1
|
Song J. BDNF Signaling in Vascular Dementia and Its Effects on Cerebrovascular Dysfunction, Synaptic Plasticity, and Cholinergic System Abnormality. J Lipid Atheroscler 2024; 13:122-138. [PMID: 38826183 PMCID: PMC11140249 DOI: 10.12997/jla.2024.13.2.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/29/2023] [Accepted: 12/19/2023] [Indexed: 06/04/2024] Open
Abstract
Vascular dementia (VaD) is the second most common type of dementia and is characterized by memory impairment, blood-brain barrier disruption, neuronal cell loss, glia activation, impaired synaptic plasticity, and cholinergic system abnormalities. To effectively prevent and treat VaD a good understanding of the mechanisms underlying its neuropathology is needed. Brain-derived neurotrophic factor (BDNF) is an important neurotrophic factor with multiple functions in the systemic circulation and the central nervous system and is known to regulate neuronal cell survival, synaptic formation, glia activation, and cognitive decline. Recent studies indicate that when compared with normal subjects, patients with VaD have low serum BDNF levels and that BDNF deficiency in the serum and cerebrospinal fluid is an important indicator of VaD. Here, we review current knowledge on the role of BDNF signaling in the pathology of VaD, such as cerebrovascular dysfunction, synaptic dysfunction, and cholinergic system impairment.
Collapse
Affiliation(s)
- Juhyun Song
- Department of Anatomy, Chonnam National University Medical School, Hwasun, Korea
| |
Collapse
|
2
|
Pei MQ, Xu LM, Yang YS, Chen WC, Chen XL, Fang YM, Lin S, He HF. Latest advances and clinical application prospects of resveratrol therapy for neurocognitive disorders. Brain Res 2024; 1830:148821. [PMID: 38401770 DOI: 10.1016/j.brainres.2024.148821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/13/2024] [Accepted: 02/21/2024] [Indexed: 02/26/2024]
Abstract
Neurocognitive disorders, such as Alzheimer's disease, vascular dementia, and postoperative cognitive dysfunction, are non-psychiatric brain syndromes in which a significant decline in cognitive function causes great trauma to the mental status of the patient. The lack of effective treatments for neurocognitive disorders imposes a considerable burden on society, including a substantial economic impact. Over the past few decades, the identification of resveratrol, a natural plant compound, has provided researchers with an opportunity to formulate novel strategies for the treatment of neurocognitive disorders. This is because resveratrol effectively protects the brain of those with neurocognitive disorders by targeting some mechanisms such as inflammation and oxidative stress. This article reviews the status of recent research investigating the use of resveratrol for the treatment of different neurocognitive disorders. By examining the possible mechanisms of action of resveratrol and the shared mechanisms of different neurocognitive disorders, treatments for neurocognitive disorders may be further clarified.
Collapse
Affiliation(s)
- Meng-Qin Pei
- Department of Anesthesiology, the Second Affiliated Hospital of Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, Fujian Province, China
| | - Li-Ming Xu
- Department of Anesthesiology, the Second Affiliated Hospital of Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, Fujian Province, China
| | - Yu-Shen Yang
- Department of Anesthesiology, the Second Affiliated Hospital of Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, Fujian Province, China
| | - Wei-Can Chen
- Department of Anesthesiology, the Second Affiliated Hospital of Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, Fujian Province, China
| | - Xin-Li Chen
- Department of Anesthesiology, the Second Affiliated Hospital of Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, Fujian Province, China
| | - Yu-Ming Fang
- Department of Anesthesiology, the Second Affiliated Hospital of Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, Fujian Province, China
| | - Shu Lin
- Center of Neurological and Metabolic Research, the Second Affiliated Hospital of Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, Fujian Province, China; Neuroendocrinology Group, Garvan Institute of Medical Research, 384 Victoria St, Sydney, Australia.
| | - He-Fan He
- Department of Anesthesiology, the Second Affiliated Hospital of Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, Fujian Province, China.
| |
Collapse
|
3
|
Liu X, Ding Y, Jiang C, Ma X, Xin Y, Li Y, Zhang S, Shao B. Astragaloside IV ameliorates radiation-induced nerve cell damage by activating the BDNF/TrkB signaling pathway. Phytother Res 2023; 37:4102-4116. [PMID: 37226643 DOI: 10.1002/ptr.7872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 04/23/2023] [Accepted: 05/03/2023] [Indexed: 05/26/2023]
Abstract
Radiation can induce nerve cell damage. Synapse connectivity and functionality are thought to be the essential foundation of all cognitive functions. Therefore, treating and preventing damage to synaptic structure and function is an urgent challenge. Astragaloside IV (AS-IV) is a glycoside extracted from Astragalus membranaceus (Fisch.). Bunge is a widely used traditional Chinese medicine in China with various pharmacological properties, including protective effects on the central nervous system (CNS). In this study, the effect of AS-IV on synapse damage and BDNF/TrkB signaling pathway in radiated C57BL/6 mice with X-rays was investigated. PC12 cells and primary cortical neurons were exposed to UVA in vitro. Open field test and rotarod test were used to observe the effects of AS-IV on the motor and explore the abilities of radiated mice. The pathological changes in the brain were observed by hematoxylin and eosin and Nissl staining. Immunofluorescence analysis was used to detect the synapse damage. The expressions of the BDNF/TrkB pathway and neuroprotection-related molecules were detected by Western blotting and Quantitative-RTPCR, respectively. The results showed that AS-IV could improve the motor and explore abilities of radiated mice, reduce pathological damage to the cortex, enhance neuroprotection functions, and activate BDNF/TrkB pathway. In conclusion, AS-IV could relieve radiation-induced synapse damage, at least partly through the BDNF/TrkB pathway.
Collapse
Affiliation(s)
- Xin Liu
- Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Yanping Ding
- School of Life Sciences, Northwest Normal University, Lanzhou, China
| | - Chenxin Jiang
- Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Xin Ma
- Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Yuanyuan Xin
- Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Yingdong Li
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Shengxiang Zhang
- Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Baoping Shao
- Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, China
| |
Collapse
|
4
|
Arjunan A, Sah DK, Jung YD, Song J. Hepatic Encephalopathy and Melatonin. Antioxidants (Basel) 2022; 11:antiox11050837. [PMID: 35624703 PMCID: PMC9137547 DOI: 10.3390/antiox11050837] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 04/06/2022] [Accepted: 04/24/2022] [Indexed: 11/25/2022] Open
Abstract
Hepatic encephalopathy (HE) is a severe metabolic syndrome linked with acute/chronic hepatic disorders. HE is also a pernicious neuropsychiatric complication associated with cognitive decline, coma, and death. Limited therapies are available to treat HE, which is formidable to oversee in the clinic. Thus, determining a novel therapeutic approach is essential. The pathogenesis of HE has not been well established. According to various scientific reports, neuropathological symptoms arise due to excessive accumulation of ammonia, which is transported to the brain via the blood–brain barrier (BBB), triggering oxidative stress and inflammation, and disturbing neuronal-glial functions. The treatment of HE involves eliminating hyperammonemia by enhancing the ammonia scavenging mechanism in systemic blood circulation. Melatonin is the sole endogenous hormone linked with HE. Melatonin as a neurohormone is a potent antioxidant that is primarily synthesized and released by the brain’s pineal gland. Several HE and liver cirrhosis clinical studies have demonstrated impaired synthesis, secretion of melatonin, and circadian patterns. Melatonin can cross the BBB and is involved in various neuroprotective actions on the HE brain. Hence, we aim to elucidate how HE impairs brain functions, and elucidate the precise molecular mechanism of melatonin that reverses the HE effects on the central nervous system.
Collapse
Affiliation(s)
- Archana Arjunan
- Department of Anatomy, Chonnam National University Medical School, Hwasun 58128, Korea;
| | - Dhiraj Kumar Sah
- Department of Biochemistry, Chonnam National University Medical School, Hwasun 58128, Korea;
| | - Young Do Jung
- Department of Biochemistry, Chonnam National University Medical School, Hwasun 58128, Korea;
- Correspondence: (Y.D.J.); (J.S.); Tel.: +82-61-379-2706 (J.S.)
| | - Juhyun Song
- Department of Anatomy, Chonnam National University Medical School, Hwasun 58128, Korea;
- BioMedical Sciences Graduate Program (BMSGP), Chonnam National University, 264 Seoyangro, Hwasun 58128, Korea
- Correspondence: (Y.D.J.); (J.S.); Tel.: +82-61-379-2706 (J.S.)
| |
Collapse
|
5
|
Glendon K, Blenkinsop G, Belli A, Pain M. Does Vestibular-Ocular-Motor (VOM) Impairment Affect Time to Return to Play, Symptom Severity, Neurocognition and Academic Ability in Student-Athletes following acute Concussion? Brain Inj 2021; 35:788-797. [PMID: 33896286 DOI: 10.1080/02699052.2021.1911001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Introduction: Research indicates Sports-Related Concussion (SRC) impairs Vestibular-Ocular-Motor (VOM) function. The aim was to explore if VOM impairment correlates with longer Return To Play (RTP), symptom burden, neurocognitive performance and academic capability.Participants: 40 (61.4% male) Loughborough University, UK, rugby union student-athletes who sustained 42 SRCs.Methods: Student-athletes completed an assessment battery during pre-season (baseline), 2, 4, 8 and 14 days post-SRC and prior to RTP and were managed according to the rugby Football Union' community pathway.Outcome measures: Vestibular Ocular-Motor Screening (VOMS), Immediate Post-Concussion Assessment and Cognitive Test, Post-Concussion Symptom Scale, Perceived Academic Impairment Tool questionnaire and percentage of academic activities specifically missed due to SRC.Results: VOMS scores were significantly (p < 0.005) greater than baseline at all time points except RTP. Presence of VOM dysfunction at 14 days post-SRC significantly correlated with a longer RTP, greater symptom burden and increased odds ratio at 2, 4 and 8 days and academic time loss at 2, 4 and 8 days post-SRC.Conclusion: VOM impairment is associated with an increased symptom burden and impaired academic capability, and a longer time to RTP when present at 14 days post-SRC.
Collapse
Affiliation(s)
- K Glendon
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - G Blenkinsop
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - A Belli
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - M Pain
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| |
Collapse
|
6
|
Effects of imperatorin on apoptosis and synaptic plasticity in vascular dementia rats. Sci Rep 2021; 11:8590. [PMID: 33883654 PMCID: PMC8060272 DOI: 10.1038/s41598-021-88206-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 04/09/2021] [Indexed: 01/02/2023] Open
Abstract
In view of the complicated pathophysiological process of vascular dementia (VD), drugs for the clinical treatment of VD mainly target related risk factors, while drugs with excellent efficacy in cognitive function are still relatively lacking. Imperatorin (IMP), an active constituent extracted from angelica dahuricae and notopterygium Notopterygii, which has anti-inflammatory, vasodilator, anticoagulant, block calcium channel, anticonvulsant, and anti oxygen free radical injury properties. Therefore,the present study examined its effects on VD rats and the underlying molecular mechanisms, in order to provide promising therapeutic methods. VD was established by modified ligation of perpetual two-vessel occlusion (2VO). After 2VO surgery, IMP (2.5, 5, and 10 mg/kg) was administered by intraperitoneal injection for 12 consecutive weeks to evaluate therapeutic effects. Cognitive function was verified by the Morris water maze. The neuronal morphological changes were examined via Hematoxylin-Eosin staining. Real-Time PCR and Western blot were used for detecting pro- and antiapoptotic biomarkers, and the hippocampus synaptic damage was examined by Transmission electron microscope. We revealed that 2VO-induced cognitive impairment, hippocampus CA1 neuron damage, apoptosis and synaptic damage. IMP-treatment significantly improved 2VO-induced cognitive deficits and hippocampus neuron damage. Molecular analysis revealed that IMP inhibited apoptosis through the down regulation of Bax, Caspase-3 and upregulation of Bcl-2. Meanwhile, IMP-treatment markedly improved synaptic ultrastructure morphology, increased the SAZ length, PSD thickness and up-regulated PSD-95 expression. Collectively, our findings demonstrated that IMP was effective in the treatment of 2VO-induced VD via inhibiting apoptosis of hippocampus neurons and reducing the synaptic plasticity destroy.
Collapse
|
7
|
A Brain-Inspired Adaptive Space Representation Model Based on Grid Cells and Place Cells. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2020; 2020:1492429. [PMID: 32849862 PMCID: PMC7439180 DOI: 10.1155/2020/1492429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 04/24/2020] [Indexed: 11/17/2022]
Abstract
Grid cells and place cells are important neurons in the animal brain. The information transmission between them provides the basis for the spatial representation and navigation of animals and also provides reference for the research on the autonomous navigation mechanism of intelligent agents. Grid cells are important information source of place cells. The supervised learning and unsupervised learning models can be used to simulate the generation of place cells from grid cell inputs. However, the existing models preset the firing characteristics of grid cell. In this paper, we propose a united generation model of grid cells and place cells. First, the visual place cells with nonuniform distribution generate the visual grid cells with regional firing field through feedforward network. Second, the visual grid cells and the self-motion information generate the united grid cells whose firing fields extend to the whole space through genetic algorithm. Finally, the visual place cells and the united grid cells generate the united place cells with uniform distribution through supervised fuzzy adaptive resonance theory (ART) network. Simulation results show that this model has stronger environmental adaptability and can provide reference for the research on spatial representation model and brain-inspired navigation mechanism of intelligent agents under the condition of nonuniform environmental information.
Collapse
|
8
|
Uncertainty-based modulation for lifelong learning. Neural Netw 2019; 120:129-142. [PMID: 31708227 DOI: 10.1016/j.neunet.2019.09.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 08/23/2019] [Accepted: 09/07/2019] [Indexed: 11/21/2022]
Abstract
The creation of machine learning algorithms for intelligent agents capable of continuous, lifelong learning is a critical objective for algorithms being deployed on real-life systems in dynamic environments. Here we present an algorithm inspired by neuromodulatory mechanisms in the human brain that integrates and expands upon Stephen Grossberg's ground-breaking Adaptive Resonance Theory proposals. Specifically, it builds on the concept of uncertainty, and employs a series of "neuromodulatory" mechanisms to enable continuous learning, including self-supervised and one-shot learning. Algorithm components were evaluated in a series of benchmark experiments that demonstrate stable learning without catastrophic forgetting. We also demonstrate the critical role of developing these systems in a closed-loop manner where the environment and the agent's behaviors constrain and guide the learning process. To this end, we integrated the algorithm into an embodied simulated drone agent. The experiments show that the algorithm is capable of continuous learning of new tasks and under changed conditions with high classification accuracy (>94%) in a virtual environment, without catastrophic forgetting. The algorithm accepts high dimensional inputs from any state-of-the-art detection and feature extraction algorithms, making it a flexible addition to existing systems. We also describe future development efforts focused on imbuing the algorithm with mechanisms to seek out new knowledge as well as employ a broader range of neuromodulatory processes.
Collapse
|
9
|
Osipov GS, Panov AI. Relationships and Operations in a Sign-Based World Model of the Actor. SCIENTIFIC AND TECHNICAL INFORMATION PROCESSING 2019. [DOI: 10.3103/s0147688218050040] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Duman JG, Dinh J, Zhou W, Cham H, Mavratsas VC, Paveškovic M, Mulherkar S, McGovern SL, Tolias KF, Grosshans DR. Memantine prevents acute radiation-induced toxicities at hippocampal excitatory synapses. Neuro Oncol 2019; 20:655-665. [PMID: 29112734 PMCID: PMC5892158 DOI: 10.1093/neuonc/nox203] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Background Memantine has shown clinical utility in preventing radiation-induced cognitive impairment, but the mechanisms underlying its protective effects remain unknown. We hypothesized that abnormal glutamate signaling causes radiation-induced abnormalities in neuronal structure and that memantine prevents synaptic toxicity. Methods Hippocampal cultures expressing enhanced green fluorescent protein were irradiated or sham-treated and their dendritic spine morphology assessed at acute (minutes) and later (days) times using high-resolution confocal microscopy. Excitatory synapses, defined by co-localization of the pre- and postsynaptic markers vesicular glutamate transporter 1 and postsynaptic density protein 95, were also analyzed. Neurons were pretreated with vehicle, the N-methyl-d-aspartate-type glutamate receptor antagonist memantine, or the glutamate scavenger glutamate pyruvate transaminase to assess glutamate signaling. For animal studies, Thy-1-YFP mice were treated with whole-brain radiotherapy or sham with or without memantine. Results Unlike previously reported long-term losses of dendritic spines, we found that the acute response to radiation is an initial increase in spines and excitatory synapses followed by a decrease in spine/synapse density with altered spine dynamics. Memantine pre-administration prevented this radiation-induced synaptic remodeling. Conclusion These results demonstrate that radiation causes rapid, dynamic changes in synaptic structural plasticity, implicate abnormal glutamate signaling in cognitive dysfunction following brain irradiation, and describe a protective mechanism of memantine.
Collapse
Affiliation(s)
- Joseph G Duman
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas
| | - Jeffrey Dinh
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Wei Zhou
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Henry Cham
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas
| | - Vasilis C Mavratsas
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas.,Rice University, Houston, Texas
| | - Matea Paveškovic
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas
| | - Shalaka Mulherkar
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas
| | - Susan L McGovern
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kimberley F Tolias
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas.,Verna & Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas
| | - David R Grosshans
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
11
|
Schoeller F, Perlovsky L. Aesthetic Chills: Knowledge-Acquisition, Meaning-Making, and Aesthetic Emotions. Front Psychol 2016; 7:1093. [PMID: 27540366 PMCID: PMC4973431 DOI: 10.3389/fpsyg.2016.01093] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 07/06/2016] [Indexed: 11/13/2022] Open
Abstract
This article addresses the relation between aesthetic emotions, knowledge-acquisition, and meaning-making. We briefly review theoretical foundations and present experimental data related to aesthetic chills. These results suggest that aesthetic chills are inhibited by exposing the subject to an incoherent prime prior to the chill-eliciting stimulation and that a meaningful prime makes the aesthetic experience more pleasurable than a neutral or an incoherent one. Aesthetic chills induced by narrative structures seem to be related to the pinnacle of the story, to have a significant calming effect and subjects describe a strong empathy for the characters. We discuss the relation between meaning-making and aesthetic emotions at the psychological, physiological, narratological, and mathematical levels and propose a series of hypotheses to be tested in future research.
Collapse
Affiliation(s)
- Felix Schoeller
- Department of Media, Cognition and Communication, University of Copenhagen Copenhagen, Denmark
| | | |
Collapse
|
12
|
Abstract
Starting with the work of Cajal more than 100 years ago, neuroscience has sought to understand how the cells of the brain give rise to cognitive functions. How far has neuroscience progressed in this endeavor? This Perspective assesses progress in elucidating five basic brain processes: visual recognition, long-term memory, short-term memory, action selection, and motor control. Each of these processes entails several levels of analysis: the behavioral properties, the underlying computational algorithm, and the cellular/network mechanisms that implement that algorithm. At this juncture, while many questions remain unanswered, achievements in several areas of research have made it possible to relate specific properties of brain networks to cognitive functions. What has been learned reveals, at least in rough outline, how cognitive processes can be an emergent property of neurons and their connections.
Collapse
Affiliation(s)
- John Lisman
- Biology Department and Volen Center for Complex Systems, Brandeis University, 415 South Street, Waltham, MA 02454-9110, USA.
| |
Collapse
|