kapupara
- Institute of Eye Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Rong-Kung Tsai
- Institute of Eye Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan. .,Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan.
| |
Collapse
|
18
|
Abstract
Many neuroprotective strategies have failed to translate to clinical trials, perhaps because of a failure to preserve white matter function. Ubiquitin C-terminal hydrolase L1 (UCHL1), a neuron-specific protein essential for axonal function, is deactivated by reactive lipids produced after cerebral ischemia. Mutation of the cysteine residue 152-reactive lipid-binding site of UCHL1 decreased axonal injury after hypoxia and ischemia in vitro and in vivo, preserved axonal conductance and synaptic function, and improved motor behavior after ischemia in mice. These results suggest that UCHL1 may play an important role in maintaining axonal function after cerebral ischemia. Restoration of UCHL1 activity or prevention of degradation of UCHL1 activity by preventing binding of substrates to cysteine residue 152 could be useful approaches for treatment of stroke. Ubiquitin C-terminal hydrolase L1 (UCHL1) is a unique brain-specific deubiquitinating enzyme. Mutations in and aberrant function of UCHL1 have been linked to many neurological disorders. UCHL1 activity protects neurons from hypoxic injury, and binding of stroke-induced reactive lipid species to the cysteine 152 (C152) of UCHL1 unfolds the protein and disrupts its function. To investigate the role of UCHL1 and its adduction by reactive lipids in inhibiting repair and recovery of function following ischemic injury, a knock-in (KI) mouse expressing the UCHL1 C152A mutation was generated. Neurons derived from KI mice had less cell death and neurite injury after hypoxia. UCHL1 C152A KI and WT mice underwent middle cerebral artery occlusion (MCAO) or sham surgery. White matter injury was significantly decreased in KI compared with WT mice 7 d after MCAO. Histological analysis revealed decreased tissue loss at 21 d after injury in KI mice. There was also significantly improved sensorimotor recovery in postischemic KI mice. K63- and K48-linked polyubiquitinated proteins were increased in penumbra of WT mouse brains but not in KI mouse brains at 24 h post MCAO. The UCHL1 C152A mutation preserved excitatory synaptic drive to pyramidal neurons and their excitability in the periinfarct zone; axonal conduction velocity recovered by 21 d post MCAO in KI mice in corpus callosum. These results demonstrate that UCHL1 activity is an important determinant of function after ischemia and further demonstrate that the C152 site of UCHL1 plays a significant role in functional recovery after stroke.
Collapse
|
19
|
Shan Y, Yang F, Tang Z, Bi C, Sun S, Zhang Y, Liu H. Dexmedetomidine Ameliorates the Neurotoxicity of Sevoflurane on the Immature Brain Through the BMP/SMAD Signaling Pathway. Front Neurosci 2018; 12:964. [PMID: 30618586 PMCID: PMC6304752 DOI: 10.3389/fnins.2018.00964] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 12/03/2018] [Indexed: 12/11/2022] Open
Abstract
Numerous studies have demonstrated that general anesthetics might damage the nervous system, thus, the effect of general anesthetics on the developing brain has attracted much attention. Dexmedetomidine (Dex) exhibits a certain neuroprotective effect, but the mechanism is obscure. In our study, pregnant rats on gestational day 20 (G20) were exposed to 3% sevoflurane for 2 h or 4 h, and the neuronal apoptosis in hippocampal CA1 region of the offspring rats was detected by quantification of TUNEL positive cells and cleaved-caspase3 (cl-caspase3). Different doses of Dex were intraperitoneally injected before sevoflurane anesthesia; then, the expression of apoptotic-related proteins including BCL-2, BAX and cl-caspase3 as well as amyloid precursor protein (APP, a marker of axonal injury), p-CRMP-2 and CRMP-2 were measured at postnatal days 0, 1and 3 (P0, P1, and P3, respectively). As an antagonist of the bone morphgenetic proteins (BMP) receptor, DMH1 was co-administered with sevoflurane plus Dex to investigate whether BMP/SMAD is associated with the neuroprotective effects of Dex. The results showed that prenatal sevoflurane anesthesia for 4 h activated apoptosis transiently, as manifested by the caspase3 activity peaked on P1 and disappeared on P3. In addition, the expressions of APP and p-CRMP-2/CRMP-2 in postnatal rat hippocampus were significantly increased, which revealed that prenatal sevoflurane anesthesia caused axonal injury of offspring. The long-term learning and memory ability of offspring rats was also impaired after prenatal sevoflurane anesthesia. These damaging effects of sevoflurane could be mitigated by Dex and DMH1 reversed the neuroprotective effect of Dex. Our results indicated that prenatal exposure to 3% sevoflurane for 4 h increased apoptosis and axonal injury, even caused long-term learning and memory dysfunction in the offspring rats. Dex dose-dependently reduced sevoflurane- anesthesia-induced the neurotoxicity by activating the BMP/SMAD signaling pathway.
Collapse
Affiliation(s)
- Yangyang Shan
- Department of Anesthesiology, Shengjing Hospital, China Medical University, Shenyang, China
| | - Fan Yang
- Department of Anesthesiology, Shengjing Hospital, China Medical University, Shenyang, China
| | - Zhiyin Tang
- Department of Anesthesiology, Shengjing Hospital, China Medical University, Shenyang, China
| | - Congjie Bi
- Department of Anesthesiology, Shengjing Hospital, China Medical University, Shenyang, China
| | - Shiwei Sun
- Department of Anesthesiology, Shengjing Hospital, China Medical University, Shenyang, China
| | - Yongfang Zhang
- Department of Anesthesiology, Shengjing Hospital, China Medical University, Shenyang, China
| | - Hongtao Liu
- Department of Anesthesiology, Shengjing Hospital, China Medical University, Shenyang, China
| |
Collapse
|
20
|
Chen X, Yuan R, Gao L, Huang C, Fan W, Ye J, Chen C. Induction of CRMP-2 phosphorylation by CDK5 restricts the repair of damaged optic nerve. J Cell Physiol 2018; 234:11240-11246. [PMID: 30537069 DOI: 10.1002/jcp.27778] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 10/30/2018] [Indexed: 11/07/2022]
Abstract
OBJECTIVE To study the mechanism of collapsin response mediator protein-2 (CRMP-2) phosphorylation changes and cyclin-dependent kinase 5 (CDK5) expression after optic nerve injury. METHODS Optic nerve injury rat models were constructed, the messenger RNA (mRNA) level of CRMP-2 in optic nerve tissues was determined by quantitative reverse transcription polymerase chain reaction (qRT-PCR) after building models 0, 3, 7, and 14 days. The protein expression of CRMP-2, phospho-CRMP-2 (p-CRMP-2), and CDK5 were also determined by western blot analysis. Lentivirus overexpressing CRMP-2 and CRMP-2 small interfering RNA (siRNA) plasmid were designed and transfected to retina ganglion cells (RGCs), and then the neurites outgrowth of RGCs were cultured with CDK5 inhibitor or CDK5 activator was determined by tubulin staining. Inhibition on CDK5 promotes injured optic nerve by using carrying CDK5 siRNA inject into vitreous chamber. RESULTS There was no significant change in CRMP-2 expression in optic nerve injury rat, while p-CRMP-2 expression was evidently increased compared with sham operation group. The expression level of CDK5 in optic nerve tissue was upregulated after optic nerve injury in rat, and the upward trend of p-CRMP-2 and CDK5 was consistent with the time after the injury was prolonged. Inhibition on CDK5 evidently decreased the expression of p-CRMP-2. CDK5 siRNA had an obvious repair effect on the injured optic nerve. CONCLUSION The increase of CDK5 activity can lead to CRMP-2 hyperphosphorylation, which results in the difficult repair of damaged optic nerve. Therefore, inhibition on CDK5 could promote the repair of damaged optic nerve.
Collapse
Affiliation(s)
- Xiaofan Chen
- Department of Ophthalmology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Rongdi Yuan
- Department of Ophthalmology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Ling Gao
- Department of Ophthalmology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Chanjuan Huang
- Department of Ophthalmology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Wei Fan
- Department of Ophthalmology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Jian Ye
- Department of Ophthalmology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Chunlin Chen
- Department of Ophthalmology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
21
|
|
22
|
He J, Zhu J. Collapsin Response Mediator Protein-2 Ameliorates Sevoflurane-Mediated Neurocyte Injury by Targeting PI3K-mTOR-S6K Pathway. Med Sci Monit 2018; 24:4982-4991. [PMID: 30018280 PMCID: PMC6067039 DOI: 10.12659/msm.909056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Background Collapsin response mediator protein-2 (CRMP-2) is the first member of the CRMP family that has been identified in primary neuronal cells; it was originally found and identified in the regulation of microtubule dimerization into microtubules. Material/Methods In the present study, we aimed to investigate the roles and mechanisms of CRMP-2 in sevoflurane-induced neurocyte injury. Cell viability, proliferation, and apoptosis were measured by Cell Counting Kit-8 (CCK-8) assay and flow cytometry. Colorimetry was performed to measure the activity of caspase-3. Western blot and quantitative real-time reverse transcription assays were used to evaluate the related mRNAs and proteins expression. Results We found that CRMP-2 reversed the inhibitory effect of sevoflurane on the viability of nerve cells. Moreover, CRMP-2 accelerated the proliferation and suppressed the apoptosis of sevoflurane-induced nerve cells. CRMP-2 modulated the expression levels of apoptosis-associated protein in sevoflurane-induced nerve cells. Furthermore, it was demonstrated that CRMP-2 impacted the PI3K-mTOR-S6K pathway. Conclusions CRMP2 ameliorated sevoflurane-mediated neurocyte injury by targeting the PI3K-mTOR-S6K pathway. Thus, CRMP2 might be an effective target for sevoflurane-induced neurocyte injury therapies.
Collapse
Affiliation(s)
- Jiaxuan He
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China (mainland)
| | - Jianfang Zhu
- Department of Pharmacy, Hanzhong Central Hospital, Hanzhong, Shaanxi, China (mainland)
| |
Collapse
|
23
|
Luu L, Ciccotosto GD, Vella LJ, Cheng L, Roisman LC, Multhaup G, Hill AF, Munter LM, Cappai R. Amyloid Precursor Protein Dimerisation Reduces Neurite Outgrowth. Mol Neurobiol 2018; 56:13-28. [PMID: 29675574 DOI: 10.1007/s12035-018-1070-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 04/09/2018] [Indexed: 02/08/2023]
Abstract
The amyloid precursor protein (APP) undergoes extensive metabolism, and its transport and proteolytic processing can be modulated by its ability to form a homodimer. We have investigated the functional consequences of stabilised APP dimer expression in cells by studying the engineered dimerisation of the APPL17C (residue 17 in Aβ sequence) construct, which is associated with a 30% increase in APP dimer expression, on APP's neurite outgrowth promoting activity. Overexpression of APPL17C in SH-SY5Y cells decreased neurite outgrowth upon retinoic acid differentiation as compared to overexpressing APPWT cells. The APPL17C phenotype was rescued by replacing the APPL17C media with conditioned media from APPWT cells, indicating that the APPL17C mutant is impairing the secretion of a neuritogenic promoting factor. APPL17C had altered transport and was localised in the endoplasmic reticulum. Defining the molecular basis of the APPL17C phenotype showed that RhoA GTPase activity, a negative regulator of neurite outgrowth, was increased in APPL17C cells. RhoA activity was decreased after APPWT conditioned media rescue. Moreover, treatment with the RhoA inhibitor, Y27632, restored a wild-type morphology to the APPL17C cells. Small RNAseq analysis of APPL17C and APPWT cells identified several differentially expressed miRNAs relating to neurite outgrowth. Of these, miR-34a showed the greatest decrease in expression. Lentiviral-mediated overexpression of miR-34a rescued neurite outgrowth in APPL17C cells to APPWT levels and changed RhoA activation. This study has identified a novel link between APP dimerisation and its neuritogenic activity which is mediated by miR-34a expression.
Collapse
Affiliation(s)
- Luan Luu
- Department of Pathology, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Giuseppe D Ciccotosto
- Department of Pathology, The University of Melbourne, Melbourne, VIC, 3010, Australia.,Department of Pharmacology & Therapeutics, The University of Melbourne, Melbourne, VIC, 3010, Australia.,Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Laura J Vella
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Lesley Cheng
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Laila C Roisman
- Department of Pathology, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Gerhard Multhaup
- Department of Pharmacology & Therapeutics, McGill University, Montreal, QC, H3G 1Y6, Canada
| | - Andrew F Hill
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Lisa-Marie Munter
- Department of Pharmacology & Therapeutics, McGill University, Montreal, QC, H3G 1Y6, Canada
| | - Roberto Cappai
- Department of Pathology, The University of Melbourne, Melbourne, VIC, 3010, Australia. .,Department of Pharmacology & Therapeutics, The University of Melbourne, Melbourne, VIC, 3010, Australia.
| |
Collapse
|
24
|
Oh JH, Kim EY, Nam TJ. Phycoerythrin-Derived Tryptic Peptide of a Red Alga Pyropia yezoensis Attenuates Glutamate-Induced ER Stress and Neuronal Senescence in Primary Rat Hippocampal Neurons. Mol Nutr Food Res 2018; 62:e1700469. [PMID: 29468822 DOI: 10.1002/mnfr.201700469] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 12/19/2017] [Indexed: 11/11/2022]
Abstract
SCOPE Glutamate excitotoxicity has been observed in association with neurodegenerative disorders. This study aimed to investigate whether a phycoerythrin-derived tryptic peptide of Pyropia yezoensis (PYP) reduces glutamate-induced excitotoxicity and neuronal senescence in primary rat hippocampal neurons. METHODS AND RESULTS Glutamate exposure (100 μm) decreased cell viability and increased expression of endoplasmic reticulum (ER) stress response protein glucose-regulated protein 78 (GRP78) starting at 60 min following glutamate exposure, which was prevented by pretreating the neurons with PYP (1 μg mL-1 ). The glutamate-induced increase in GRP78 expression was downregulated by blocking N-methyl-d-aspartate (NMDA) receptor with MK801 (10 μm) and inhibiting c-Jun N-terminal kinase (JNK) phosphorylation with SP600125 (10 μm). Moreover, phosphorylation of JNK was decreased by blockade of NMDA receptor. The PYP pretreatment downregulated glutamate-induced increase in GRP78 expression and JNK phosphorylation, and this effect was abolished by inhibiting tropomyosin-related kinase B (TrkB) receptor, phosphatidylinositiol 3-kinase, and extracellular signal-regulated kinase (ERK)1/2 using cyclotraxin B (200 nm), LY294002 (20 μm), and SL327 (10 μm), respectively. In addition, PYP downregulated increase in GRP78 expression, senescence-associated β-galactosidase activity, and neurite degeneration in aging hippocampal neurons. CONCLUSION These findings indicate that activation of TrkB receptor-mediated ERK1/2 by PYP attenuates glutamate-induced ER stress, which may improve the survival of hippocampal neurons with age.
Collapse
Affiliation(s)
- Jeong Hwan Oh
- Institute of Fisheries Sciences, Pukyong National University, Busan, 46041, Republic of Korea
| | - Eun-Young Kim
- Institute of Fisheries Sciences, Pukyong National University, Busan, 46041, Republic of Korea
| | - Taek-Jeong Nam
- Institute of Fisheries Sciences, Pukyong National University, Busan, 46041, Republic of Korea
| |
Collapse
|
25
|
Mythri RB, Raghunath NR, Narwade SC, Pandareesh MDR, Sabitha KR, Aiyaz M, Chand B, Sule M, Ghosh K, Kumar S, Shankarappa B, Soundararajan S, Alladi PA, Purushottam M, Gayathri N, Deobagkar DD, Laxmi TR, Srinivas Bharath MM. Manganese- and 1-methyl-4-phenylpyridinium-induced neurotoxicity display differences in morphological, electrophysiological and genome-wide alterations: implications for idiopathic Parkinson's disease. J Neurochem 2017; 143:334-358. [DOI: 10.1111/jnc.14147] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 08/02/2017] [Accepted: 08/02/2017] [Indexed: 01/05/2023]
Affiliation(s)
- Rajeswara Babu Mythri
- Department of Neurochemistry; National Institute of Mental Health and Neurosciences (NIMHANS); Bangalore Karnataka India
- Neurotoxicology Laboratory-Neurobiology Research Center; National Institute of Mental Health and Neurosciences (NIMHANS); Bangalore Karnataka India
| | - Narayana Reddy Raghunath
- Department of Neurochemistry; National Institute of Mental Health and Neurosciences (NIMHANS); Bangalore Karnataka India
- Neurotoxicology Laboratory-Neurobiology Research Center; National Institute of Mental Health and Neurosciences (NIMHANS); Bangalore Karnataka India
| | | | - Mirazkar Dasharatha Rao Pandareesh
- Department of Neurochemistry; National Institute of Mental Health and Neurosciences (NIMHANS); Bangalore Karnataka India
- Neurotoxicology Laboratory-Neurobiology Research Center; National Institute of Mental Health and Neurosciences (NIMHANS); Bangalore Karnataka India
| | - Kollarkandi Rajesh Sabitha
- Department of Neurophysiology; National Institute of Mental Health and Neurosciences (NIMHANS); Bangalore Karnataka India
| | - Mohamad Aiyaz
- Genotypic Technology Pvt. Ltd; Bangalore Karnataka India
| | - Bipin Chand
- Genotypic Technology Pvt. Ltd; Bangalore Karnataka India
| | - Manas Sule
- InterpretOmics; Shezan Lavelle; Bangalore Karnataka India
| | - Krittika Ghosh
- InterpretOmics; Shezan Lavelle; Bangalore Karnataka India
| | - Senthil Kumar
- InterpretOmics; Shezan Lavelle; Bangalore Karnataka India
| | - Bhagyalakshmi Shankarappa
- Molecular Genetics Laboratory - Neurobiology Research Center; National Institute of Mental Health and Neurosciences (NIMHANS); Bangalore Karnataka India
| | - Soundarya Soundararajan
- Molecular Genetics Laboratory - Neurobiology Research Center; National Institute of Mental Health and Neurosciences (NIMHANS); Bangalore Karnataka India
| | - Phalguni Anand Alladi
- Department of Neurophysiology; National Institute of Mental Health and Neurosciences (NIMHANS); Bangalore Karnataka India
| | - Meera Purushottam
- Molecular Genetics Laboratory - Neurobiology Research Center; National Institute of Mental Health and Neurosciences (NIMHANS); Bangalore Karnataka India
| | - Narayanappa Gayathri
- Department of Neuropathology; National Institute of Mental Health and Neurosciences (NIMHANS); Bangalore Karnataka India
| | | | - Thenkanidiyoor Rao Laxmi
- Department of Neurophysiology; National Institute of Mental Health and Neurosciences (NIMHANS); Bangalore Karnataka India
| | - Muchukunte Mukunda Srinivas Bharath
- Department of Neurochemistry; National Institute of Mental Health and Neurosciences (NIMHANS); Bangalore Karnataka India
- Neurotoxicology Laboratory-Neurobiology Research Center; National Institute of Mental Health and Neurosciences (NIMHANS); Bangalore Karnataka India
| |
Collapse
|
26
|
Na EJ, Nam HY, Park J, Chung MA, Woo HA, Kim HJ. PI3K-mTOR-S6K Signaling Mediates Neuronal Viability via Collapsin Response Mediator Protein-2 Expression. Front Mol Neurosci 2017; 10:288. [PMID: 28966575 PMCID: PMC5605571 DOI: 10.3389/fnmol.2017.00288] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 08/25/2017] [Indexed: 01/22/2023] Open
Abstract
Collapsin response mediator protein (CRMP)-2 and the mammalian target of rapamycin complex 1 (mTORC1) signaling pathway are associated with common physiological functions such as neuronal polarity, axonal outgrowth and synaptic strength, as well as various brain disorders including epilepsy. But, their regulatory and functional links are unclear. Alterations in CRMP-2 expression that lead to its functional changes are implicated in brain disorders such as epilepsy. Here, we investigate whether changes in CRMP-2 expression, possibly regulated by mTOR-related signaling, correlates with neuronal growth and viability. Inhibition of mTOR and/or phosphoinositol-3-kinase (PI3K) led to deceased p-S6K, and p-S6 signals also reduced CRMP-2 expression. These changes corresponded to inhibition of neuronal viability and proliferation in cultured hippocampal HT-22 cells under both basal serum-free and serum- or insulin-induced mTOR pathway-activated conditions. CRMP-2 expression tended to be increased by mTOR activation, indicated by an increase in p-S6/S6 level, in pentylentetrazole (PTZ)-induced epileptic rat hippocampal tissues was also significantly reduced by mTOR inhibition. Knockdown of CRMP-2 by si-RNA reduced the neuronal viability without changes in mTOR signaling, and overexpression of CRMP-2 recovered the glutamate-induced neurotoxicity and decrease of mTOR signaling in HT-22 cells. In conclusion, CRMP-2 protein expression controlled by the PI3K-mTOR-S6K signaling axis exerts its important functional roles in neuronal growth and survival.
Collapse
Affiliation(s)
- Eun J Na
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Ewha Womans UniversitySeoul, South Korea
| | - Hye Yeon Nam
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Ewha Womans UniversitySeoul, South Korea
| | - Jiyoung Park
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Ewha Womans UniversitySeoul, South Korea
| | - Myung Ah Chung
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Ewha Womans UniversitySeoul, South Korea
| | - Hyun Ae Woo
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Ewha Womans UniversitySeoul, South Korea
| | - Hwa-Jung Kim
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Ewha Womans UniversitySeoul, South Korea
| |
Collapse
|
27
|
Could clinical photochemical internalisation be optimised to avoid neuronal toxicity? Int J Pharm 2017; 528:133-143. [PMID: 28579544 PMCID: PMC5571751 DOI: 10.1016/j.ijpharm.2017.05.071] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 05/27/2017] [Accepted: 05/29/2017] [Indexed: 01/01/2023]
Abstract
Photochemical Internalisation (PCI) is a novel drug delivery technology in which low dose photodynamic therapy (PDT) can selectively rupture endo/lysosomes by light activation of membrane-incorporated photosensitisers, facilitating intracellular drug release in the treatment of cancer. For PCI to be developed further, it is important to understand whether nerve damage is an impending side effect when treating cancers within or adjacent to nervous system tissue. Dorsal root ganglion (DRG) neurons and their associated satellite glia were subjected to PCI treatment in a 3D co-culture system following incubation with photosensitisers: meso-tetraphenylporphine (TPPS2a) or tetraphenylchlorin disulfonate (TPCS2a) and Bleomycin. Results from the use of 3D co-culture models demonstrate that a cancer cell line PCI30 and satellite glia were more sensitive to PCI than neurons and mixed glial cells, athough neurite length was affected. Neurons in culture survived PCI treatment under conditions sufficient to kill tumour cells, suggesting cancers within or adjacent to nervous system tissue could be treated with this novel technology.
Collapse
|
28
|
Laouafa S, Perrin-Terrin AS, Jeton F, Elliot-Portal E, Tam R, Bodineau L, Voituron N, Soliz J. Pharmacological, but not genetic, alteration of neural Epo modifies the CO 2/H + central chemosensitivity in postnatal mice. Respir Physiol Neurobiol 2017; 242:73-79. [PMID: 28396201 DOI: 10.1016/j.resp.2017.04.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 03/24/2017] [Accepted: 04/05/2017] [Indexed: 11/24/2022]
Abstract
Cerebral erythropoietin (Epo) plays a crucial role for respiratory control in newborn rodents. We showed previously that soluble Epo receptor (sEpoR: an Epo antagonist) reduces basal ventilation and hypoxic hyperventilation at postnatal day 10 (P10) and in adult mice. However, at these ages (P10 and adulthood), Epo had no effect on central chemosensitivity. Nevertheless, it is known that the sensitivity to CO2/H+ during the mammalian respiratory network maturation process is age-dependent. Accordingly, in this study we wanted to test the hypothesis that cerebral Epo is involved in the breathing stimulation induced by the activation of central CO2/H+ chemoreceptors at earlier postnatal ages. To this end, en bloc brainstem-spinal cord preparations were obtained from P4 mice and the fictive breathing response to CO2-induced acidosis or metabolic acidosis was analyzed. This age (P4) was chosen because previous research from our laboratory showed that Epo altered (in a dose- and time-dependent manner) the fictive ventilation elicited in brainstem-spinal cord preparations. Moreover, as it was observed that peripheral chemoreceptors determined the respiratory sensitivity of central chemoreceptors to CO2, the use of this technique restricts our observations to central modulation. Our results did not show differences between preparations from control and transgenic animals (Tg21: overexpressing cerebral Epo; Epo-TAgh: cerebral Epo deficient mice). However, when Tg21 brainstem preparations were incubated for 1h with sEpoR, or with inhibitors of ERK/Akt (thus blocking the activation of the Epo molecular pathway), the fictive breathing response to CO2-induced acidosis was blunted. Our data suggest that variation of the Epo/sEpoR ratio is central to breathing modulation during CO2 challenges, and calls attention to clinical perspectives based on the use of Epo drugs at birth in hypoventilation cases.
Collapse
Affiliation(s)
- Sofien Laouafa
- Université Laval, Faculté de Médecine, Centre de Recherche Institut universitaire de cardiologie et de pneumologie de Québec, Département de Pédiatrie, Québec, QC, Canada; LEHNA, UMR CNRS 5023, Ecologie des Hydrosystèmes Naturels et Anthropisés, Université de Lyon, Université Lyon 1, ENTPE, 6 rue Raphael Dubois, 69622 Villeurbanne, France
| | - Anne-Sophie Perrin-Terrin
- Université Paris 13, Sorbonne Paris Cité, UFR SMBH, Laboratoire "Hypoxie et poumons", EA 2363, 93017 Bobigny, France; Sorbonne Universités, UPMC Univ Paris 06, INSERM, UMR_S1158 Neurophysiologie Respiratoire Expérimentale et Clinique, F-75013, Paris, France
| | - Florine Jeton
- Université Paris 13, Sorbonne Paris Cité, UFR SMBH, Laboratoire "Hypoxie et poumons", EA 2363, 93017 Bobigny, France
| | - Elizabeth Elliot-Portal
- Université Laval, Faculté de Médecine, Centre de Recherche Institut universitaire de cardiologie et de pneumologie de Québec, Département de Pédiatrie, Québec, QC, Canada; Molecular biology and Biotechnology Institute, Universidad Mayor de San Andres, La Paz, Bolivia
| | - Rose Tam
- Université Laval, Faculté de Médecine, Centre de Recherche Institut universitaire de cardiologie et de pneumologie de Québec, Département de Pédiatrie, Québec, QC, Canada
| | - Laurence Bodineau
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, UMR_S1158 Neurophysiologie Respiratoire Expérimentale et Clinique, F-75013, Paris, France
| | - Nicolas Voituron
- Université Paris 13, Sorbonne Paris Cité, UFR SMBH, Laboratoire "Hypoxie et poumons", EA 2363, 93017 Bobigny, France
| | - Jorge Soliz
- Université Laval, Faculté de Médecine, Centre de Recherche Institut universitaire de cardiologie et de pneumologie de Québec, Département de Pédiatrie, Québec, QC, Canada; Molecular biology and Biotechnology Institute, Universidad Mayor de San Andres, La Paz, Bolivia.
| |
Collapse
|
29
|
O'Rourke C, Lee-Reeves C, Drake RA, Cameron GW, Loughlin AJ, Phillips JB. Adapting tissue-engineered in vitro CNS models for high-throughput study of neurodegeneration. J Tissue Eng 2017; 8:2041731417697920. [PMID: 28507726 PMCID: PMC5415290 DOI: 10.1177/2041731417697920] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 02/14/2017] [Indexed: 11/21/2022] Open
Abstract
Neurodegenerative conditions remain difficult to treat, with the continuing failure to see therapeutic research successfully advance to clinical trials. One of the obstacles that must be overcome is to develop enhanced models of disease. Tissue engineering techniques enable us to create organised artificial central nervous system tissue that has the potential to improve the drug development process. This study presents a replicable model of neurodegenerative pathology through the use of engineered neural tissue co-cultures that can incorporate cells from various sources and allow degeneration and protection of neurons to be observed easily and measured, following exposure to neurotoxic compounds – okadaic acid and 1-methyl-4-phenylpyridinium. Furthermore, the technology has been miniaturised through development of a mould with 6 mm length that recreates the advantageous features of engineered neural tissue co-cultures at a scale suitable for commercial research and development. Integration of human-derived induced pluripotent stem cells aids more accurate modelling of human diseases, creating new possibilities for engineered neural tissue co-cultures and their use in drug screening.
Collapse
Affiliation(s)
- Caitriona O'Rourke
- Department of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, University College London, London, UK.,Department of Life, Health and Chemical Sciences, The Open University, Milton Keynes, UK
| | - Charlotte Lee-Reeves
- Department of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, University College London, London, UK
| | | | | | - A Jane Loughlin
- Department of Life, Health and Chemical Sciences, The Open University, Milton Keynes, UK
| | - James B Phillips
- Department of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, University College London, London, UK
| |
Collapse
|
30
|
Fukui K. Reactive oxygen species induce neurite degeneration before induction of cell death. J Clin Biochem Nutr 2016; 59:155-159. [PMID: 27895381 PMCID: PMC5110939 DOI: 10.3164/jcbn.16-34] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 04/25/2016] [Indexed: 01/04/2023] Open
Abstract
Reactive oxygen species (ROS) induce neuronal cell death in a time- and concentration-dependent manner. Treatment of cultured cells with a low concentration of hydrogen peroxide induces neurite degeneration, but not cell death. Neurites (axons and dendrites) are vulnerable to ROS. Neurite degeneration (shrinkage, accumulation, and fragmentation) has been found in neurodegenerative disorders, such as Alzheimer’s disease, Parkinson’s disease, and Huntington’s disease. However, the mechanism of ROS-related neurite degeneration is not fully understood. Many studies have demonstrated the relationship between mitochondrial dysfunction and microtubule destabilization. These dysfunctions are deeply related to changes in calcium homeostasis and ROS production in neurites. Treatment with antioxidant substances, such as vitamin E, prevents neurite degeneration in cultured cells. This review describes the possibility that ROS induces neurite degeneration before the induction of cell death.
Collapse
Affiliation(s)
- Koji Fukui
- Molecular Cell Biology Laboratory, Department of Bioscience and Engineering, College of Systems Engineering and Sciences, Shibaura Institute of Technology, 307 Fukasaku, Minuma-ku, Saitama 337-8570, Japan
| |
Collapse
|
31
|
eSNPO: An eQTL-based SNP Ontology and SNP functional enrichment analysis platform. Sci Rep 2016; 6:30595. [PMID: 27470167 PMCID: PMC4965794 DOI: 10.1038/srep30595] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 07/04/2016] [Indexed: 02/06/2023] Open
Abstract
Genome-wide association studies (GWASs) have mined many common genetic variants associated with human complex traits like diseases. After that, the functional annotation and enrichment analysis of significant SNPs are important tasks. Classic methods are always based on physical positions of SNPs and genes. Expression quantitative trait loci (eQTLs) are genomic loci that contribute to variation in gene expression levels and have been proven efficient to connect SNPs and genes. In this work, we integrated the eQTL data and Gene Ontology (GO), constructed associations between SNPs and GO terms, then performed functional enrichment analysis. Finally, we constructed an eQTL-based SNP Ontology and SNP functional enrichment analysis platform. Taking Parkinson Disease (PD) as an example, the proposed platform and method are efficient. We believe eSNPO will be a useful resource for SNP functional annotation and enrichment analysis after we have got significant disease related SNPs.
Collapse
|
32
|
Eira J, Silva CS, Sousa MM, Liz MA. The cytoskeleton as a novel therapeutic target for old neurodegenerative disorders. Prog Neurobiol 2016; 141:61-82. [PMID: 27095262 DOI: 10.1016/j.pneurobio.2016.04.007] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 04/13/2016] [Accepted: 04/13/2016] [Indexed: 12/12/2022]
Abstract
Cytoskeleton defects, including alterations in microtubule stability, in axonal transport as well as in actin dynamics, have been characterized in several unrelated neurodegenerative conditions. These observations suggest that defects of cytoskeleton organization may be a common feature contributing to neurodegeneration. In line with this hypothesis, drugs targeting the cytoskeleton are currently being tested in animal models and in human clinical trials, showing promising effects. Drugs that modulate microtubule stability, inhibitors of posttranslational modifications of cytoskeletal components, specifically compounds affecting the levels of tubulin acetylation, and compounds targeting signaling molecules which regulate cytoskeleton dynamics, constitute the mostly addressed therapeutic interventions aiming at preventing cytoskeleton damage in neurodegenerative disorders. In this review, we will discuss in a critical perspective the current knowledge on cytoskeleton damage pathways as well as therapeutic strategies designed to revert cytoskeleton-related defects mainly focusing on the following neurodegenerative disorders: Alzheimer's Disease, Parkinson's Disease, Huntington's Disease, Amyotrophic Lateral Sclerosis and Charcot-Marie-Tooth Disease.
Collapse
Affiliation(s)
- Jessica Eira
- Neurodegeneration Group, IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200 Porto, Portugal; Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200 Porto, Portugal
| | - Catarina Santos Silva
- Neurodegeneration Group, IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200 Porto, Portugal; Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200 Porto, Portugal
| | - Mónica Mendes Sousa
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200 Porto, Portugal; Nerve Regeneration Group, IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200 Porto, Portugal
| | - Márcia Almeida Liz
- Neurodegeneration Group, IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200 Porto, Portugal; Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200 Porto, Portugal.
| |
Collapse
|
33
|
Liu H, Li W, Rose ME, Hickey RW, Chen J, Uechi GT, Balasubramani M, Day BW, Patel KV, Graham SH. The point mutation UCH-L1 C152A protects primary neurons against cyclopentenone prostaglandin-induced cytotoxicity: implications for post-ischemic neuronal injury. Cell Death Dis 2015; 6:e1966. [PMID: 26539913 PMCID: PMC4670930 DOI: 10.1038/cddis.2015.323] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 09/21/2015] [Accepted: 09/30/2015] [Indexed: 02/08/2023]
Abstract
Cyclopentenone prostaglandins (CyPGs), such as 15-deoxy-Δ(12,14)-prostaglandin J2 (15dPGJ2), are reactive prostaglandin metabolites exerting a variety of biological effects. CyPGs are produced in ischemic brain and disrupt the ubiquitin-proteasome system (UPS). Ubiquitin-C-terminal hydrolase L1 (UCH-L1) is a brain-specific deubiquitinating enzyme that has been linked to neurodegenerative diseases. Using tandem mass spectrometry (MS) analyses, we found that the C152 site of UCH-L1 is adducted by CyPGs. Mutation of C152 to alanine (C152A) inhibited CyPG modification and conserved recombinant UCH-L1 protein hydrolase activity after 15dPGJ2 treatment. A knock-in (KI) mouse expressing the UCH-L1 C152A mutation was constructed with the bacterial artificial chromosome (BAC) technique. Brain expression and distribution of UCH-L1 in the KI mouse was similar to that of wild type (WT) as determined by western blotting. Primary cortical neurons derived from KI mice were resistant to 15dPGJ2 cytotoxicity compared with neurons from WT mice as detected by the WST-1 cell viability assay and caspase-3 and poly ADP ribose polymerase (PARP) cleavage. This protective effect was accompanied with significantly less ubiquitinated protein accumulation and aggregation as well as less UCH-L1 aggregation in C152A KI primary neurons after 15dPGJ2 treatment. Additionally, 15dPGJ2-induced axonal injury was also significantly attenuated in KI neurons as compared with WT. Taken together, these studies indicate that UCH-L1 function is important in hypoxic neuronal death, and the C152 site of UCH-L1 has a significant role in neuronal survival after hypoxic/ischemic injury.
Collapse
Affiliation(s)
- H Liu
- Geriatric Research Educational and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh, PA, USA
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - W Li
- Geriatric Research Educational and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh, PA, USA
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - M E Rose
- Geriatric Research Educational and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh, PA, USA
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - R W Hickey
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - J Chen
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - G T Uechi
- Genomics and Proteomics Core Laboratories, University of Pittsburgh, Pittsburgh, PA, USA
| | - M Balasubramani
- Genomics and Proteomics Core Laboratories, University of Pittsburgh, Pittsburgh, PA, USA
| | - B W Day
- Genomics and Proteomics Core Laboratories, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA
| | - K V Patel
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - S H Graham
- Geriatric Research Educational and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh, PA, USA
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
34
|
Inhibition of Protein Kinases AKT and ERK1/2 Reduce the Carotid Body Chemoreceptor Response to Hypoxia in Adult Rats. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 860:269-77. [PMID: 26303491 DOI: 10.1007/978-3-319-18440-1_31] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The carotid body is the main mammalian oxygen-sensing organ regulating ventilation. Despite the carotid body is subjected of extensive anatomical and functional studies, little is yet known about the molecular pathways signaling the neurotransmission and neuromodulation of the chemoreflex activity. As kinases are molecules widely involved in motioning a broad number of neural processes, here we hypothesized that pathways of protein kinase B (AKT) and extracellular signal-regulated kinases ½ (ERK1/2) are implicated in the carotid body response to hypoxia. This hypothesis was tested using the in-vitro carotid body/carotid sinus nerve preparation ("en bloc") from Sprague Dawley adult rats. Preparations were incubated for 60 min in tyrode perfusion solution (control) or containing 1 μM of LY294002 (AKT inhibitor), or 1 μM of UO-126 (ERK1/2 inhibitor). The carotid sinus nerve chemoreceptor discharge rate was recorded under baseline (perfusion solution bubbled with 5 % CO(2) balanced in O(2)) and hypoxic (perfusion solution bubbled with 5 % CO(2) balanced in N(2)) conditions. Compared to control, both inhibitors significantly decreased the normoxic and hypoxic carotid body chemoreceptor activity. LY294002- reduced carotid sinus nerve discharge rate in hypoxia by about 20 %, while UO-126 reduces the hypoxic response by 45 %. We concluded that both AKT and ERK1/2 pathways are crucial for the carotid body intracellular signaling process in response to hypoxia.
Collapse
|