1
|
Farhoomand F, Delaney KR. Long-term cortical plasticity following sensory deprivation is reduced in male Rett model mice. Somatosens Mot Res 2023; 40:133-140. [PMID: 36565289 DOI: 10.1080/08990220.2022.2158799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 12/08/2022] [Indexed: 12/25/2022]
Abstract
PURPOSE/AIM Rett (RTT) syndrome, a neurodevelopmental disorder, results from loss-of-function mutations in methyl-CpG-binding protein 2. We studied activity-dependent plasticity induced by sensory deprivation via whisker trimming in early symptomatic male mutant mice to assess neural rewiring capability. METHODS One whisker was trimmed for 0-14 days and intrinsic optical imaging of the transient reduction of brain blood oxygenation resulting from neural activation by 1 second of wiggling of the whisker stump was compared to that of an untrimmed control whisker. RESULTS Cortical evoked responses to wiggling a non-trimmed whisker were constant for 14 days, reduced for a trimmed whisker by 49.0 ± 4.3% in wild type (n = 14) but by only 22.7 ± 4.6% in mutant (n = 18, p = 0.001). CONCLUSION As the reduction in neural activation following sensory deprivation in whisker barrel cortex is known to be dependent upon evoked and basal neural activity, impairment of cortical re-wiring following whisker trimming provides a paradigm suitable to explore mechanisms underlying deficiencies in the establishment and maintenance of synapses in RTT, which can be potentially targeted by therapeutics.
Collapse
Affiliation(s)
| | - Kerry R Delaney
- Department of Biology, University of Victoria, Victoria, B.C, Canada
| |
Collapse
|
2
|
Thalamic control of sensory processing and spindles in a biophysical somatosensory thalamoreticular circuit model of wakefulness and sleep. Cell Rep 2023; 42:112200. [PMID: 36867532 PMCID: PMC10066598 DOI: 10.1016/j.celrep.2023.112200] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 01/04/2023] [Accepted: 02/15/2023] [Indexed: 03/04/2023] Open
Abstract
Thalamoreticular circuitry plays a key role in arousal, attention, cognition, and sleep spindles, and is linked to several brain disorders. A detailed computational model of mouse somatosensory thalamus and thalamic reticular nucleus has been developed to capture the properties of over 14,000 neurons connected by 6 million synapses. The model recreates the biological connectivity of these neurons, and simulations of the model reproduce multiple experimental findings in different brain states. The model shows that inhibitory rebound produces frequency-selective enhancement of thalamic responses during wakefulness. We find that thalamic interactions are responsible for the characteristic waxing and waning of spindle oscillations. In addition, we find that changes in thalamic excitability control spindle frequency and their incidence. The model is made openly available to provide a new tool for studying the function and dysfunction of the thalamoreticular circuitry in various brain states.
Collapse
|
3
|
Wolff M, Morceau S, Folkard R, Martin-Cortecero J, Groh A. A thalamic bridge from sensory perception to cognition. Neurosci Biobehav Rev 2021; 120:222-235. [PMID: 33246018 DOI: 10.1016/j.neubiorev.2020.11.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 10/07/2020] [Accepted: 11/02/2020] [Indexed: 12/13/2022]
Abstract
The ability to adapt to dynamic environments requires tracking multiple signals with variable sensory salience and fluctuating behavioral relevance. This complex process requires integrative crosstalk between sensory and cognitive brain circuits. Functional interactions between cortical and thalamic regions are now considered essential for both sensory perception and cognition but a clear account of the functional link between sensory and cognitive circuits is currently lacking. This review aims to document how thalamic nuclei may effectively act as a bridge allowing to fuse perceptual and cognitive events into meaningful experiences. After highlighting key aspects of thalamocortical circuits such as the classic first-order/higher-order dichotomy, we consider the role of the thalamic reticular nucleus from directed attention to cognition. We next summarize research relying on Pavlovian learning paradigms, showing that both first-order and higher-order thalamic nuclei contribute to associative learning. Finally, we propose that modulator inputs reaching all thalamic nuclei may be critical for integrative purposes when environmental signals are computed. Altogether, the thalamus appears as the bridge linking perception, cognition and possibly affect.
Collapse
Affiliation(s)
- M Wolff
- CNRS, INCIA, UMR 5287, Bordeaux, France; University of Bordeaux, INCIA, UMR 5287, Bordeaux, France.
| | - S Morceau
- CNRS, INCIA, UMR 5287, Bordeaux, France; University of Bordeaux, INCIA, UMR 5287, Bordeaux, France
| | - R Folkard
- Institute of Physiology and Pathophysiology, Medical Biophysics, Heidelberg University, INF 326, 69120, Heidelberg, Germany
| | - J Martin-Cortecero
- Institute of Physiology and Pathophysiology, Medical Biophysics, Heidelberg University, INF 326, 69120, Heidelberg, Germany
| | - A Groh
- Institute of Physiology and Pathophysiology, Medical Biophysics, Heidelberg University, INF 326, 69120, Heidelberg, Germany
| |
Collapse
|
4
|
Vardar B, Güçlü B. Effects of basal forebrain stimulation on the vibrotactile responses of neurons from the hindpaw representation in the rat SI cortex. Brain Struct Funct 2020; 225:1761-1776. [PMID: 32495132 DOI: 10.1007/s00429-020-02091-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 05/13/2020] [Indexed: 11/28/2022]
Abstract
Basal forebrain (BF) cholinergic system is important for attention and modulates sensory processing. We focused on the hindpaw representation in rat primary somatosensory cortex (S1), which receives inputs related to mechanoreceptors identical to those in human glabrous skin. Spike data were recorded from S1 tactile neurons (n = 87) with (ON condition: 0.5-ms bipolar current pulses at 100 Hz; amplitude 50 μA, duration 0.5 s at each trial) and without (OFF condition) electrical stimulation of BF in anesthetized rats. We expected that prior activation of BF would induce changes in the vibrotactile responses of neurons during sinusoidal (5, 40, and 250 Hz) mechanical stimulation of the glabrous skin. The experiment consisted of sequential OFF-ON conditions in two-time blocks separated by 30 min to test possible remaining effects. Average firing rates (AFRs) and vector strengths of spike phases (VS) were analyzed for different neuron types [regular spiking (RS) and fast spiking (FS)] in different cortical layers (III-VI). Immediate effect of BF activation was only significant by increasing synchronization to 5-Hz vibrotactile stimulus within the second block. Regardless of frequency, ON-OFF paired VS differences were significantly higher in the second block compared to the first, more prominent for RS neurons, and in general for neurons in layers III and VI. No such effects could be found on AFRs. The results suggest that cholinergic activation induces some changes in the hindpaw area, enabling relatively higher increases in synchronization to vibrotactile inputs with subsequent BF modulation. In addition, this modulation depends on neuron type and layer, which may be related to detailed projection pattern from BF.
Collapse
Affiliation(s)
- Bige Vardar
- Institute of Biomedical Engineering, Boğaziçi University, Kandilli Campus, Çengelköy, 34684, Istanbul, Turkey
| | - Burak Güçlü
- Institute of Biomedical Engineering, Boğaziçi University, Kandilli Campus, Çengelköy, 34684, Istanbul, Turkey.
| |
Collapse
|
5
|
Abstract
The neural mechanisms of sleep, a fundamental biological behavior from invertebrates to humans, have been a long-standing mystery and present an enormous challenge. Gradually, perspectives on the neurobiology of sleep have been more various with the technical innovations over the recent decades, and studies have now identified many specific neural circuits that selectively regulate the initiation and maintenance of wake, rapid eye movement (REM) sleep, and non-REM (NREM) sleep. The cholinergic system in basal forebrain (BF) that fire maximally during waking and REM sleep is one of the key neuromodulation systems related to waking and REM sleep. Here we outline the recent progress of the BF cholinergic system in sleep-wake cycle. The intricate local connectivity and multiple projections to other cortical and subcortical regions of the BF cholinergic system elaborately presented here form a conceptual framework for understanding the coordinating effects with the dissecting regions. This framework also provides evidences regarding the relationships between the general anesthesia and wakefulness/sleep cycle focusing on the neural circuitry of unconsciousness induced by anesthetic drugs.
Collapse
|
6
|
Multiple Timescales Account for Adaptive Responses across Sensory Cortices. J Neurosci 2019; 39:10019-10033. [PMID: 31662427 DOI: 10.1523/jneurosci.1642-19.2019] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 10/01/2019] [Accepted: 10/01/2019] [Indexed: 11/21/2022] Open
Abstract
Sensory systems encounter remarkably diverse stimuli in the external environment. Natural stimuli exhibit timescales and amplitudes of variation that span a wide range. Mechanisms of adaptation, a ubiquitous feature of sensory systems, allow for the accommodation of this range of scales. Are there common rules of adaptation across different sensory modalities? We measured the membrane potential responses of individual neurons in the visual, somatosensory, and auditory cortices of male and female mice to discrete, punctate stimuli delivered at a wide range of fixed and nonfixed frequencies. We find that the adaptive profile of the response is largely preserved across these three areas, exhibiting attenuation and responses to the cessation of stimulation, which are signatures of response to changes in stimulus statistics. We demonstrate that these adaptive responses can emerge from a simple model based on the integration of fixed filters operating over multiple time scales.SIGNIFICANCE STATEMENT Our recent sensations affect our current expectations and perceptions of the environment. Neural correlates of this process exist throughout the brain and are loosely termed adaptation. Adaptive processes have been described across sensory cortices, but direct comparisons of these processes have not been possible because paradigms have been tailored specifically for each modality. We developed a common stimulus set that was used to characterize adaptation in somatosensory, visual, and auditory cortex. We describe here the similarities and differences in adaptation across these cortical areas and demonstrate that adaptive responses may emerge from a set of static filters that operate over a broad range of timescales.
Collapse
|
7
|
Response Adaptation in Barrel Cortical Neurons Facilitates Stimulus Detection during Rhythmic Whisker Stimulation in Anesthetized Mice. eNeuro 2019; 6:eN-NWR-0471-18. [PMID: 30957014 PMCID: PMC6449164 DOI: 10.1523/eneuro.0471-18.2019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 02/28/2019] [Accepted: 03/08/2019] [Indexed: 11/21/2022] Open
Abstract
Rodents use rhythmic whisker movements at frequencies between 4 and 12 Hz to sense the environment that will be disturbed when the animal touches an object. The aim of this work is to study the response adaptation to rhythmic whisker stimulation trains at 4 Hz in the barrel cortex and the sensitivity of cortical neurons to changes in the timing of the stimulation pattern. Longitudinal arrays of four iridium oxide electrodes were used to obtain single-unit recordings in supragranular, granular, and infragranular neurons in urethane anesthetized mice. The stimulation protocol consisted in a stimulation train of three air puffs (20 ms duration each) in which the time interval between the first and the third stimuli was fixed (500 ms) and the time interval between the first and the second stimuli changed (regular: 250 ms; “accelerando”: 375 ms; or “decelerando” stimulation train: 125 ms interval). Cortical neurons adapted strongly their response to regular stimulation trains. Response adaptation was reduced when accelerando or decelerando stimulation trains were applied. This facilitation of the shifted stimulus was mediated by activation of NMDA receptors because the effect was blocked by AP5. The facilitation was not observed in thalamic nuclei. Facilitation increased during periods of EEG activation induced by systemic application of IGF-I, probably by activation of NMDA receptors, as well. We suggest that response adaptation is the outcome of an intrinsic cortical information processing aimed at contributing to improve the detection of “unexpected” stimuli that disturbed the rhythmic behavior of exploration.
Collapse
|
8
|
Casas-Torremocha D, Porrero C, Rodriguez-Moreno J, García-Amado M, Lübke JHR, Núñez Á, Clascá F. Posterior thalamic nucleus axon terminals have different structure and functional impact in the motor and somatosensory vibrissal cortices. Brain Struct Funct 2019; 224:1627-1645. [PMID: 30919051 PMCID: PMC6509070 DOI: 10.1007/s00429-019-01862-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 03/13/2019] [Indexed: 12/20/2022]
Abstract
Rodents extract information about nearby objects from the movement of their whiskers through dynamic computations that are carried out by a network of forebrain structures that includes the thalamus and the primary sensory (S1BF) and motor (M1wk) whisker cortices. The posterior nucleus (Po), a higher order thalamic nucleus, is a key hub of this network, receiving cortical and brainstem sensory inputs and innervating both motor and sensory whisker-related cortical areas. In a recent study in rats, we showed that Po inputs differently impact sensory processing in S1BF and M1wk. Here, in C57BL/6 mice, we measured Po synaptic bouton layer distribution and size, compared cortical unit response latencies to "in vivo" Po activation, and pharmacologically examined the glutamatergic receptor mechanisms involved. We found that, in S1BF, a large majority (56%) of Po axon varicosities are located in layer (L)5a and only 12% in L2-L4, whereas in M1wk this proportion is inverted to 18% and 55%, respectively. Light and electron microscopic measurements showed that Po synaptic boutons in M1wk layers 3-4 are significantly larger (~ 50%) than those in S1BF L5a. Electrical Po stimulation elicits different area-specific response patterns. In S1BF, responses show weak or no facilitation, and involve both ionotropic and metabotropic glutamate receptors, whereas in M1wk, unit responses exhibit facilitation to repetitive stimulation and involve ionotropic NMDA glutamate receptors. Because of the different laminar distribution of axon terminals, synaptic bouton size and receptor mechanisms, the impact of Po signals on M1wk and S1BF, although simultaneous, is likely to be markedly different.
Collapse
Affiliation(s)
- Diana Casas-Torremocha
- Department of Anatomy and Graduate Program in Neuroscience, School of Medicine, Autónoma de Madrid University, Calle Arzobispo Morcillo 4, 28029, Madrid, Spain
| | - César Porrero
- Department of Anatomy and Graduate Program in Neuroscience, School of Medicine, Autónoma de Madrid University, Calle Arzobispo Morcillo 4, 28029, Madrid, Spain
| | - Javier Rodriguez-Moreno
- Department of Anatomy and Graduate Program in Neuroscience, School of Medicine, Autónoma de Madrid University, Calle Arzobispo Morcillo 4, 28029, Madrid, Spain
| | - María García-Amado
- Department of Anatomy and Graduate Program in Neuroscience, School of Medicine, Autónoma de Madrid University, Calle Arzobispo Morcillo 4, 28029, Madrid, Spain
| | - Joachim H R Lübke
- Institute of Neuroscience and Medicine INM-10, Research Centre Jülich GmbH, 52425, Jülich, Germany.,Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany.,JARA-Brain Medicine, Aachen, Germany
| | - Ángel Núñez
- Department of Anatomy and Graduate Program in Neuroscience, School of Medicine, Autónoma de Madrid University, Calle Arzobispo Morcillo 4, 28029, Madrid, Spain
| | - Francisco Clascá
- Department of Anatomy and Graduate Program in Neuroscience, School of Medicine, Autónoma de Madrid University, Calle Arzobispo Morcillo 4, 28029, Madrid, Spain.
| |
Collapse
|
9
|
GABAergic and cholinergic modulation of repetition suppression in inferior temporal cortex. Sci Rep 2018; 8:13160. [PMID: 30177749 PMCID: PMC6120963 DOI: 10.1038/s41598-018-31515-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 08/21/2018] [Indexed: 02/02/2023] Open
Abstract
Neurons in many brain areas of different species reduce their response when a stimulus is repeated. Such adaptation or repetition suppression is prevalent in inferior temporal (IT) cortex. The mechanisms underlying repetition suppression in IT are still poorly understood. Studies in rodents and in-vitro experiments suggest that acetylcholine and GABA can contribute to repetition suppression by interacting with fatigue-related or local adaptation mechanisms. Here, we examined the contribution of cholinergic and GABAergic mechanisms to repetition suppression in macaque IT, using an adaptation paradigm in which familiar images were presented successively with a short interstimulus interval. We found that intracortical local injections of acetylcholine and of the GABAA receptor antagonist Gabazine both increased repetition suppression in awake macaque IT. The increased repetition suppression was observed for both spiking activity and local field potential power. The latter was present mainly for frequencies below 50 Hz, spectral bands that typically do not show consistent repetition suppression in IT. Although increased with drug application, repetition suppression remained stimulus selective. These findings agree with the hypothesis that repetition suppression of IT neurons mainly results from suppressed input from upstream and other IT neurons but depend less on intrinsic neuronal fatigue.
Collapse
|
10
|
Kheradpezhouh E, Adibi M, Arabzadeh E. Response dynamics of rat barrel cortex neurons to repeated sensory stimulation. Sci Rep 2017; 7:11445. [PMID: 28904406 PMCID: PMC5597595 DOI: 10.1038/s41598-017-11477-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 08/24/2017] [Indexed: 11/25/2022] Open
Abstract
Neuronal adaptation is a common feature observed at various stages of sensory processing. Here, we quantified the time course of adaptation in rat somatosensory cortex. Under urethane anesthesia, we juxta-cellularly recorded single neurons (n = 147) while applying a series of whisker deflections at various frequencies (2-32 Hz). For ~90% of neurons, the response per unit of time decreased with frequency. The degree of adaptation increased along the train of deflections and was strongest at the highest frequency. However, a subset of neurons showed facilitation producing higher responses to subsequent deflections. The response latency to consecutive deflections increased both for neurons that exhibited adaptation and for those that exhibited response facilitation. Histological reconstruction of neurons (n = 45) did not reveal a systematic relationship between adaptation profiles and cell types. In addition to the periodic stimuli, we applied a temporally irregular train of deflections with a mean frequency of 8 Hz. For 70% of neurons, the response to the irregular stimulus was greater than that of the 8 Hz regular. This increased response to irregular stimulation was positively correlated with the degree of adaptation. Altogether, our findings demonstrate high levels of diversity among cortical neurons, with a proportion of neurons showing facilitation at specific temporal intervals.
Collapse
Affiliation(s)
- Ehsan Kheradpezhouh
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia.
- Australian Research Council Centre of Excellence for Integrative Brain Function, Australian National University Node, Canberra, ACT, Australia.
| | - Mehdi Adibi
- University of New South Wales, UNSW, Sydney, NSW, Australia
- International School for Advanced Studies - SISSA, Trieste, Italy
| | - Ehsan Arabzadeh
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
- Australian Research Council Centre of Excellence for Integrative Brain Function, Australian National University Node, Canberra, ACT, Australia
| |
Collapse
|
11
|
Valdés-Baizabal C, Parras GG, Ayala YA, Malmierca MS. Endocannabinoid Modulation of Stimulus-Specific Adaptation in Inferior Colliculus Neurons of the Rat. Sci Rep 2017; 7:6997. [PMID: 28765608 PMCID: PMC5539202 DOI: 10.1038/s41598-017-07460-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 06/26/2017] [Indexed: 11/11/2022] Open
Abstract
Cannabinoid receptors (CBRs) are widely distributed in the brain, including the inferior colliculus (IC). Here, we aim to study whether endocannabinoids influence a specific type of neuronal adaptation, namely, stimulus-specific adaptation (SSA) found in some IC neurons. SSA is important because it has been found as early as the level of the midbrain and therefore it may be a neuronal correlate of early indices of deviance detection. Furthermore, recent studies have demonstrated a direct link between SSA and MMN, that is widely used as an outcome measure in a variety of human neurodegenerative disorders. SSA is considered a form of short-term plasticity, and CBRs have been shown to play a role in short-term neural plasticity. Therefore, it is reasonable to hypothesize that endocannabinoids may play a role in the generation or modulation of SSA. We recorded single units in the IC under an oddball paradigm stimulation. The results demonstrate that cannabinoid agonists lead to a reduction in the neuronal adaptation. This change is due to a differential increase of the neuronal firing rate to the standard tone alone. Furthermore, we show that the effect is mediated by the cannabinoid receptor 1 (CBR1). Thus, cannabinoid agonists down-modulate SSA in IC neurons.
Collapse
Affiliation(s)
- C Valdés-Baizabal
- Auditory Neuroscience Laboratory, Institute of Neuroscience of Castilla y León, Calle Pintor Fernando Gallego 1, 37007, Salamanca, Spain.,The Salamanca Institute for Biomedical Research (IBSAL), 37007, Salamanca, Spain
| | - G G Parras
- Auditory Neuroscience Laboratory, Institute of Neuroscience of Castilla y León, Calle Pintor Fernando Gallego 1, 37007, Salamanca, Spain.,The Salamanca Institute for Biomedical Research (IBSAL), 37007, Salamanca, Spain
| | - Y A Ayala
- Auditory Neuroscience Laboratory, Institute of Neuroscience of Castilla y León, Calle Pintor Fernando Gallego 1, 37007, Salamanca, Spain.,Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | - M S Malmierca
- Auditory Neuroscience Laboratory, Institute of Neuroscience of Castilla y León, Calle Pintor Fernando Gallego 1, 37007, Salamanca, Spain. .,The Salamanca Institute for Biomedical Research (IBSAL), 37007, Salamanca, Spain. .,Department of Biology and Pathology, Faculty of Medicine, Campus Miguel de Unamuno, University of Salamanca, 37007, Salamanca, Spain.
| |
Collapse
|
12
|
Ferrè ER, Sahani M, Haggard P. Subliminal stimulation and somatosensory signal detection. Acta Psychol (Amst) 2016; 170:103-11. [PMID: 27387873 DOI: 10.1016/j.actpsy.2016.06.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 06/17/2016] [Accepted: 06/21/2016] [Indexed: 11/19/2022] Open
Abstract
Only a small fraction of sensory signals is consciously perceived. The brain's perceptual systems may include mechanisms of feedforward inhibition that protect the cortex from subliminal noise, thus reserving cortical capacity and conscious awareness for significant stimuli. Here we provide a new view of these mechanisms based on signal detection theory, and gain control. We demonstrated that subliminal somatosensory stimulation decreased sensitivity for the detection of a subsequent somatosensory input, largely due to increased false alarm rates. By delivering the subliminal somatosensory stimulus and the to-be-detected somatosensory stimulus to different digits of the same hand, we show that this effect spreads across the sensory surface. In addition, subliminal somatosensory stimulation tended to produce an increased probability of responding "yes", whether the somatosensory stimulus was present or not. Our results suggest that subliminal stimuli temporarily reduce input gain, avoiding excessive responses to further small inputs. This gain control may be automatic, and may precede discriminative classification of inputs into signals or noise. Crucially, we found that subliminal inputs influenced false alarm rates only on blocks where the to-be-detected stimuli were present, and not on pre-test control blocks where they were absent. Participants appeared to adjust their perceptual criterion according to a statistical distribution of stimuli in the current context, with the presence of supraliminal stimuli having an important role in the criterion-setting process. These findings clarify the cognitive mechanisms that reserve conscious perception for salient and important signals.
Collapse
Affiliation(s)
- Elisa Raffaella Ferrè
- Institute of Cognitive Neuroscience, University College London, Alexandra House, 17 Queen Square, London WC1N 3AR, UK; Department of Psychology, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK.
| | - Maneesh Sahani
- Gatsby Computational Neuroscience Unit, University College London, 25 Howland Street, London, W1T4JG, UK
| | - Patrick Haggard
- Institute of Cognitive Neuroscience, University College London, Alexandra House, 17 Queen Square, London WC1N 3AR, UK.
| |
Collapse
|
13
|
Chaves-Coira I, Barros-Zulaica N, Rodrigo-Angulo M, Núñez Á. Modulation of Specific Sensory Cortical Areas by Segregated Basal Forebrain Cholinergic Neurons Demonstrated by Neuronal Tracing and Optogenetic Stimulation in Mice. Front Neural Circuits 2016; 10:28. [PMID: 27147975 PMCID: PMC4837153 DOI: 10.3389/fncir.2016.00028] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 03/29/2016] [Indexed: 12/22/2022] Open
Abstract
Neocortical cholinergic activity plays a fundamental role in sensory processing and cognitive functions. Previous results have suggested a refined anatomical and functional topographical organization of basal forebrain (BF) projections that may control cortical sensory processing in a specific manner. We have used retrograde anatomical procedures to demonstrate the existence of specific neuronal groups in the BF involved in the control of specific sensory cortices. Fluoro-Gold (FlGo) and Fast Blue (FB) fluorescent retrograde tracers were deposited into the primary somatosensory (S1) and primary auditory (A1) cortices in mice. Our results revealed that the BF is a heterogeneous area in which neurons projecting to different cortical areas are segregated into different neuronal groups. Most of the neurons located in the horizontal limb of the diagonal band of Broca (HDB) projected to the S1 cortex, indicating that this area is specialized in the sensory processing of tactile stimuli. However, the nucleus basalis magnocellularis (B) nucleus shows a similar number of cells projecting to the S1 as to the A1 cortices. In addition, we analyzed the cholinergic effects on the S1 and A1 cortical sensory responses by optogenetic stimulation of the BF neurons in urethane-anesthetized transgenic mice. We used transgenic mice expressing the light-activated cation channel, channelrhodopsin-2, tagged with a fluorescent protein (ChR2-YFP) under the control of the choline-acetyl transferase promoter (ChAT). Cortical evoked potentials were induced by whisker deflections or by auditory clicks. According to the anatomical results, optogenetic HDB stimulation induced more extensive facilitation of tactile evoked potentials in S1 than auditory evoked potentials in A1, while optogenetic stimulation of the B nucleus facilitated either tactile or auditory evoked potentials equally. Consequently, our results suggest that cholinergic projections to the cortex are organized into segregated pools of neurons that may modulate specific cortical areas.
Collapse
Affiliation(s)
- Irene Chaves-Coira
- Departamento de Anatomía, Histología y Neurociencia, Facultad de Medicina, Universidad Autónoma de Madrid Madrid, Spain
| | - Natali Barros-Zulaica
- Departamento de Anatomía, Histología y Neurociencia, Facultad de Medicina, Universidad Autónoma de Madrid Madrid, Spain
| | - Margarita Rodrigo-Angulo
- Departamento de Anatomía, Histología y Neurociencia, Facultad de Medicina, Universidad Autónoma de Madrid Madrid, Spain
| | - Ángel Núñez
- Departamento de Anatomía, Histología y Neurociencia, Facultad de Medicina, Universidad Autónoma de Madrid Madrid, Spain
| |
Collapse
|
14
|
Ayala YA, Malmierca MS. Cholinergic Modulation of Stimulus-Specific Adaptation in the Inferior Colliculus. J Neurosci 2015; 35:12261-72. [PMID: 26338336 PMCID: PMC6605313 DOI: 10.1523/jneurosci.0909-15.2015] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Revised: 07/13/2015] [Accepted: 07/28/2015] [Indexed: 01/28/2023] Open
Abstract
Neural encoding of an ever-changing acoustic environment is a complex and demanding process that depends on modulation by neuroactive substances. Some neurons of the inferior colliculus (IC) exhibit "stimulus-specific adaptation" (SSA), i.e., a decrease in their response to a repetitive sound, but not to a rare one. Previous studies have demonstrated that acetylcholine (ACh) alters the frequency response areas of auditory neurons and therefore is important in the encoding of spectral information. Here, we address how microiontophoretic application of ACh modulates SSA in the IC of the anesthetized rat. We found that ACh decreased SSA in IC neurons by increasing the response to the repetitive tone. This effect was mainly mediated by muscarinic receptors. The strength of the cholinergic modulation depended on the baseline SSA level, exerting its greatest effect on neurons with intermediate SSA responses across IC subdivisions. Our data demonstrate that the increased availability of ACh exerts transient functional changes in partially adapting IC neurons, enhancing the sensory encoding of the ongoing stimulation. This effect potentially contributes to the propagation of ascending sensory-evoked afferent activity through the thalamus en route to the cortex. SIGNIFICANCE STATEMENT Neural encoding of an ever-changing acoustic environment is a complex and demanding task that may depend on the available levels of neuroactive substances. We explored how the cholinergic inputs affect the responses of neurons in the auditory midbrain that exhibit different degrees of stimulus-specific adaptation (SSA), i.e., a specific decrease in their response to a repeated sound that does not generalize to other, rare sounds. This work addresses the role of cholinergic synaptic inputs as well as the contribution of the muscarinic and nicotinic receptors on SSA. This is the first report on the role of neuromodulation on SSA, and the results contribute to our understanding of the cellular bases for processing low- and high-probability sounds.
Collapse
Affiliation(s)
- Yaneri A Ayala
- Auditory Neuroscience Laboratory, Institute of Neuroscience of Castilla y León and
| | - Manuel S Malmierca
- Auditory Neuroscience Laboratory, Institute of Neuroscience of Castilla y León and Department of Cell Biology and Pathology, Faculty of Medicine, University of Salamanca, 37007 Salamanca, Spain
| |
Collapse
|
15
|
Tamè L, Pavani F, Braun C, Salemme R, Farnè A, Reilly KT. Somatotopy and temporal dynamics of sensorimotor interactions: evidence from double afferent inhibition. Eur J Neurosci 2015; 41:1459-65. [DOI: 10.1111/ejn.12890] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 03/06/2015] [Accepted: 03/06/2015] [Indexed: 11/29/2022]
Affiliation(s)
- Luigi Tamè
- Department of Psychological Sciences; Birkbeck; University of London; Malet Street London; WC1E 7HX London UK
- INSERM U1028; CNRS UMR5292; ImpAct Team; Lyon Neuroscience Research Centre; Lyon France
- Center for Mind/Brain Sciences; University of Trento; Rovereto Italy
| | - Francesco Pavani
- Center for Mind/Brain Sciences; University of Trento; Rovereto Italy
- Department of Psychology and Cognitive Sciences; University of Trento; Rovereto Italy
| | - Christoph Braun
- Center for Mind/Brain Sciences; University of Trento; Rovereto Italy
- Department of Psychology and Cognitive Sciences; University of Trento; Rovereto Italy
- MEG-Zentrum; University Tübingen; Tübingen Germany
| | - Romeo Salemme
- INSERM U1028; CNRS UMR5292; ImpAct Team; Lyon Neuroscience Research Centre; Lyon France
- University Claude Bernard Lyon I; Lyon France
| | - Alessandro Farnè
- INSERM U1028; CNRS UMR5292; ImpAct Team; Lyon Neuroscience Research Centre; Lyon France
- University Claude Bernard Lyon I; Lyon France
| | - Karen T. Reilly
- INSERM U1028; CNRS UMR5292; ImpAct Team; Lyon Neuroscience Research Centre; Lyon France
- University Claude Bernard Lyon I; Lyon France
| |
Collapse
|