1
|
Priya, Yadav N, Anand S, Banerjee J, Tripathi M, Chandra PS, Dixit AB. The multifaceted role of Wnt canonical signalling in neurogenesis, neuroinflammation, and hyperexcitability in mesial temporal lobe epilepsy. Neuropharmacology 2024; 251:109942. [PMID: 38570066 DOI: 10.1016/j.neuropharm.2024.109942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/18/2024] [Accepted: 03/29/2024] [Indexed: 04/05/2024]
Abstract
Epilepsy is a neurological disorder characterised by unprovoked, repetitive seizures caused by abnormal neuronal firing. The Wnt/β-Catenin signalling pathway is involved in seizure-induced neurogenesis, aberrant neurogenesis, neuroinflammation, and hyperexcitability associated with epileptic disorder. Wnt/β-Catenin signalling is crucial for early brain development processes including neuronal patterning, synapse formation, and N-methyl-d-aspartate receptor (NMDAR) regulation. Disruption of molecular networks such as Wnt/β-catenin signalling in epilepsy could offer encouraging anti-epileptogenic targets. So, with a better understanding of the canonical Wnt/-Catenin pathway, we highlight in this review the important elements of Wnt/-Catenin signalling specifically in Mesial Temporal Lobe Epilepsy (MTLE) for potential therapeutic targets.
Collapse
Affiliation(s)
- Priya
- Dr. B.R Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India
| | - Nitin Yadav
- Dr. B.R Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India
| | - Sneha Anand
- Dr. B.R Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India
| | - Jyotirmoy Banerjee
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Manjari Tripathi
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, India
| | - P Sarat Chandra
- Department of Neurosurgery, All India Institute of Medical Sciences, New Delhi, India
| | | |
Collapse
|
2
|
Zhang C, Ge L, Xie H, Liu X, Xun C, Chen Y, Chen H, Lu M, Chen P. Retinoic acid induced specific changes in the phosphoproteome of C17.2 neural stem cells. J Cell Mol Med 2024; 28:e18205. [PMID: 38506089 PMCID: PMC10951872 DOI: 10.1111/jcmm.18205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 01/16/2024] [Accepted: 02/20/2024] [Indexed: 03/21/2024] Open
Abstract
Retinoic acid (RA), a vitamin A derivative, is an effective cell differentiating factor which plays critical roles in neuronal differentiation induction and the production of neurotransmitters in neurons. However, the specific changes in phosphorylation levels and downstream signalling pathways associated with RA remain unclear. This study employed qualitative and quantitative phosphoproteomics approaches based on mass spectrometry to investigate the phosphorylation changes induced by RA in C17.2 neural stem cells (NSCs). Dimethyl labelling, in conjunction with TiO2 phosphopeptide enrichment, was utilized to profile the phosphoproteome of self-renewing and RA-induced differentiated cells in C17.2 NSCs. The results of our study revealed that, qualitatively, 230 and 14 phosphoproteins were exclusively identified in the self-renewal and RA-induced groups respectively. Quantitatively, we successfully identified and quantified 177 unique phosphoproteins, among which 70 exhibited differential phosphorylation levels. Analysis of conserved phosphorylation motifs demonstrated enrichment of motifs corresponding to cyclin-dependent kinase and MAPK in the RA-induced group. Additionally, through a comprehensive literature and database survey, we found that the differentially expressed proteins were associated with the Wnt/β-catenin and Hippo signalling pathways. This work sheds light on the changes in phosphorylation levels induced by RA in C17.2 NSCs, thereby expanding our understanding of the molecular mechanisms underlying RA-induced neuronal differentiation.
Collapse
Affiliation(s)
- Cheng Zhang
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life SciencesHunan Normal UniversityChangshaPR China
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life ScienceSouth China Normal UniversityGuangzhouPR China
| | - Lite Ge
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life SciencesHunan Normal UniversityChangshaPR China
- Hunan Provincial Key Laboratory of Neurorestoratology, the Second Affiliated HospitalHunan Normal UniversityChangshaPR China
- Department of Neurology, Second Xiangya HospitalCentral South UniversityChangshaPR China
| | - Huali Xie
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life SciencesHunan Normal UniversityChangshaPR China
| | - Xiaoqian Liu
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life SciencesHunan Normal UniversityChangshaPR China
| | - Chengfeng Xun
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life SciencesHunan Normal UniversityChangshaPR China
| | - Yan Chen
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life SciencesHunan Normal UniversityChangshaPR China
| | - Haiyan Chen
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life SciencesHunan Normal UniversityChangshaPR China
| | - Ming Lu
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life SciencesHunan Normal UniversityChangshaPR China
- Department of Neurology, Second Xiangya HospitalCentral South UniversityChangshaPR China
| | - Ping Chen
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life SciencesHunan Normal UniversityChangshaPR China
| |
Collapse
|
3
|
Isolation and Characterization of Cat Olfactory Ecto-Mesenchymal Stem Cells. Animals (Basel) 2022; 12:ani12101284. [PMID: 35625130 PMCID: PMC9137790 DOI: 10.3390/ani12101284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/28/2022] [Accepted: 05/13/2022] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Cat’s health is impacted by several diseases and lesions for which cell therapy could be an interesting treatment. Mesenchymal stem cells or adult stem cells are found in developed tissue. Olfactory mucosa contains stem cells called olfactory ecto-mesenchymal stem cells which have already been isolated from various animals as dogs and horses. The aim of this study was to evaluate the feasibility of collecting olfactory ecto-mesenchymal stem cells in cats. For that purpose, four cats were biopsied; the cells were collected and characterized. They show stemness features and differentiation capabilities as all the other mammals previously studied. Therefore, olfactory ecto-mesenchymal stem cells could be a promising tool for feline regenerative medicine. Abstract The olfactory mucosa contains olfactory ecto-mesenchymal stem cells (OE-MSCs) which show stemness features, multipotency capabilities, and have a therapeutic potential. The OE-MSCs have already been collected and isolated from various mammals. The aim of this study was to evaluate the feasibility of collecting, purifying and amplifying OE-MSCs from the cat nasal cavity. Four cats were included in the study. Biopsies of olfactory mucosa were performed on anesthetized animals. Then, the olfactory OE-MSCs were isolated, and their stemness features as well as their mesodermal differentiation capabilities were characterized. Olfactory mucosa biopsies were successfully performed in all subjects. From these biopsies, cellular populations were rapidly generated, presenting various stemness features, such as a fibroblast-like morphology, nestin and MAP2 expression, and sphere and colony formation. These cells could differentiate into neural and mesodermal lineages. This report shows for the first time that the isolation of OE-MSCs from cat olfactory mucosa is possible. These cells showed stemness features and multilineage differentiation capabilities, indicating they may be a promising tool for autologous grafts and feline regenerative medicine.
Collapse
|
4
|
Havelikova K, Smejkalova B, Jendelova P. Neurogenesis as a Tool for Spinal Cord Injury. Int J Mol Sci 2022; 23:ijms23073728. [PMID: 35409088 PMCID: PMC8998995 DOI: 10.3390/ijms23073728] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 12/19/2022] Open
Abstract
Spinal cord injury is a devastating medical condition with no effective treatment. One approach to SCI treatment may be provided by stem cells (SCs). Studies have mainly focused on the transplantation of exogenous SCs, but the induction of endogenous SCs has also been considered as an alternative. While the differentiation potential of neural stem cells in the brain neurogenic regions has been known for decades, there are ongoing debates regarding the multipotent differentiation potential of the ependymal cells of the central canal in the spinal cord (SCECs). Following spinal cord insult, SCECs start to proliferate and differentiate mostly into astrocytes and partly into oligodendrocytes, but not into neurons. However, there are several approaches concerning how to increase neurogenesis in the injured spinal cord, which are discussed in this review. The potential treatment approaches include drug administration, the reduction of neuroinflammation, neuromodulation with physical factors and in vivo reprogramming.
Collapse
Affiliation(s)
- Katerina Havelikova
- Institute of Experimental Medicine, Czech Academy of Sciences, Vídeňská 1083, 14220 Prague, Czech Republic; (K.H.); (B.S.)
- Department of Neuroscience, Second Faculty of Medicine, Charles University, 15006 Prague, Czech Republic
| | - Barbora Smejkalova
- Institute of Experimental Medicine, Czech Academy of Sciences, Vídeňská 1083, 14220 Prague, Czech Republic; (K.H.); (B.S.)
- Department of Neuroscience, Second Faculty of Medicine, Charles University, 15006 Prague, Czech Republic
| | - Pavla Jendelova
- Institute of Experimental Medicine, Czech Academy of Sciences, Vídeňská 1083, 14220 Prague, Czech Republic; (K.H.); (B.S.)
- Department of Neuroscience, Second Faculty of Medicine, Charles University, 15006 Prague, Czech Republic
- Correspondence: ; Tel.: +420-24-106-2828
| |
Collapse
|
5
|
McIntyre WB, Pieczonka K, Khazaei M, Fehlings MG. Regenerative replacement of neural cells for treatment of spinal cord injury. Expert Opin Biol Ther 2021; 21:1411-1427. [PMID: 33830863 DOI: 10.1080/14712598.2021.1914582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Introduction: Traumatic Spinal Cord Injury (SCI) results from primary physical injury to the spinal cord, which initiates a secondary cascade of neural cell death. Current therapeutic approaches can attenuate the consequences of the primary and secondary events, but do not address the degenerative aspects of SCI. Transplantation of neural stem/progenitor cells (NPCs) for the replacement of the lost/damaged neural cells is suggested here as a regenerative approach that is complementary to current therapeutics.Areas Covered: This review addresses how neurons, oligodendrocytes, and astrocytes are impacted by traumatic SCI, and how current research in regenerative-NPC therapeutics aims to restore their functionality. Methods used to enhance graft survival, as well as bias progenitor cells towards neuronal, oligodendrogenic, and astroglia lineages are discussed.Expert Opinion: Despite an NPC's ability to differentiate into neurons, oligodendrocytes, and astrocytes in the transplant environment, their potential therapeutic efficacy requires further optimization prior to translation into the clinic. Considering the temporospatial identity of NPCs could promote neural repair in region specific injuries throughout the spinal cord. Moreover, understanding which cells are targeted by NPC-derived myelinating cells can help restore physiologically-relevant myelin patterns. Finally, the duality of astrocytes is discussed, outlining their context-dependent importance in the treatment of SCI.
Collapse
Affiliation(s)
- William Brett McIntyre
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| | - Katarzyna Pieczonka
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| | - Mohamad Khazaei
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Michael G Fehlings
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada.,Department of Surgery, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
6
|
Wang D, Wang K, Liu Z, Wang Z, Wu H. Valproic Acid Labeled Chitosan Nanoparticles Promote the Proliferation and Differentiation of Neural Stem Cells After Spinal Cord Injury. Neurotox Res 2021; 39:456-466. [PMID: 33247828 DOI: 10.1007/s12640-020-00304-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/05/2020] [Accepted: 10/21/2020] [Indexed: 12/12/2022]
Abstract
Chitosan nanoparticles and valproic acid are demonstrated as the protective agents in the treatment of spinal cord injury (SCI). However, the effects of valproic acid-labeled chitosan nanoparticles (VA-CN) on endogenous spinal cord neural stem cells (NSCs) following SCI and the underlying mechanisms involved remain to be elucidated. In this study, the VA-CN was constructed and the effects of VA-CN on NSCs were assessed in a rat model of SCI. We found VA-CN treatment promoted recovery of the tissue and locomotive function following SCI. Moreover, administration of VA-CN significantly enhanced neural stem cell proliferation and the expression levels of neurotrophic factors following SCI. Furthermore, administration of VA-CN led to a decrease in the number of microglia following SCI. In addition, VA-CN treatment significantly increased the Tuj 1- positive cells in the spinal cord of the SCI rats, suggesting that VA-CN could enhance the differentiation of NSCs following SCI. In conclusion, these results demonstrated that VA-CN could improve the functional and histological recovery through promoting the proliferation and differentiation of NSCs following SCI, which would provide a newly potential therapeutic manner for the treatment of SCI.
Collapse
Affiliation(s)
- Dimin Wang
- School of Medicine, Zhejiang University, Hangzhou, China
- College of Basic Medical Sciences, Second Military Medical University, Shanghai, China
| | - Kai Wang
- Department of Neurosurgery, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Zhenlei Liu
- Department of Neurosurgery, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Zonglin Wang
- College of Basic Medical Sciences, Second Military Medical University, Shanghai, China
| | - Hao Wu
- Department of Neurosurgery, Xuanwu Hospital of Capital Medical University, Beijing, China.
| |
Collapse
|
7
|
Chu T, Zhang YP, Tian Z, Ye C, Zhu M, Shields LBE, Kong M, Barnes GN, Shields CB, Cai J. Dynamic response of microglia/macrophage polarization following demyelination in mice. J Neuroinflammation 2019; 16:188. [PMID: 31623610 PMCID: PMC6798513 DOI: 10.1186/s12974-019-1586-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 09/11/2019] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND The glial response in multiple sclerosis (MS), especially for recruitment and differentiation of oligodendrocyte progenitor cells (OPCs), predicts the success of remyelination of MS plaques and return of function. As a central player in neuroinflammation, activation and polarization of microglia/macrophages (M/M) that modulate the inflammatory niche and cytokine components in demyelination lesions may impact the OPC response and progression of demyelination and remyelination. However, the dynamic behaviors of M/M and OPCs during demyelination and spontaneous remyelination are poorly understood, and the complex role of neuroinflammation in the demyelination-remyelination process is not well known. In this study, we utilized two focal demyelination models with different dynamic patterns of M/M to investigate the correlation between M/M polarization and the demyelination-remyelination process. METHODS The temporal and spatial features of M/M activation/polarization and OPC response in two focal demyelination models induced by lysolecithin (LPC) and lipopolysaccharide (LPS) were examined in mice. Detailed discrimination of morphology, sensorimotor function, diffusion tensor imaging (DTI), inflammation-relevant cytokines, and glial responses between these two models were analyzed at different phases. RESULTS The results show that LPC and LPS induced distinctive temporal and spatial lesion patterns. LPS produced diffuse demyelination lesions, with a delayed peak of demyelination and functional decline compared to LPC. Oligodendrocytes, astrocytes, and M/M were scattered throughout the LPS-induced demyelination lesions but were distributed in a layer-like pattern throughout the LPC-induced lesion. The specific M/M polarization was tightly correlated to the lesion pattern associated with balance beam function. CONCLUSIONS This study elaborated on the spatial and temporal features of neuroinflammation mediators and glial response during the demyelination-remyelination processes in two focal demyelination models. Specific M/M polarization is highly correlated to the demyelination-remyelination process probably via modulations of the inflammatory niche, cytokine components, and OPC response. These findings not only provide a basis for understanding the complex and dynamic glial phenotypes and behaviors but also reveal potential targets to promote/inhibit certain M/M phenotypes at the appropriate time for efficient remyelination.
Collapse
Affiliation(s)
- Tianci Chu
- Department of Pediatrics, Pediatric Research Institute, University of Louisville School of Medicine, Donald Baxter Building, Suite 321B, 570 S. Preston Street, Louisville, KY, 40202, USA
| | - Yi Ping Zhang
- Norton Neuroscience Institute, Norton Healthcare, 210 East Gray Street, Suite 1102, Louisville, KY, 40202, USA
| | - Zhisen Tian
- Department of Pediatrics, Pediatric Research Institute, University of Louisville School of Medicine, Donald Baxter Building, Suite 321B, 570 S. Preston Street, Louisville, KY, 40202, USA
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, 130033, People's Republic of China
| | - Chuyuan Ye
- Department of Pediatrics, Pediatric Research Institute, University of Louisville School of Medicine, Donald Baxter Building, Suite 321B, 570 S. Preston Street, Louisville, KY, 40202, USA
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, People's Republic of China
| | - Mingming Zhu
- Department of Radiology, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Lisa B E Shields
- Norton Neuroscience Institute, Norton Healthcare, 210 East Gray Street, Suite 1102, Louisville, KY, 40202, USA
| | - Maiying Kong
- Department of Bioinformatics and Biostatistics, University of Louisville School of Public Health and Information Sciences, Louisville, KY, 40202, USA
| | - Gregory N Barnes
- Department of Pediatrics, Pediatric Research Institute, University of Louisville School of Medicine, Donald Baxter Building, Suite 321B, 570 S. Preston Street, Louisville, KY, 40202, USA
- Department of Neurology, University of Louisville School of Medicine, Louisville, KY, 40202, USA
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, 40202, USA
| | - Christopher B Shields
- Norton Neuroscience Institute, Norton Healthcare, 210 East Gray Street, Suite 1102, Louisville, KY, 40202, USA.
- Department of Neurological Surgery, University of Louisville School of Medicine, Louisville, KY, 40202, USA.
| | - Jun Cai
- Department of Pediatrics, Pediatric Research Institute, University of Louisville School of Medicine, Donald Baxter Building, Suite 321B, 570 S. Preston Street, Louisville, KY, 40202, USA.
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, 40202, USA.
| |
Collapse
|
8
|
Alizadeh R, Ramezanpour F, Mohammadi A, Eftekharzadeh M, Simorgh S, Kazemiha M, Moradi F. Differentiation of human olfactory system-derived stem cells into dopaminergic neuron-like cells: A comparison between olfactory bulb and mucosa as two sources of stem cells. J Cell Biochem 2019; 120:19712-19720. [PMID: 31297865 DOI: 10.1002/jcb.29277] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 06/20/2019] [Indexed: 12/11/2022]
Abstract
Cell transplantation has become a possible therapeutic approach in the treatment of neurodegenerative diseases of the nervous system by replacing lost cells. The current study aimed to make a comparison between the differentiation capacity of the olfactory bulb neural stem cells (OB-NSCs) and olfactory ectomesenchymal stem cells (OE-MSCs) into dopaminergic-like neurons under the inductive effect of transforming growth factor β (TGF-β). After culturing and treating with TGF-β, the differentiation capacities of both types of stem cells into dopaminergic neuron-like cells were evaluated. Quantitative real-time polymerase chain reaction analysis 3 weeks after induction demonstrated that the mRNA expression of the dopaminergic activity markers tyrosine hydroxylase (TH), dopamine transporter (DAT), paired box gene 2 (PAX2), and PAX5 in the neuron-like cells derived from OB-NSCs was significantly higher than those derived from OE-MSCs. These findings were further supported by the immunocytochemistry staining showing that the expression of the tyrosine hydroxylase, DAT, PAX2, and paired like homeodomain 3 seemed to be slightly higher in OB-NSCs compared with OE-MSCs. Despite the lower differentiation capacity of OE-MSCs, other considerations such as a noninvasive and easier harvesting process, faster proliferation attributes, longer life span, autologous transplantability, and also the easier and inexpensive cultural process of the OE-MSCs, cumulatively make these cells the more appropriate alternative in the case of autologous transplantation during the treatment process of neurodegenerative disorders like Parkinson's disease.
Collapse
Affiliation(s)
- Rafieh Alizadeh
- ENT and Head & Neck Research Center and Department, The Five Senses Institute, Hazrat Rasoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Farnaz Ramezanpour
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amirhossein Mohammadi
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mina Eftekharzadeh
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sara Simorgh
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Milad Kazemiha
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Moradi
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Zhao H, Zuo X, Ren L, Li Y, Tai H, Du J, Xie X, Zhang X, Han Y, Wu Y, Yang C, Xu Z, Hong H, Li S, Su B. Combined use of bFGF/EGF and all-trans-retinoic acid cooperatively promotes neuronal differentiation and neurite outgrowth in neural stem cells. Neurosci Lett 2018; 690:61-68. [PMID: 30300683 DOI: 10.1016/j.neulet.2018.10.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 10/02/2018] [Accepted: 10/03/2018] [Indexed: 01/09/2023]
Abstract
Neural stem cells (NSCs) as sources of new neurons in brain injuries or diseases are required to not only elicit neurons for neuronal repair, but also to enhance neurite outgrowth for neuronal network reestablishment. Various trophic or chemotropic factors have been shown to cooperatively improve NSC neurogenesis. However, effects of combined treatment of all-trans-retinoic acid (RA) with GF (Basic fibroblast growth factor and epidermal growth factor, bFGF/EGF) on neurogenesis of NSCs are poorly understood. To address this question, NSCs were isolated from the forebrains of embryonic mice, and treated with GF and RA either alone or in combination for differentiation in vitro. Neurons and astrocytes differentiated from NSCs were stained for MAP2 and GFAP separately by immunofluorescence. The results indicated that GF displayed superior efficacy in promoting neuronal differentiation, and RA showed better efficacy in advancing neurite outgrowth by increasing both neurite length and number. In addition, higher differentiation efficiency of neurons to astrocytes in RA or GF, or both acted at the early stage. However, more importantly, compared with RA alone, GF and RA in combination enhanced neuronal differentiation. Moreover, the combined use of GF and RA increased the length and number of neurites compared with GF, as well as the relative expression level of Smurf1. In addition, astrocytes induced by GF, RA, or both exhibited a radial glia-like morphology with long processes differing from serum effects, which might in part attribute to the total numbers of neurons. These findings for the first time unveil the roles of combined use of GF and RA on the neurogenesis of NSCs, suggesting that the use of this combination could be a comprehensive strategy for the functional repair of the nervous system through promoting neuronal differentiation, and advancing neurite outgrowth.
Collapse
Affiliation(s)
- Haixia Zhao
- Development and Regeneration Key Lab of Sichuan Province, Department of Anatomy and Histology and Embryology, Chengdu Medical College, Chengdu 610500, Sichuan, China
| | - Xuan Zuo
- Development and Regeneration Key Lab of Sichuan Province, Department of Pathology, Chengdu Medical College, Chengdu 610500, Sichuan, China
| | - Liyi Ren
- Development and Regeneration Key Lab of Sichuan Province, Department of Anatomy and Histology and Embryology, Chengdu Medical College, Chengdu 610500, Sichuan, China
| | - Yunzhu Li
- Development and Regeneration Key Lab of Sichuan Province, Department of Pathology, Chengdu Medical College, Chengdu 610500, Sichuan, China
| | - Haoran Tai
- Development and Regeneration Key Lab of Sichuan Province, Department of Anatomy and Histology and Embryology, Chengdu Medical College, Chengdu 610500, Sichuan, China
| | - Jipei Du
- Development and Regeneration Key Lab of Sichuan Province, Department of Anatomy and Histology and Embryology, Chengdu Medical College, Chengdu 610500, Sichuan, China
| | - Xuemin Xie
- Development and Regeneration Key Lab of Sichuan Province, Department of Anatomy and Histology and Embryology, Chengdu Medical College, Chengdu 610500, Sichuan, China
| | - Xiaoqing Zhang
- Development and Regeneration Key Lab of Sichuan Province, Department of Anatomy and Histology and Embryology, Chengdu Medical College, Chengdu 610500, Sichuan, China
| | - Yuping Han
- Development and Regeneration Key Lab of Sichuan Province, Department of Anatomy and Histology and Embryology, Chengdu Medical College, Chengdu 610500, Sichuan, China
| | - Yongmei Wu
- Development and Regeneration Key Lab of Sichuan Province, Department of Anatomy and Histology and Embryology, Chengdu Medical College, Chengdu 610500, Sichuan, China
| | - Chan Yang
- Development and Regeneration Key Lab of Sichuan Province, Department of Pathology, Chengdu Medical College, Chengdu 610500, Sichuan, China
| | - Zhen Xu
- Development and Regeneration Key Lab of Sichuan Province, Department of Anatomy and Histology and Embryology, Chengdu Medical College, Chengdu 610500, Sichuan, China
| | - Huarong Hong
- Development and Regeneration Key Lab of Sichuan Province, Department of Anatomy and Histology and Embryology, Chengdu Medical College, Chengdu 610500, Sichuan, China
| | - Shurong Li
- Development and Regeneration Key Lab of Sichuan Province, Department of Pathology, Chengdu Medical College, Chengdu 610500, Sichuan, China.
| | - Bingyin Su
- Development and Regeneration Key Lab of Sichuan Province, Department of Anatomy and Histology and Embryology, Chengdu Medical College, Chengdu 610500, Sichuan, China; Chengdu Medical College Infertility Hospital, Chengdu 610000, Sichuan, China.
| |
Collapse
|
10
|
Hodges SL, Lugo JN. Wnt/β-catenin signaling as a potential target for novel epilepsy therapies. Epilepsy Res 2018; 146:9-16. [PMID: 30053675 DOI: 10.1016/j.eplepsyres.2018.07.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 06/28/2018] [Accepted: 07/11/2018] [Indexed: 01/01/2023]
Abstract
Epilepsy is one of the most common neurological disorders, and yet many afflicted individuals are resistant to all available therapeutic treatments. Existing pharmaceutical treatments function primarily to reduce hyperexcitability and prevent seizures, but fail to influence the underlying pathophysiology of the disorder. Recently, research efforts have focused on identifying alternative mechanistic targets for anti-epileptogenic therapies that can prevent the development of chronic epilepsy. The Wnt/β-catenin pathway, one possible target, has been demonstrated to be disrupted in both acute and chronic phases of epilepsy. Wnt/β-catenin signaling can regulate many seizure-induced changes in the brain, including neurogenesis and neuronal death, as well as can influence seizure susceptibility and potentially the development of chronic epilepsy. Several genome-wide studies and in vivo knockout animal models have provided evidence for an association between disrupted Wnt/β-catenin signaling and epilepsy. Furthermore, approved pharmaceutical drugs and other small molecule compounds that target components of the β-catenin destruction complex or antagonize endogenous inhibitors of the pathway have shown to be protective following seizures. However, additional studies are needed to determine the optimal time period in which modulation of the pathway may be most beneficial. Overall, disrupted molecular networks such as Wnt/β-catenin signaling, could be a promising anti-epileptogenic target for future epilepsy therapies.
Collapse
Affiliation(s)
- Samantha L Hodges
- Institute of Biomedical Studies, Baylor University, Waco, TX, 76798, USA
| | - Joaquin N Lugo
- Institute of Biomedical Studies, Baylor University, Waco, TX, 76798, USA; Department of Psychology and Neuroscience, Baylor University, Waco, TX, 76798, USA; Department of Biology, Baylor University, Waco, TX, 76798, USA.
| |
Collapse
|
11
|
Wang WW, Han JH, Wang L, Bao TH. Scutellarin may alleviate cognitive deficits in a mouse model of hypoxia by promoting proliferation and neuronal differentiation of neural stem cells. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2017; 20:272-279. [PMID: 28392899 PMCID: PMC5378964 DOI: 10.22038/ijbms.2017.8355] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Objective(s): Scutellarin, a flavonoid extracted from the medicinal herb Erigeron breviscapus Hand-Mazz, protects neurons from damage and inhibits glial activation. Here we examined whether scutellarin may also protect neurons from hypoxia-induced damage. Materials and Methods: Mice were exposed to hypoxia for 7 days and then administered scutellarin (50 mg/kg/d) or vehicle for 30 days Cognitive impairment in the two groups was assessed using the Morris water maze test, cell proliferation in the hippocampus was compared using 5-bromo-2-deoxyuridine (BrdU) immunohistochemistry, and hippocampal levels of nestin and neuronal class III β-tubulin (Tuj-1) were measured using Western blotting. These results were validated in vitro by treating cultured neural stem cells (NSCs) with scutellarin (30 μM). Results: Treating mice with scutellarin shortened escape times and increased the number of platform crossings, it increased the number of BrdU-positive proliferating cells in the hippocampus, and it up-regulated expression of nestin and Tuj-1. Treating NSC cultures with scutellarin increased the number of proliferating cells and the proportion of cells differentiating into neurons instead of astrocytes. The increase in NSC proliferation was associated with phosphorylation of extracellular signal-regulated kinase (ERK) 1/2, while neuronal differentiation was associated with altered expression of differentiation-related genes. Conclusion: Scutellarin may alleviate cognitive impairment in a mouse model of hypoxia by promo-ting proliferation and neuronal differentiation of NSCs.
Collapse
Affiliation(s)
- Wei-Wei Wang
- Department of Cardiology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, PR China; Key Laboratory of Stem Cells and Regenerative Medicine, Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming, Yunnan, PR China; Department of Anatomy and Development Biology, Monash University, Clayton, vic 3800, Australia
| | - Jian-Hong Han
- The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, PR China
| | - Lin Wang
- The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, PR China
| | - Tian-Hao Bao
- The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, PR China; Mental Health Center of Kunming Medical University, Kunming City, Yunnan Province, PR China
| |
Collapse
|
12
|
Lu L, Zhou H, Pan B, Li X, Fu Z, Liu J, Shi Z, Chu T, Wei Z, Ning G, Feng S. c-Jun Amino-Terminal Kinase is Involved in Valproic Acid-Mediated Neuronal Differentiation of Mouse Embryonic NSCs and Neurite Outgrowth of NSC-Derived Neurons. Neurochem Res 2017; 42:1254-1266. [PMID: 28321599 PMCID: PMC5375971 DOI: 10.1007/s11064-016-2167-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 12/19/2016] [Accepted: 12/23/2016] [Indexed: 12/17/2022]
Abstract
Valproic acid (VPA), an anticonvulsant and mood-stabilizing drug, can induce neuronal differentiation, promote neurite extension and exert a neuroprotective effect in central nervous system (CNS) injuries; however, comparatively little is known regarding its action on mouse embryonic neural stem cells (NSCs) and the underlying molecular mechanism. Recent studies suggested that c-Jun N-terminal kinase (JNK) is required for neurite outgrowth and neuronal differentiation during neuronal development. In the present study, we cultured mouse embryonic NSCs and treated the cells with 1 mM VPA for up to 7 days. The results indicate that VPA promotes the neuronal differentiation of mouse embryonic NSCs and neurite outgrowth of NSC-derived neurons; moreover, VPA induces the phosphorylation of c-Jun by JNK. In contrast, the specific JNK inhibitor SP600125 decreased the VPA-stimulated increase in neuronal differentiation of mouse embryonic NSCs and neurite outgrowth of NSC-derived neurons. Taken together, these results suggest that VPA promotes neuronal differentiation of mouse embryonic NSCs and neurite outgrowth of NSC-derived neurons. Moreover, JNK activation is involved in the effects of VPA stimulation.
Collapse
Affiliation(s)
- Lu Lu
- Department of Orthopaedics, Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin, 300052, People's Republic of China
| | - Hengxing Zhou
- Department of Orthopaedics, Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin, 300052, People's Republic of China
| | - Bin Pan
- Department of Orthopaedics, Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin, 300052, People's Republic of China
| | - Xueying Li
- Key Laboratory of Immuno Microenvironment and Disease of the Educational Ministry of China, Department of Immunology, Tianjin Medical University, No. 22 Qixiangtai Road, Heping District, Tianjin, 300070, People's Republic of China
| | - Zheng Fu
- Key Laboratory of Immuno Microenvironment and Disease of the Educational Ministry of China, Department of Immunology, Tianjin Medical University, No. 22 Qixiangtai Road, Heping District, Tianjin, 300070, People's Republic of China
| | - Jun Liu
- Department of Orthopaedics, Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin, 300052, People's Republic of China
| | - Zhongju Shi
- Department of Orthopaedics, Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin, 300052, People's Republic of China
| | - Tianci Chu
- Kosair Children's Hospital Research Institute at the Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Zhijian Wei
- Department of Orthopaedics, Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin, 300052, People's Republic of China
| | - Guangzhi Ning
- Department of Orthopaedics, Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin, 300052, People's Republic of China
| | - Shiqing Feng
- Department of Orthopaedics, Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin, 300052, People's Republic of China.
| |
Collapse
|
13
|
Higgins GA, Georgoff P, Nikolian V, Allyn-Feuer A, Pauls B, Higgins R, Athey BD, Alam HE. Network Reconstruction Reveals that Valproic Acid Activates Neurogenic Transcriptional Programs in Adult Brain Following Traumatic Injury. Pharm Res 2017; 34:1658-1672. [PMID: 28271248 PMCID: PMC5498621 DOI: 10.1007/s11095-017-2130-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 02/17/2017] [Indexed: 12/22/2022]
Abstract
Objectives To determine the mechanism of action of valproic acid (VPA) in the adult central nervous system (CNS) following traumatic brain injury (TBI) and hemorrhagic shock (HS). Methods Data were analyzed from different sources, including experiments in a porcine model, data from postmortem human brain, published studies, public and commercial databases. Results The transcriptional program in the CNS following TBI, HS, and VPA treatment includes activation of regulatory pathways that enhance neurogenesis and suppress gliogenesis. Genes which encode the transcription factors (TFs) that specify neuronal cell fate, including MEF2D, MYT1L, NEUROD1, PAX6 and TBR1, and their target genes, are induced by VPA. VPA represses genes responsible for oligodendrogenesis, maintenance of white matter, T-cell activation, angiogenesis, and endothelial cell proliferation, adhesion and chemotaxis. NEUROD1 has regulatory interactions with 38% of the genes regulated by VPA in a swine model of TBI and HS in adult brain. Hi-C spatial mapping of a VPA pharmacogenomic SNP in the GRIN2B gene shows it is part of a transcriptional hub that contacts 12 genes that mediate chromatin-mediated neurogenesis and neuroplasticity. Conclusions Following TBI and HS, this study shows that VPA administration acts in the adult brain through differential activation of TFs responsible for neurogenesis, genes responsible for neuroplasticity, and repression of TFs that specify oligodendrocyte cell fate, endothelial cell chemotaxis and angiogenesis. Short title: Mechanism of action of valproic acid in traumatic brain injury Electronic supplementary material The online version of this article (doi:10.1007/s11095-017-2130-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gerald A. Higgins
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan USA
| | - Patrick Georgoff
- Department of Surgery, University of Michigan Medical School, Ann Arbor, Michigan USA
| | - Vahagn Nikolian
- Department of Surgery, University of Michigan Medical School, Ann Arbor, Michigan USA
| | - Ari Allyn-Feuer
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan USA
| | - Brian Pauls
- College of Pharmacy, University of Michigan, Ann Arbor, Michigan USA
| | - Richard Higgins
- Department of Computer Science, University of Maryland, College Park, Maryland USA
| | - Brian D. Athey
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan USA
- Michigan Institute for Data Science (MIDAS), Ann Arbor, Michigan USA
| | - Hasan E. Alam
- Department of Surgery, University of Michigan Medical School, Ann Arbor, Michigan USA
| |
Collapse
|
14
|
Liao W, Jiang M, Li M, Jin C, Xiao S, Fan S, Fang W, Zheng Y, Liu J. Magnesium Elevation Promotes Neuronal Differentiation While Suppressing Glial Differentiation of Primary Cultured Adult Mouse Neural Progenitor Cells through ERK/CREB Activation. Front Neurosci 2017; 11:87. [PMID: 28280456 PMCID: PMC5322230 DOI: 10.3389/fnins.2017.00087] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 02/10/2017] [Indexed: 12/25/2022] Open
Abstract
This study aimed to explore the influence of magnesium elevation on fate determination of adult neural progenitor cells (aNPCs) and the underlying mechanism in vitro. Adult neurogenesis, which is the generation of functional neurons from neural precursors, occurs throughout life in restricted anatomical regions in mammals. Magnesium is the fourth most abundant ion in mammals, and its elevation in the brain has been shown to enhance memory and synaptic plasticity in vivo. However, the effects of magnesium on fate determination of aNPCs, which are vital processes in neurogenesis, remain unknown. NPCs isolated from the dentate gyrus of adult C57/BL6 mice were induced to differentiate in a medium with varying magnesium concentrations (0.6, 0.8, and 1.0 mM) and extracellular signal-regulated kinase (ERK) inhibitor PD0325901. The proportion of cells that differentiated into neurons and glial cells was evaluated using immunofluorescence. Quantitative real-time polymerase chain reaction and Western blot methods were used to determine the expression of β-III tubulin (Tuj1) and glial fibrillary acidic protein (GFAP). The activation of ERK and cAMP response element-binding protein (CREB) was examined by Western blot to reveal the underlying mechanism. Magnesium elevation increased the proportion of Tju1-positive cells and decreased the proportion of GFAP-positive cells. Also, the expression of Tuj1 was upregulated, whereas the expression of GFAP was downregulated. Moreover, magnesium elevation enhanced the activation of both ERK and CREB. Treatment with PD0325901 reversed these effects in a dose-dependent manner. Magnesium elevation promoted neural differentiation while suppressing glial cell differentiation, possibly via ERK-induced CREB activation.
Collapse
Affiliation(s)
- Wang Liao
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen UniversityGuangzhou, China; Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen UniversityGuangzhou, China; Laboratory of RNA and Major Diseases of Brain and Heart, Sun Yat-sen Memorial Hospital, Sun Yat-sen UniversityGuangzhou, China
| | - Mujun Jiang
- Department of Neurology, Bengbu Medical College, The First Affiliated Hospital Bengbu, China
| | - Mei Li
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University Guangzhou, China
| | - Congli Jin
- Department of Neurology, Affiliated Hospital of Guangdong Medical University Zhanjiang, China
| | - Songhua Xiao
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University Guangzhou, China
| | - Shengnuo Fan
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University Guangzhou, China
| | - Wenli Fang
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University Guangzhou, China
| | - Yuqiu Zheng
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University Guangzhou, China
| | - Jun Liu
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen UniversityGuangzhou, China; Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen UniversityGuangzhou, China; Laboratory of RNA and Major Diseases of Brain and Heart, Sun Yat-sen Memorial Hospital, Sun Yat-sen UniversityGuangzhou, China
| |
Collapse
|
15
|
Takahashi H, Ishikawa H, Tanaka A. Regenerative medicine for Parkinson's disease using differentiated nerve cells derived from human buccal fat pad stem cells. Hum Cell 2017; 30:60-71. [PMID: 28210976 DOI: 10.1007/s13577-017-0160-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 01/16/2017] [Indexed: 01/29/2023]
Abstract
The purpose of this study was to evaluate the utility of human adipose stem cells derived from the buccal fat pad (hBFP-ASCs) for nerve regeneration. Parkinson's disease (PD) is a neurodegenerative disorder characterized by progressive death of dopaminergic neurons. PD is a candidate disease for cell replacement therapy because it has no fundamental therapeutic methods. We examined the properties of neural-related cells induced from hBFP-ASCs as a cell source for PD treatment. hBFP-ASCs were cultured in neurogenic differentiation medium for about 2 weeks. After the morphology of hBFP-ASCs changed to neural-like cells, the medium was replaced with neural maintenance medium. Cells differentiated from hBFP-ASCs showed neuron-like structures and expressed neuron markers (β3-tubulin, neurofilament 200, and microtubule-associated protein 2), an astrocyte marker (glial fibrillary acidic protein), or dopaminergic neuron-related marker (tyrosine hydroxylase). Induced neural cells were transplanted into a 6-hydroxydopamine (6-OHDA)-lesioned rat hemi-parkinsonian model. At 4 weeks after transplantation, 6-OHDA-lesioned rats were subjected to apomorphine-induced rotation analysis. The transplanted cells survived in the brain of rats as dopaminergic neural cells. No tumor formation was found after cell transplantation. We demonstrated differentiation of hBFP-ASCs into neural cells, and that transplantation of these neural cells improved the symptoms of model rats. Our results suggest that neurons differentiated from hBFP-ASCs would be applicable to cell replacement therapy of PD.
Collapse
Affiliation(s)
- Haruka Takahashi
- Oral and Maxillofacial Surgery, Field of Oral and Maxillofacial Surgery and Systemic Medicine, Course of Clinical Science, Nippon Dental University Graduate School of Life Dentistry at Niigata, 1-8 Hamaura-cho, Chuo-ku, Niigata, 951-8580, Japan.
| | - Hiroshi Ishikawa
- Department of NDU Life Sciences, Nippon Dental University School of Life Dentistry at Tokyo, 1-9-20 Fujimi, Chiyoda-ku, Tokyo, 102-8159, Japan
| | - Akira Tanaka
- Department of Oral and Maxillofacial Surgery, Nippon Dental University School of Life Dentistry at Niigata, 1-8 Hamaura-cho, Chuo-ku, Niigata, 951-8580, Japan
| |
Collapse
|
16
|
The therapeutic contribution of nanomedicine to treat neurodegenerative diseases via neural stem cell differentiation. Biomaterials 2017; 123:77-91. [PMID: 28161683 DOI: 10.1016/j.biomaterials.2017.01.032] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 12/22/2016] [Accepted: 01/27/2017] [Indexed: 12/13/2022]
Abstract
The discovery of adult neurogenesis drastically changed the therapeutic approaches of central nervous system regenerative medicine. The stimulation of this physiologic process can increase memory and motor performances in patients affected by neurodegenerative diseases. Neural stem cells contribute to the neurogenesis process through their differentiation into specialized neuronal cells. In this review, we describe the most important methods developed to restore neurological functions via neural stem cell differentiation. In particular, we focused on the role of nanomedicine. The application of nanostructured scaffolds, nanoparticulate drug delivery systems, and nanotechnology-based real-time imaging has significantly improved the safety and the efficacy of neural stem cell-based treatments. This review provides a comprehensive background on the contribution of nanomedicine to the modulation of neurogenesis via neural stem cell differentiation.
Collapse
|
17
|
Iwata T, Otsuka S, Tsubokura K, Kurbangalieva A, Arai D, Fukase K, Nakao Y, Tanaka K. One-Pot Evolution of Ageladine A through a Bio-Inspired Cascade towards Selective Modulators of Neuronal Differentiation. Chemistry 2016; 22:14707-16. [PMID: 27557614 DOI: 10.1002/chem.201602651] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Indexed: 12/31/2022]
Abstract
A bio-inspired cascade reaction has been developed for the construction of the marine natural product ageladine A and a de novo array of its N1-substituted derivatives. This cascade features a 2-aminoimidazole formation that is modeled after an arginine post-translational modification and an aza-electrocyclization. It can be effectively carried out in a one-pot procedure from simple anilines or guanidines, leading to structural analogues of ageladine A that had been otherwise synthetically inaccessible. We found that some compounds out of this structurally novel library show a significant activity in modulating the neural differentiation. Namely, these compounds selectively activate or inhibit the differentiation of neural stem cells to neurons, while being negligible in the differentiation to astrocytes. This study represents a successful case in which the native biofunction of a natural product could be altered by structural modifications.
Collapse
Affiliation(s)
- Takayuki Iwata
- Biofunctional Synthetic Chemistry Laboratory, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama, 351-0198, Japan
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka-shi, Osaka, 560-0043, Japan
| | - Satoshi Otsuka
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan
| | - Kazuki Tsubokura
- Biofunctional Synthetic Chemistry Laboratory, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama, 351-0198, Japan
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan
| | - Almira Kurbangalieva
- Biofunctional Chemistry Laboratory, A. Butlerov Institute of Chemistry, Kazan Federal University, 18 Kremlyovskaya Street, Kazan, 420008, Russia
| | - Daisuke Arai
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan
- Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan
| | - Koichi Fukase
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka-shi, Osaka, 560-0043, Japan
| | - Yoichi Nakao
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan
- Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan
| | - Katsunori Tanaka
- Biofunctional Synthetic Chemistry Laboratory, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama, 351-0198, Japan.
- Biofunctional Chemistry Laboratory, A. Butlerov Institute of Chemistry, Kazan Federal University, 18 Kremlyovskaya Street, Kazan, 420008, Russia.
- JST, PRESTO, 2-1 Hirosawa, Wako-shi, Saitama, 351-0198, Japan.
| |
Collapse
|
18
|
Zhang R, Li Y, Hu B, Lu Z, Zhang J, Zhang X. Traceable Nanoparticle Delivery of Small Interfering RNA and Retinoic Acid with Temporally Release Ability to Control Neural Stem Cell Differentiation for Alzheimer's Disease Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:6345-6352. [PMID: 27168033 DOI: 10.1002/adma.201600554] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 04/12/2016] [Indexed: 06/05/2023]
Abstract
Nanoparticles that can efficiently control the differentiation of neural stem cells (NSCs) into neurons are developed for Alzheimer's disease (AD) therapy. The treatment with these nanoparticles results in an attenuation of neuronal loss and rescues memory deficiencies in mice. The system can also be used to monitor the transplantation site, as well as the migration of NSCs in real time. Therefore, the system is proposed to open up new avenues for AD treatment.
Collapse
Affiliation(s)
- Ran Zhang
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- College of Chemistry & Environmental Science, Chemical Biology Key Laboratory of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding, 071002, P. R. China
| | - Yan Li
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Bingbing Hu
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Zhiguo Lu
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Science, Beijing, 100190, P. R. China
| | - Jinchao Zhang
- College of Chemistry & Environmental Science, Chemical Biology Key Laboratory of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding, 071002, P. R. China
| | - Xin Zhang
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| |
Collapse
|
19
|
Lee H, Han NR, Hwang JY, Yun JI, Kim C, Park KH, Lee ST. Gelatin Directly Enhances Neurogenic Differentiation Potential in Bone Marrow-Derived Mesenchymal Stem Cells Without Stimulation of Neural Progenitor Cell Proliferation. DNA Cell Biol 2016; 35:530-6. [PMID: 27171118 DOI: 10.1089/dna.2016.3237] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Gelatin has been reported to induce generation of mesenchymal stem cells (MSCs) with enhanced potential of differentiation into neuronal lineage cells. However, the presence of various cell types besides MSCs in bone marrow has raised doubts about the effects of gelatin. In the following report, we determined whether gelatin can directly enhance neurogenic differentiation potential in MSCs without proliferation of neural progenitor cells (NPCs). MSCs comprised a high proportion of bone marrow-derived primary cells (BMPCs) and gelatin induced significant increases in MSC proliferation during primary culture, and the proportion of MSCs was maintained at more than 99% throughout the subculture. However, NPCs comprised a low percentage of BMPCs and a decrease in proliferation was detected despite gelatin treatment during the primary culture, and the proportion of subcultured NPCs gradually decreased. In a similar manner, MSCs exposed to gelatin during primary culture showed more enhanced neurogenic differentiation ability than those not exposed to gelatin. Together, these results demonstrate that gelatin directly enhances neurogenic differentiation in bone marrow-derived MSCs without stimulating NPC proliferation.
Collapse
Affiliation(s)
- Hyun Lee
- 1 Department of Animal Life Science, Kangwon National University , Chuncheon, Korea
| | - Na Rae Han
- 1 Department of Animal Life Science, Kangwon National University , Chuncheon, Korea
| | - Jae Yeon Hwang
- 2 Division of Applied Animal Science, Kangwon National University , Chuncheon, Korea
| | - Jung Im Yun
- 3 Division of Animal Resource Science, Kangwon National University , Chuncheon, Korea
| | - Choonghyo Kim
- 4 Department of Neurosurgery, Kangwon National University Hospital, School of Medicine, Kangwon National University , Chuncheon, Korea
| | - Kyu Hyun Park
- 1 Department of Animal Life Science, Kangwon National University , Chuncheon, Korea.,3 Division of Animal Resource Science, Kangwon National University , Chuncheon, Korea
| | - Seung Tae Lee
- 1 Department of Animal Life Science, Kangwon National University , Chuncheon, Korea.,2 Division of Applied Animal Science, Kangwon National University , Chuncheon, Korea
| |
Collapse
|
20
|
Yao Y, Gao Z, Liang W, Kong L, Jiao Y, Li S, Tao Z, Yan Y, Yang J. Osthole promotes neuronal differentiation and inhibits apoptosis via Wnt/β-catenin signaling in an Alzheimer's disease model. Toxicol Appl Pharmacol 2015; 289:474-81. [PMID: 26525509 DOI: 10.1016/j.taap.2015.10.013] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Revised: 10/05/2015] [Accepted: 10/21/2015] [Indexed: 01/01/2023]
Abstract
Neurogenesis is the process by which neural stem cells (NSCs) proliferate and differentiate into neurons. This is diminished in several neurodegenerative disorders such as Alzheimer's disease (AD), which is characterized by the deposition of amyloid (A)β peptides and neuronal loss. Stimulating NSCs to replace lost neurons is therefore a promising approach for AD treatment. Our previous study demonstrated that osthole modulates NSC proliferation and differentiation, and may reduce Aβ protein expression in nerve cells. Here we investigated the mechanism underlying the effects of osthole on NSCs. We found that osthole enhances NSC proliferation and neuronal differentiation while suppressing apoptosis, effects that were exerted via activation of Wnt/β-catenin signaling. These results provide evidence that osthole can potentially be used as a therapeutic agent in the treatment of AD and other neurodegenerative disorders.
Collapse
Affiliation(s)
- Yingjia Yao
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine; Dalian 116600, China
| | - Zhong Gao
- Department of Interventional Therapy, Dalian Municipal Central Hospital, Dalian 116033, China
| | - Wenbo Liang
- Medical College of Dalian University, Dalian 116600, Liaoning, China
| | - Liang Kong
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine; Dalian 116600, China
| | - Yanan Jiao
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine; Dalian 116600, China
| | - Shaoheng Li
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine; Dalian 116600, China
| | - Zhenyu Tao
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine; Dalian 116600, China
| | - Yuhui Yan
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine; Dalian 116600, China
| | - Jingxian Yang
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine; Dalian 116600, China.
| |
Collapse
|
21
|
The Role of Wnt/β-Catenin Signaling Pathway in Disrupted Hippocampal Neurogenesis of Temporal Lobe Epilepsy: A Potential Therapeutic Target? Neurochem Res 2015; 40:1319-32. [PMID: 26012365 DOI: 10.1007/s11064-015-1614-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 05/06/2015] [Accepted: 05/12/2015] [Indexed: 02/05/2023]
Abstract
Temporal lobe epilepsy is one of the most common clinical neurological disorders. One of the major pathological findings in temporal lobe epilepsy is hippocampal sclerosis, characterized by massive neuronal loss and severe gliosis. The epileptogenesis process of temporal lobe epilepsy usually starts with initial precipitating insults, followed by neurodegeneration, abnormal hippocampus circuitry reorganization, and the formation of hypersynchronicity. Experimental and clinical evidence strongly suggests that dysfunctional neurogenesis is involved in the epileptogenesis. Recent data demonstrate that neurogenesis is induced by acute seizures or precipitating insults, whereas the capacity of neuronal recruitment and proliferation substantially decreases in the chronic phase of epilepsy. Participation of the Wnt/β-catenin signaling pathway in neurogenesis reveals its importance in epileptogenesis; its dysfunction contributes to the structural and functional abnormality of temporal lobe epilepsy, while rescuing this pathway exerts neuroprotective effects. Here, we summarize data supporting the involvement of Wnt/β-catenin signaling in the epileptogenesis of temporal lobe epilepsy. We also propose that the Wnt/β-catenin signaling pathway may serve as a promising therapeutic target for temporal lobe epilepsy treatment.
Collapse
|