1
|
Geng X, Wang X, Liu K, Xing Y, Xu J, Li Z, Zhang H, Hu M, Gao P, Chen D, Liu W, Li K, Wei S. ShuYu capsule alleviates emotional and physical symptoms of premenstrual dysphoric disorder: Impact on ALLO decline and GABA A receptor δ subunit in the PAG area. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 130:155549. [PMID: 38810551 DOI: 10.1016/j.phymed.2024.155549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/05/2024] [Accepted: 03/18/2024] [Indexed: 05/31/2024]
Abstract
Premenstrual dysphoric disorder (PMDD) is a severe subtype of premenstrual syndrome in women of reproductive age, with its pathogenesis linked to the heightened sensitivity of type A γ -aminobutyric acid receptors (GABAAR) to neuroactive steroid hormone changes, particularly allopregnanolone (ALLO). While a low dose of fluoxetine, a classic selective serotonin reuptake inhibitor, is commonly used as a first-line drug to alleviate emotional disorders in PMDD in clinical settings, its mechanism of action is related to ALLO-GABAA receptor function. However, treating PMDD requires attention to both emotional and physical symptoms, such as pain sensitivity. This study aims to investigate the efficacy of ShuYu capsules, a traditional Chinese medicine, in simultaneously treating emotional and physical symptoms in a rat model of PMDD. Specifically, our focus centres on the midbrain periaqueductal grey (PAG), a region associated with emotion regulation and susceptibility to hyperalgesia. Considering the underlying mechanisms of ALLO-GABAA receptor function in the PAG region, we conducted a series of experiments to evaluate and define the effects of ShuYu capsules and uncover the relationship between the drug's efficacy and ALLO concentration fluctuations on GABAA receptor function in the PAG region. Our findings demonstrate that ShuYu capsules significantly improved oestrous cycle-dependant depression-like behaviour and reduced stress-induced hyperalgesia in rats with PMDD. Similar to the low dose of fluoxetine, ShuYu capsules targeted and mitigated the sharp decline in ALLO, rescued the upregulation of GABAAR subunit function, and activated PAG neurons in PMDD rats. The observed effects of ShuYu capsules suggest a central mechanism underlying PMDD symptoms, involving ALLO_GABAA receptor function in the PAG region. This study highlights the potential of traditional Chinese medicine in addressing both emotional and physical symptoms associated with PMDD, shedding light on novel therapeutic approaches for this condition.
Collapse
Affiliation(s)
- Xiwen Geng
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Ji'nan 250355, China; High Level Key Disciplines of Traditional Chinese Medicine, Basic Theory of Traditional Chinese Medicine, National Administration of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Ji'nan 250355, China; Shandong Provincial Engineering Research Center for the Prevention and Treatment of Major Brain Diseases with Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Ji'nan 250355, China
| | - Xinyu Wang
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Ji'nan 250355, China; High Level Key Disciplines of Traditional Chinese Medicine, Basic Theory of Traditional Chinese Medicine, National Administration of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Ji'nan 250355, China; Shandong Provincial Engineering Research Center for the Prevention and Treatment of Major Brain Diseases with Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Ji'nan 250355, China
| | - Kun Liu
- High Level Key Disciplines of Traditional Chinese Medicine, Basic Theory of Traditional Chinese Medicine, National Administration of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Ji'nan 250355, China
| | - Ying Xing
- High Level Key Disciplines of Traditional Chinese Medicine, Basic Theory of Traditional Chinese Medicine, National Administration of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Ji'nan 250355, China
| | - Jialing Xu
- High Level Key Disciplines of Traditional Chinese Medicine, Basic Theory of Traditional Chinese Medicine, National Administration of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Ji'nan 250355, China
| | - Zifa Li
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Ji'nan 250355, China; High Level Key Disciplines of Traditional Chinese Medicine, Basic Theory of Traditional Chinese Medicine, National Administration of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Ji'nan 250355, China; Shandong Provincial Engineering Research Center for the Prevention and Treatment of Major Brain Diseases with Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Ji'nan 250355, China
| | - Hao Zhang
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Ji'nan 250355, China; High Level Key Disciplines of Traditional Chinese Medicine, Basic Theory of Traditional Chinese Medicine, National Administration of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Ji'nan 250355, China; Shandong Provincial Engineering Research Center for the Prevention and Treatment of Major Brain Diseases with Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Ji'nan 250355, China
| | - Minghui Hu
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Ji'nan 250355, China; High Level Key Disciplines of Traditional Chinese Medicine, Basic Theory of Traditional Chinese Medicine, National Administration of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Ji'nan 250355, China; Shandong Provincial Engineering Research Center for the Prevention and Treatment of Major Brain Diseases with Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Ji'nan 250355, China
| | - Peng Gao
- Institute of Pharmaceutical Research, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Dan Chen
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Ji'nan 250355, China; Shandong Provincial Engineering Research Center for the Prevention and Treatment of Major Brain Diseases with Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Ji'nan 250355, China
| | - Wei Liu
- Department of Encephalopathy, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Ji'nan 250001, China.
| | - Kejian Li
- High Level Key Disciplines of Traditional Chinese Medicine, Basic Theory of Traditional Chinese Medicine, National Administration of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Ji'nan 250355, China; Shandong Provincial Engineering Research Center for the Prevention and Treatment of Major Brain Diseases with Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Ji'nan 250355, China.
| | - Sheng Wei
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Ji'nan 250355, China; High Level Key Disciplines of Traditional Chinese Medicine, Basic Theory of Traditional Chinese Medicine, National Administration of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Ji'nan 250355, China; Shandong Provincial Engineering Research Center for the Prevention and Treatment of Major Brain Diseases with Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Ji'nan 250355, China.
| |
Collapse
|
2
|
Tekin M, Shen H, Smith SS. Sex differences in motor learning flexibility are accompanied by sex differences in mushroom spine pruning of the mouse primary motor cortex during adolescence. Front Neurosci 2024; 18:1420309. [PMID: 39040633 PMCID: PMC11262054 DOI: 10.3389/fnins.2024.1420309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 06/24/2024] [Indexed: 07/24/2024] Open
Abstract
Background Although males excel at motor tasks requiring strength, females exhibit greater motor learning flexibility. Cognitive flexibility is associated with low baseline mushroom spine densities achieved by pruning which can be triggered by α4βδ GABAA receptors (GABARs); defective synaptic pruning impairs this process. Methods We investigated sex differences in adolescent pruning of mushroom spine pruning of layer 5 pyramidal cells of primary motor cortex (L5M1), a site essential for motor learning, using microscopic evaluation of Golgi stained sections. We assessed α4GABAR expression using immunohistochemical and electrophysiological techniques (whole cell patch clamp responses to 100 nM gaboxadol, selective for α4βδ GABARs). We then compared performance of groups with different post-pubertal mushroom spine densities on motor learning (constant speed) and learning flexibility (accelerating speed following constant speed) rotarod tasks. Results Mushroom spines in proximal L5M1 of female mice decreased >60% from PND35 (puberty onset) to PND56 (Pubertal: 2.23 ± 0.21 spines/10 μm; post-pubertal: 0.81 ± 0.14 spines/10 μm, P < 0.001); male mushroom spine density was unchanged. This was due to greater α4βδ GABAR expression in the female (P < 0.0001) because α4 -/- mice did not exhibit mushroom spine pruning. Although motor learning was similar for all groups, only female wild-type mice (low mushroom spine density) learned the accelerating rotarod task after the constant speed task (P = 0.006), a measure of motor learning flexibility. Conclusions These results suggest that optimal motor learning flexibility of female mice is associated with low baseline levels of post-pubertal mushroom spine density in L5M1 compared to male and female α4 -/- mice.
Collapse
Affiliation(s)
- Michael Tekin
- Department of Physiology and Pharmacology, SUNY Downstate Medical Center, Brooklyn, NY, United States
- Graduate Program in Neural and Behavioral Science, SUNY Downstate Medical Center, Brooklyn, NY, United States
| | - Hui Shen
- School of Biomedical Engineering, Tianjin Medical University, Tianjin, China
| | - Sheryl S. Smith
- Department of Physiology and Pharmacology, SUNY Downstate Medical Center, Brooklyn, NY, United States
| |
Collapse
|
3
|
Li FR, Lévesque M, Wang S, Carreño-Muñoz MI, Di Cristo G, Avoli M. Ictal activity is sustained by the estrogen receptor β during the estrous cycle. CURRENT RESEARCH IN NEUROBIOLOGY 2024; 6:100131. [PMID: 38812499 PMCID: PMC11134549 DOI: 10.1016/j.crneur.2024.100131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/16/2024] [Accepted: 05/05/2024] [Indexed: 05/31/2024] Open
Abstract
Catamenial epilepsy, defined as a periodicity of seizure exacerbation during the menstrual cycle, affects up to 70 % of epileptic women. Seizures in these patients are often non-responsive to medication; however, our understanding of the relation between menstrual cycle and seizure generation (i.e. ictogenesis) remains limited. We employed here field potential recordings in the in vitro 4-aminopyridine model of epileptiform synchronization in female mice (P60-P130) and found that: (i) the estrous phase favors ictal activity in the entorhinal cortex; (ii) these ictal discharges display an onset pattern characterised by the presence of chirps that are thought to mirror synchronous interneuron firing; and (iii) blocking estrogen receptor β-mediated signaling reduces ictal discharge duration. Our findings indicate that the duration of 4AP-induced ictal discharges, in vitro, increases during the estrous phase, which corresponds to the human peri-ovulatory period. We propose that these effects are caused by the presumptive enhancement of interneuron excitability due to increased estrogen receptor β-mediated signaling.
Collapse
Affiliation(s)
- Fei Ran Li
- Montreal Neurological Institute-Hospital and Departments of Neurology & Neurosurgery, Montréal, Québec, H3A 2B4, Canada
- Physiology, McGill University, 3801 University Street, Montréal, Québec H3A 2B4, Canada
| | - Maxime Lévesque
- Montreal Neurological Institute-Hospital and Departments of Neurology & Neurosurgery, Montréal, Québec, H3A 2B4, Canada
| | - Siyan Wang
- Montreal Neurological Institute-Hospital and Departments of Neurology & Neurosurgery, Montréal, Québec, H3A 2B4, Canada
| | - Maria-Isabel Carreño-Muñoz
- Neurosciences Department, Université de Montréal, Montréal, Québec H3T 1N8, Canada
- CHU Sainte-Justine Research Center, Montréal, Québec H3T 1C5, Canada
| | - Graziella Di Cristo
- Neurosciences Department, Université de Montréal, Montréal, Québec H3T 1N8, Canada
- CHU Sainte-Justine Research Center, Montréal, Québec H3T 1C5, Canada
| | - Massimo Avoli
- Montreal Neurological Institute-Hospital and Departments of Neurology & Neurosurgery, Montréal, Québec, H3A 2B4, Canada
- Physiology, McGill University, 3801 University Street, Montréal, Québec H3A 2B4, Canada
| |
Collapse
|
4
|
Benarroch E. What Is the Role of the "GABA Tone" in Normal and Pathological Conditions? Neurology 2024; 102:e209152. [PMID: 38252909 DOI: 10.1212/wnl.0000000000209152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 11/28/2023] [Indexed: 01/24/2024] Open
|
5
|
Gilfarb RA, Leuner B. GABA System Modifications During Periods of Hormonal Flux Across the Female Lifespan. Front Behav Neurosci 2022; 16:802530. [PMID: 35783228 PMCID: PMC9245048 DOI: 10.3389/fnbeh.2022.802530] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 02/21/2022] [Indexed: 01/10/2023] Open
Abstract
The female lifespan is marked by periods of dramatic hormonal fluctuation. Changes in the ovarian hormones estradiol and progesterone, in addition to the progesterone metabolite allopregnanolone, are among the most significant and have been shown to have widespread effects on the brain. This review summarizes current understanding of alterations that occur within the GABA system during the major hormonal transition periods of puberty, the ovarian cycle, pregnancy and the postpartum period, as well as reproductive aging. The functional impacts of altered inhibitory activity during these times are also discussed. Lastly, avenues for future research are identified, which, if pursued, can broaden understanding of the GABA system in the female brain and potentially lead to better treatments for women experiencing changes in brain function at each of these hormonal transition periods.
Collapse
Affiliation(s)
- Rachel A. Gilfarb
- Neuroscience Graduate Program, The Ohio State University, Columbus, OH, United States
| | - Benedetta Leuner
- Department of Psychology, The Ohio State University, Columbus, OH, United States
- Department of Neuroscience, The Ohio State University, Columbus, OH, United States
- *Correspondence: Benedetta Leuner,
| |
Collapse
|
6
|
Evrard MR, Li M, Shen H, Smith SS. Preventing adolescent synaptic pruning in mouse prelimbic cortex via local knockdown of α4βδ GABA A receptors increases anxiety response in adulthood. Sci Rep 2021; 11:21059. [PMID: 34702942 PMCID: PMC8548505 DOI: 10.1038/s41598-021-99965-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 09/29/2021] [Indexed: 01/25/2023] Open
Abstract
Anxiety is increasingly reported, especially in adolescent females. The etiology is largely unknown, which limits effective treatment. Layer 5 prelimbic cortex (L5PL) increases anxiety responses but undergoes adolescent synaptic pruning, raising the question of the impact of pruning on anxiety. Here we show that preventing L5PL pruning increases anxiety in response to an aversive event in adolescent and adult female mice. Spine density of Golgi-stained neurons decreased ~ 63% from puberty (~ PND35, vaginal opening) to post-puberty (PND56, P < 0.0001). Expression of α4βδ GABAA receptors (GABARs) transiently increased tenfold in L5PL at puberty (P < 0.00001), but decreased post-pubertally. Both global and local knockdown of these receptors during puberty prevented pruning, increasing spine density post-pubertally (P < 0.0001), an effect reversed by blocking NMDA receptors (NMDARs). Pubertal expression of the NMDAR-dependent spine protein kalirin7 decreased (50%, P < 0.0001), an effect prevented by α4 knock-out, suggesting that α4βδ-induced reductions in kalirin7 underlie pruning. Increased spine density due to local α4 knockdown at puberty decreased open arm time on the elevated plus maze post-pubertally (62%, P < 0.0001) in response to an aversive stimulus, suggesting that increases in L5PL synapses increase anxiety responses. These findings suggest that prelimbic synaptic pruning is necessary to limit anxiety in adulthood and may suggest novel therapies.
Collapse
Affiliation(s)
- Matthew R Evrard
- Department of Physiology and Pharmacology, SUNY Downstate Medical Center, 450 Clarkson Ave., Brooklyn, NY, 11203, USA.,Graduate Program in Neural and Behavioral Science, SUNY Downstate Medical Center, 450 Clarkson Ave., Brooklyn, NY, 11203, USA
| | - Michael Li
- Department of Physiology and Pharmacology, SUNY Downstate Medical Center, 450 Clarkson Ave., Brooklyn, NY, 11203, USA.,College of Arts and Sciences, Hunter College, New York, NY, 10065, USA
| | - Hui Shen
- Department of Physiology and Pharmacology, SUNY Downstate Medical Center, 450 Clarkson Ave., Brooklyn, NY, 11203, USA.,School of Biomedical Engineering, Tianjin Medical University, No. 22 Qixiangtai Road, Heping District, Tianjin, 300070, China
| | - Sheryl S Smith
- Department of Physiology and Pharmacology, SUNY Downstate Medical Center, 450 Clarkson Ave., Brooklyn, NY, 11203, USA.
| |
Collapse
|
7
|
Rabiant K, Antol J, Naassila M, Pierrefiche O. Sex difference in the vulnerability to hippocampus plasticity impairment after binge-like ethanol exposure in adolescent rat: Is estrogen the key? Addict Biol 2021; 26:e13002. [PMID: 33511744 DOI: 10.1111/adb.13002] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 12/14/2020] [Accepted: 01/04/2021] [Indexed: 02/01/2023]
Abstract
Binge drinking during adolescence induces memory impairments, and evidences suggest that females are more vulnerable than males. However, the reason for such a difference is unclear, whereas preclinical studies addressing this question are lacking. Here we tested the hypothesis that endogenous estrogen level (E2) may explain sex differences in the effects of ethanol on hippocampus plasticity, the cellular mechanism of memory. Long-term depression (LTD) in hippocampus slice of pubertal female rats was recorded 24 h after two ethanol binges (3 g/kg, i.p., 9 h apart). Neither the estrous cycle nor ethanol altered LTD. However, if ethanol was administered during proestrus (i.e., at endogenous E2 peak), LTD was abolished 24 h later, whereas NMDA-fEPSPs response to a GluN2B antagonist increased. The abolition of LTD was not observed in adult female rats. Exogenous E2 combined with ethanol replicated LTD abolition in pubertal, prepubertal female, and in pubertal male rats without changes in ethanol metabolism. In male rats, a higher dose of ethanol was required to abolish LTD at 24-h delay. In pubertal female rats, tamoxifen, an antagonist of estrogen receptors, blocked the impairing effects of endogenous and exogenous E2 on LTD, suggesting estrogen interacts with ethanol through changes in gene expression. In addition, tamoxifen prevented LTD abolition at 24 h but not at 48-h delay. In conclusion, estrogen may explain the increased vulnerability to ethanol-induced plasticity impairment seen in females compared with males. This increased vulnerability of female rats is likely due to changes in the GluN2B subunit that represent a common target between ethanol and estrogen.
Collapse
Affiliation(s)
- Kevin Rabiant
- INSERM, UMR 1247 GRAP, Groupe de Recherche sur l'Alcool et les Pharmacodépendances Univ Picardie Jules Verne, Centre Universitaire de Recherche en Santé (CURS) Amiens France
| | - Johan Antol
- INSERM, UMR 1247 GRAP, Groupe de Recherche sur l'Alcool et les Pharmacodépendances Univ Picardie Jules Verne, Centre Universitaire de Recherche en Santé (CURS) Amiens France
| | - Mickael Naassila
- INSERM, UMR 1247 GRAP, Groupe de Recherche sur l'Alcool et les Pharmacodépendances Univ Picardie Jules Verne, Centre Universitaire de Recherche en Santé (CURS) Amiens France
| | - Olivier Pierrefiche
- INSERM, UMR 1247 GRAP, Groupe de Recherche sur l'Alcool et les Pharmacodépendances Univ Picardie Jules Verne, Centre Universitaire de Recherche en Santé (CURS) Amiens France
| |
Collapse
|
8
|
Hokenson RE, Short AK, Chen Y, Pham AL, Adams ET, Bolton JL, Swarup V, Gall CM, Baram TZ. Unexpected Role of Physiological Estrogen in Acute Stress-Induced Memory Deficits. J Neurosci 2021; 41:648-662. [PMID: 33262247 PMCID: PMC7842761 DOI: 10.1523/jneurosci.2146-20.2020] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 11/16/2020] [Accepted: 11/18/2020] [Indexed: 11/22/2022] Open
Abstract
Stress may promote emotional and cognitive disturbances, which differ by sex. Adverse outcomes, including memory disturbances, are typically observed following chronic stress, but are now being recognized also after short events, including mass shootings, assault, or natural disasters, events that consist of concurrent multiple acute stresses (MAS). Prior work has established profound and enduring effects of MAS on memory in males. Here we examined the effects of MAS on female mice and probed the role of hormonal fluctuations during the estrous cycle on MAS-induced memory problems and the underlying brain network and cellular mechanisms. Female mice were impacted by MAS in an estrous cycle-dependent manner: MAS impaired hippocampus-dependent spatial memory in early-proestrous mice, characterized by high levels of estradiol, whereas memory of mice stressed during estrus (low estradiol) was spared. As spatial memory requires an intact dorsal hippocampal CA1, we examined synaptic integrity in mice stressed at different cycle phases and found a congruence of dendritic spine density and spatial memory deficits, with reduced spine density only in mice stressed during high estradiol cycle phases. Assessing MAS-induced activation of brain networks interconnected with hippocampus, we identified differential estrous cycle-dependent activation of memory- and stress-related regions, including the amygdala. Network analyses of the cross-correlation of fos expression among these regions uncovered functional connectivity that differentiated impaired mice from those not impaired by MAS. In conclusion, the estrous cycle modulates the impact of MAS on spatial memory, and fluctuating physiological levels of sex hormones may contribute to this effect.SIGNIFICANCE STATEMENT: Effects of stress on brain functions, including memory, are profound and sex-dependent. Acute stressors occurring simultaneously result in spatial memory impairments in males, but effects on females are unknown. Here we identified estrous cycle-dependent effects of such stresses on memory in females. Surprisingly, females with higher physiological estradiol experienced stress-induced memory impairment and a loss of underlying synapses. Memory- and stress-responsive brain regions interconnected with hippocampus were differentially activated across high and low estradiol mice, and predicted memory impairment. Thus, at functional, network, and cellular levels, physiological estradiol influences the effects of stress on memory in females, providing insight into mechanisms of prominent sex differences in stress-related memory disorders, such as post-traumatic stress disorder.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Christine M Gall
- Departments of Anatomy and Neurobiology
- Neurobiology and Behavior
| | - Tallie Z Baram
- Departments of Anatomy and Neurobiology
- Pediatrics
- Neurology, University of California-Irvine, Irvine, California 92697
| |
Collapse
|
9
|
Kapur J, Joshi S. Progesterone modulates neuronal excitability bidirectionally. Neurosci Lett 2021; 744:135619. [PMID: 33421486 PMCID: PMC7821816 DOI: 10.1016/j.neulet.2020.135619] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/24/2020] [Accepted: 12/29/2020] [Indexed: 11/16/2022]
Abstract
Progesterone acts on neurons directly by activating its receptor and through metabolic conversion to neurosteroids. There is emerging evidence that progesterone exerts excitatory effects by activating its cognate receptors (progesterone receptors, PRs) through enhanced expression of α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors (AMPARs). Progesterone metabolite 5α,3α-tetrahydro-progesterone (allopregnanolone, THP) mediates its anxiolytic and sedative actions through the potentiation of synaptic and extrasynaptic γ-aminobutyric acid type-A receptors (GABAARs). Here, we review progesterone's neuromodulatory actions exerted through PRs and THP and their opposing role in regulating seizures, catamenial epilepsy, and seizure exacerbation associated with progesterone withdrawal.
Collapse
Affiliation(s)
- Jaideep Kapur
- Department of Neurology, University of Virginia-HSC, Charlottesville, VA, 22908, United States; Department of Neuroscience, University of Virginia-HSC, Charlottesville, VA, 22908, United States; UVA Brain Institute, University of Virginia-HSC, Charlottesville, VA, 22908, United States
| | - Suchitra Joshi
- Department of Neurology, University of Virginia-HSC, Charlottesville, VA, 22908, United States.
| |
Collapse
|
10
|
Wei S, Geng X, Li Z, Xu K, Hu M, Wu H, Shi W, Qiao M. A forced swim-based rat model of premenstrual depression: effects of hormonal changes and drug intervention. Aging (Albany NY) 2020; 12:24357-24370. [PMID: 33229622 PMCID: PMC7762461 DOI: 10.18632/aging.202249] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 09/20/2020] [Indexed: 12/11/2022]
Abstract
Premenstrual dysphoric disorder (PMDD), a form of premenstrual syndrome (PMS), is a severe health disturbance that affects a patient’s emotions; it is caused by periodic psychological symptoms, and its pathogenesis remains unclear. As depression-like symptoms are found in a majority of clinical cases, a reliable animal model of premenstrual depression is indispensable to understand the pathogenesis. Herein, we describe a novel rat model of premenstrual depression, based on the forced swimming test, with a regular estrous cycle. The results showed that in the estrous cycle, the depression-like behavior of rats occurred in the non-receptive phase and disappeared in the receptive phase. Following ovariectomy, the depression-like symptoms disappeared and returned after a hormone priming regimen. Moreover, fluoxetine, an anti-depressant, could reverse the behavioral symptoms in these model rats with normal estrous cycle. Further, the model rats showed significant changes in the serum levels of estrogen and progesterone, hippocampal levels of allopregnanolone, 5-hydroxytryptamine, norepinephrine, and γ-aminobutyric acid (GABA), and in the expression of GABAA receptor 4α subunit, all of which were reversed to physiological levels by fluoxetine. Overall, we established a reliable and standardized rat model of premenstrual depression, which may facilitate the elucidation of PMS/PMDD pathogenesis and development of related therapies.
Collapse
Affiliation(s)
- Sheng Wei
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Ji’nan 250012, China.,Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Ji’nan 250355, China.,Experimental Center, Shandong University of Traditional Chinese Medicine, Ji’nan 250355, China
| | - Xiwen Geng
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Ji’nan 250355, China.,Experimental Center, Shandong University of Traditional Chinese Medicine, Ji’nan 250355, China
| | - Zifa Li
- Experimental Center, Shandong University of Traditional Chinese Medicine, Ji’nan 250355, China
| | - Kaiyong Xu
- Experimental Center, Shandong University of Traditional Chinese Medicine, Ji’nan 250355, China
| | - Minghui Hu
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Ji’nan 250355, China.,Experimental Center, Shandong University of Traditional Chinese Medicine, Ji’nan 250355, China
| | - Hongyun Wu
- Department of Encephalopathy, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Ji’nan 250011, China
| | - Wei Shi
- Department of Gynecology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Ji’nan 250011, China
| | - Mingqi Qiao
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Ji’nan 250355, China
| |
Collapse
|
11
|
Keating N, Zeak N, Smith SS. Pubertal hormones increase hippocampal expression of α4βδ GABA A receptors. Neurosci Lett 2019; 701:65-70. [PMID: 30742936 DOI: 10.1016/j.neulet.2019.02.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 02/03/2019] [Accepted: 02/04/2019] [Indexed: 12/13/2022]
Abstract
CA1 hippocampal expression of α4βδ GABAA receptors (GABARs) increases at the onset of puberty in female mice, an effect dependent upon the decline in hippocampal levels of the neurosteroid THP (3α-OH-5α-pregnan-20-one) which occurs at this time. The present study further characterized the mechanisms underlying α4βδ expression, assessed in vivo. Blockade of pubertal levels of 17β-estradiol (E2) (formestane, 0.5 mg/kg, i.p. 3 d) reduced α4 and δ expression by 75-80% (P < 0.05) in CA1 hippocampus of female mice, assessed using Western blot techniques. Conversely, E2 administration increased α4 and δ expression by 50-100% in adults, an effect enhanced by more than 2-fold by concomitant administration of the 5α-reductase blocker finasteride (50 mg/kg, i.p., 3d, P < 0.05), suggesting that both declining THP levels and increasing E2 levels before puberty trigger α4βδ expression. This effect was blocked by ICI 182,780 (20 mg/kg, s.c., 3 d), a selective blocker of E2 receptor-α (ER-α). These results suggest that both the rise in circulating levels of E2 and the decline in hippocampal THP levels at the onset of puberty trigger maximal levels of α4βδ expression in the CA1 hippocampus.
Collapse
Affiliation(s)
- Nicole Keating
- Department of Physiology and Pharmacology, SUNY Downstate Medical Center, 450 Clarkson Ave., Brooklyn, NY, 11203, USA
| | - Nicole Zeak
- Department of Physiology and Pharmacology, SUNY Downstate Medical Center, 450 Clarkson Ave., Brooklyn, NY, 11203, USA
| | - Sheryl S Smith
- Department of Physiology and Pharmacology, SUNY Downstate Medical Center, 450 Clarkson Ave., Brooklyn, NY, 11203, USA.
| |
Collapse
|
12
|
Parato J, Shen H, Smith SS. α4βδ GABA A Receptors Trigger Synaptic Pruning and Reduce Dendritic Length of Female Mouse CA3 Hippocampal Pyramidal Cells at Puberty. Neuroscience 2019; 398:23-36. [PMID: 30496825 PMCID: PMC6411036 DOI: 10.1016/j.neuroscience.2018.11.032] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Revised: 11/01/2018] [Accepted: 11/20/2018] [Indexed: 01/24/2023]
Abstract
Synaptic pruning during adolescence is critical for optimal cognition. The CA3 hippocampus contains unique spine types and plays a pivotal role in pattern separation and seizure generation, where sex differences exist, but adolescent pruning has only been studied in the male. Thus, for the present study we assessed pruning of specific spine types in the CA3 hippocampus during adolescence and investigated a possible mechanism in the female mouse. To this end, we used Golgi-impregnated brains from pubertal (∼PND 35, assessed by vaginal opening) and post-pubertal (PND 56) mice. Spine density was assessed from z-stack (0.1-μm steps) images taken using a Nikon DS-U3 camera through a Nikon Eclipse Ci-L microscope and analyzed with NIS Elements. Spine density decreased significantly (P < 0.05) during adolescence, with 50-60% decreases in mushroom and stubby spine-types (P < 0.05, ∼PND35 vs. PND56) in non-proestrous mice. This was associated with decreases in kalirin-7, a spine protein which stabilizes the cytoskeleton and is required for spine maintenance. Because our previous findings suggest that pubertal increases in α4βδ GABAA receptors (GABARs) trigger pruning in CA1, we investigated their role in CA3. α4 expression in CA3 hippocampus increased 4-fold at puberty (P < 0.05), assessed by immunostaining and verified electrophysiologically by an increased response to gaboxadol (100 nM), which is selective for α4βδ. Knock-out of α4 prevented the pubertal decrease in kalirin-7 and synaptic pruning and also increased the dendritic length, demonstrating a functional link. These data suggest that pubertal α4βδ GABARs alter dendritic morphology and trigger pruning in female CA3 hippocampus.
Collapse
Affiliation(s)
- Julie Parato
- Department of Physiology and Pharmacology, SUNY Downstate Medical Center, 450 Clarkson Ave, Brooklyn, NY 11203, USA; Program in Neural and Behavioral Science, SUNY Downstate Medical Center, 450 Clarkson Ave, Brooklyn, NY 11203, USA
| | - Hui Shen
- Department of Physiology and Pharmacology, SUNY Downstate Medical Center, 450 Clarkson Ave, Brooklyn, NY 11203, USA; School of Biomedical Engineering, Tianjin Medical University, No. 22 Qixiangtai Road, Heping District, Tianjin 300070, China
| | - Sheryl S Smith
- Department of Physiology and Pharmacology, SUNY Downstate Medical Center, 450 Clarkson Ave, Brooklyn, NY 11203, USA; The Robert F. Furchgott Center for Neural and Behavioral Science, SUNY Downstate Medical Center, 450 Clarkson Avenue, Brooklyn, NY 11203, USA.
| |
Collapse
|
13
|
Jian H, Yu G, Chen G, Lin N, Wang H. Correlation between auditory-vestibular functions and estrogen levels in postmenopausal patients with Meniere's disease. J Clin Lab Anal 2019; 33:e22626. [PMID: 30030864 PMCID: PMC6430344 DOI: 10.1002/jcla.22626] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 06/30/2018] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND To investigate auditory and vestibular functions, estrogen levels, and its clinical correlation in postmenopausal females with Meniere's disease (MD). METHODS We retrospectively analyzed the serum estradiol (E2) levels and the auditory and vestibular functions measured by auditory brainstem response (ABR) to high click rate, pure-tone audiometry (PTA), and caloric test on postmenopausal women who suffered from MD or not at the Specialist Clinic of Vertigo, Shandong Provincial Hospital, during September 2010 to October 2014. RESULTS A total of 76 postmenopausal patients with MD and 50 healthy postmenopausal controls were included. The patients with MD had lower estrogen levels (22.50 ± 16.66 pg/mL vs 30.69 ± 18.59 pg/mL, P = 0.011), longer I-V interpeak latency of ABR (left 0.22 ± 0.16 mseconds vs 0.18 ± 0.10 mseconds, P = 0.118; right 0.24 ± 0.13 mseconds vs 0.17 ± 0.09 mseconds, P = 0.001), and higher unilateral weakness (UW) value (P < 0.001) in comparison with the controls. The mean pure-tone thresholds of at the speech frequency (500 Hz, 1 kHz, 2 kHz, and 3 kHz) were significantly elevated in patients with MD than those in the controls (left P < 0.001, right P < 0.01). The estradiol level of patients with MD was correlated with ABR latency (left r = -0.229, P < 0.05; right r = -0.220, P < 0.05) and UW value (r = -0.328, P < 0.05), but not with mean pure-tone threshold. CONCLUSIONS Estrogen levels correlated with auditory and vestibular function in postmenopausal patients with MD. Low estrogen may be involved in the microcirculatory disturbance of the inner ear, affecting the occurrence and development of MD.
Collapse
Affiliation(s)
- Huirong Jian
- Department of Otolaryngology‐Head and Neck SurgeryShandong Provincial Hospital Affiliated to Shandong UniversityJinanChina
| | - Gang Yu
- Department of Otolaryngology‐Head and Neck SurgeryShandong Provincial Hospital Affiliated to Shandong UniversityJinanChina
| | - Gang Chen
- Department of Otolaryngology‐Head and Neck SurgeryShandong Provincial Hospital Affiliated to Shandong UniversityJinanChina
| | - Naifen Lin
- Department of Otolaryngology‐Head and Neck SurgeryShandong Provincial Hospital Affiliated to Shandong UniversityJinanChina
| | - Haibo Wang
- Department of Otolaryngology‐Head and Neck SurgeryShandong Provincial Hospital Affiliated to Shandong UniversityJinanChina
| |
Collapse
|
14
|
Ratner MH, Kumaresan V, Farb DH. Neurosteroid Actions in Memory and Neurologic/Neuropsychiatric Disorders. Front Endocrinol (Lausanne) 2019; 10:169. [PMID: 31024441 PMCID: PMC6465949 DOI: 10.3389/fendo.2019.00169] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 02/28/2019] [Indexed: 12/24/2022] Open
Abstract
Memory dysfunction is a symptomatic feature of many neurologic and neuropsychiatric disorders; however, the basic underlying mechanisms of memory and altered states of circuitry function associated with disorders of memory remain a vast unexplored territory. The initial discovery of endogenous neurosteroids triggered a quest to elucidate their role as neuromodulators in normal and diseased brain function. In this review, based on the perspective of our own research, the advances leading to the discovery of positive and negative neurosteroid allosteric modulators of GABA type-A (GABAA), NMDA, and non-NMDA type glutamate receptors are brought together in a historical and conceptual framework. We extend the analysis toward a state-of-the art view of how neurosteroid modulation of neural circuitry function may affect memory and memory deficits. By aggregating the results from multiple laboratories using both animal models for disease and human clinical research on neuropsychiatric and age-related neurodegenerative disorders, elements of a circuitry level view begins to emerge. Lastly, the effects of both endogenously active and exogenously administered neurosteroids on neural networks across the life span of women and men point to a possible underlying pharmacological connectome by which these neuromodulators might act to modulate memory across diverse altered states of mind.
Collapse
|
15
|
Acevedo-Rodriguez A, Kauffman AS, Cherrington BD, Borges CS, Roepke TA, Laconi M. Emerging insights into hypothalamic-pituitary-gonadal axis regulation and interaction with stress signalling. J Neuroendocrinol 2018; 30. [PMID: 29524268 PMCID: PMC6129417 DOI: 10.1111/jne.12590] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Reproduction and fertility are regulated via hormones of the hypothalamic-pituitary-gonadal (HPG) axis. Control of this reproductive axis occurs at all levels, including the brain and pituitary, and allows for the promotion or inhibition of gonadal sex steroid secretion and function. In addition to guiding proper gonadal development and function, gonadal sex steroids also act in negative- and positive-feedback loops to regulate reproductive circuitry in the brain, including kisspeptin neurones, thereby modulating overall HPG axis status. Additional regulation is also provided by sex steroids made within the brain, including neuroprogestins. Furthermore, because reproduction and survival need to be coordinated and balanced, the HPG axis is able to modulate (and be modulated by) stress hormone signalling, including cortiscosterone, from the hypothalamic-pituitary-adrenal (HPA) axis. This review covers recent data related to the neural, hormonal and stress regulation of the HPG axis and emerging interactions between the HPG and HPA axes, focusing on actions at the level of the brain and pituitary.
Collapse
Affiliation(s)
- A Acevedo-Rodriguez
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - A S Kauffman
- Department of Reproductive Medicine, University of California, San Diego, La Jolla, CA, USA
| | - B D Cherrington
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY, USA
| | - C S Borges
- Department of Morphology, Institute of Biosciences, São Paulo State University (Unesp), Botucatu, Brazil
| | - T A Roepke
- Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - M Laconi
- Laboratorio de Fisiopatología Ovárica, Instituto de Medicina y Biología Experimental de Cuyo (IMBECU - CONICET), Universidad Juan Agustín Maza, Mendoza, Argentina
- Facultad de Ciencias Veterinarias y Ambientales, Universidad Juan Agustín Maza, Mendoza, Argentina
- Facultad de Ciencias Médicas, Universidad de Mendoza, Mendoza, Argentina
| |
Collapse
|
16
|
Sumner RL, Spriggs MJ, McMillan RL, Sundram F, Kirk IJ, Muthukumaraswamy SD. Neural plasticity is modified over the human menstrual cycle: Combined insight from sensory evoked potential LTP and repetition suppression. Neurobiol Learn Mem 2018; 155:422-434. [PMID: 30172951 DOI: 10.1016/j.nlm.2018.08.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 08/18/2018] [Accepted: 08/29/2018] [Indexed: 01/18/2023]
Abstract
In healthy women, fluctuations in hormones including progesterone and oestradiol lead to functional changes in the brain over the course of each menstrual cycle. Though considerable attention has been directed towards understanding changes in human cognition over the menstrual cycle, changes in underlying processes such as neural plasticity have largely only been studied in animals. In this study we explored predictive coding and repetition suppression via the roving mismatch negativity paradigm as a model of short-term plasticity (Garrido, Kilner, Kiebel, et al., 2009), and Hebbian learning via visual sensory long-term potentiation (LTP) as a model of long-term plasticity (Teyler et al., 2005). Electroencephalography (EEG) was recorded in 20 females during their early follicular and mid-luteal phases. Event-related potential (ERP) analyses were complemented with dynamic causal modelling (DCM) to characterise changes in the underlying neural architecture. More sustained variability in the ERP response to a change in tone during the luteal phase are interpreted as a delayed habituation of the P3a component in the luteal relative to the follicular phase. The additional increased forward connection strength over tone repetitions compared to the follicular phase suggests that, in this phase, females may be less efficient when processing deviations from predicted sensory input (error). In contrast, there appears to be no reliable change in sensory LTP. This suggests that predictive coding, but not Hebbian plasticity is modified in the mid-luteal compared to the follicular phase, at least at the days of the menstrual cycle tested. This finding implicates the human menstrual cycle in complex changes in neural plasticity and provides further evidence for the importance of considering the menstrual cycle when including females in electrophysiological research.
Collapse
Affiliation(s)
- R L Sumner
- School of Pharmacy, The University of Auckland, Auckland, New Zealand.
| | - M J Spriggs
- School of Psychology, The University of Auckland, Auckland, New Zealand; Brain Research New Zealand, New Zealand
| | - R L McMillan
- School of Pharmacy, The University of Auckland, Auckland, New Zealand
| | - F Sundram
- Department of Psychological Medicine, The University of Auckland, Auckland, New Zealand
| | - I J Kirk
- School of Psychology, The University of Auckland, Auckland, New Zealand; Brain Research New Zealand, New Zealand
| | | |
Collapse
|
17
|
Wang L, Zhang Y, Wang H, Li H, Zhao Z, Wang N, He B, Shi C, Zhang S, Wang J. Repeated abortion in adulthood induces cognition impairment in aged mice. Sci Rep 2018; 8:11396. [PMID: 30061639 PMCID: PMC6065382 DOI: 10.1038/s41598-018-29827-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 07/18/2018] [Indexed: 11/29/2022] Open
Abstract
Age-related cognitive decline is one of the major aspects that impede successful aging in humans. Repeated abortion in adulthood can accelerate or aggravate cognitive deficiency during aging. Here we used repeated abortion in female mice adulthood and investigated the consequences of this treatment on cognitive performance during aging. We observed a substantial impairment of learning memory in 15 months old. This cognitive dysfunction was supported by Aβ elevation in CA region. Repeated abortion mice have uniform estrous cycles and decreased ERα expression in hypothalamus and hippocampus. Furthermore, repeated abortion not only significantly increased the HMGB1 expression in hippocampus but also increased the plasma and hippocampal protein levels of IL-1β, IL-6, and TNF-α. Finally, we identified that MPP-induced cell apoptosis and increased HMGB1 expression as well as IL-1β, IL-6, and TNF-α expression as following Aβ elevation. Taken together, our results identify possible molecular mechanisms underlying cognitive impairment during aging, and demonstrated the repeated abortion in adulthood on cognitive function in aged mice.
Collapse
Affiliation(s)
- Lili Wang
- Graduate School of Peking Union Medical College, Beijing, China.,Department of Cell Biology, National Research Institute for Family Planning, Beijing, China
| | - Ying Zhang
- Department of Cell Biology, National Research Institute for Family Planning, Beijing, China
| | - Haofeng Wang
- Department of Neurology, The Fifth People's Hospital of Jinan, Jinan, China
| | - Hui Li
- Department of Anatomy, Capital Medical University, Beijing, China
| | - Ziying Zhao
- Department of Chinese Medicine, Air Force General Hospital, Beijing, China
| | - Ning Wang
- Department of Cell Biology, National Research Institute for Family Planning, Beijing, China
| | - Bin He
- Department of Cell Biology, National Research Institute for Family Planning, Beijing, China
| | - Cuige Shi
- Department of Cell Biology, National Research Institute for Family Planning, Beijing, China.
| | - Shucheng Zhang
- Department of Cell Biology, National Research Institute for Family Planning, Beijing, China.
| | - Jiedong Wang
- Graduate School of Peking Union Medical College, Beijing, China. .,Department of Cell Biology, National Research Institute for Family Planning, Beijing, China.
| |
Collapse
|
18
|
Chen YW, Actor-Engel H, Aoki C. α4-GABA A receptors of hippocampal pyramidal neurons are associated with resilience against activity-based anorexia for adolescent female mice but not for males. Mol Cell Neurosci 2018; 90:33-48. [PMID: 29684457 PMCID: PMC6197931 DOI: 10.1016/j.mcn.2018.04.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 04/14/2018] [Accepted: 04/19/2018] [Indexed: 11/23/2022] Open
Abstract
Activity-based anorexia (ABA) is an animal model of anorexia nervosa, a mental illness with highest mortality and with onset that is most frequently during adolescence. We questioned whether vulnerability of adolescent mice to ABA differs between sexes and whether individual differences in resilience are causally linked to α4βδ-GABAAR expression. C57BL6/J WT and α4-KO adolescent male and female mice underwent ABA induction by combining wheel access with food restriction. ABA vulnerability was measured as the extent of food restriction-evoked hyperactivity on a running wheel and body weight losses. α4βδ-GABAAR levels at plasma membranes of pyramidal cells in dorsal hippocampus were assessed by electron microscopic immunocytochemistry. Temporal patterns and extent of weight loss during ABA induction were similar between sexes. Both sexes also exhibited individual differences in ABA vulnerability. Correlation analyses revealed that, for both sexes, body weight changes precede and thus are likely to drive suppression of wheel running. However, the suppression was during the food-anticipatory hours for males, while for females, suppression was delayed by a day and during food-access hours. Correspondingly, only females adaptively increased food intake. ABA induced up-regulation of α4βδ-GABAARs at plasma membranes of dorsal hippocampal pyramidal cells of females, and especially those females exhibiting resilience. Conversely, α4-KO females exhibited greater food restriction-evoked hyperactivity than WT females. In contrast, ABA males did not up-regulate α4βδ-GABAARs, did not exhibit genotype differences in vulnerability, and exhibited no correlation between plasmalemmal α4βδ-GABAARs and ABA resilience. Thus, food restriction-evoked hyperactivity is driven by anxiety but can be suppressed through upregulation of hippocampal α4βδ-GABAARs for females but not for males. This knowledge of sex-related differences in the underlying mechanisms of resilience to ABA indicates that drugs targeting α4βδ-GABAARs may be helpful for treating stress-induced anxiety and anorexia nervosa of females but not males.
Collapse
Affiliation(s)
- Yi-Wen Chen
- Center for Neural Science, New York University, New York, NY 10003, United States
| | - Hannah Actor-Engel
- Center for Neural Science, New York University, New York, NY 10003, United States
| | - Chiye Aoki
- Center for Neural Science, New York University, New York, NY 10003, United States; Neuroscience Institute, Langone Medical Center, New York University, New York, NY, 10016, United States.
| |
Collapse
|
19
|
Weger M, Diotel N, Weger BD, Beil T, Zaucker A, Eachus HL, Oakes JA, do Rego JL, Storbeck KH, Gut P, Strähle U, Rastegar S, Müller F, Krone N. Expression and activity profiling of the steroidogenic enzymes of glucocorticoid biosynthesis and the fdx1 co-factors in zebrafish. J Neuroendocrinol 2018; 30:e12586. [PMID: 29486070 DOI: 10.1111/jne.12586] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 02/06/2018] [Accepted: 02/22/2018] [Indexed: 01/23/2023]
Abstract
The spatial and temporal expression of steroidogenic genes in zebrafish has not been fully characterised. Because zebrafish are increasingly employed in endocrine and stress research, a better characterisation of steroidogenic pathways is required to target specific steps in the biosynthetic pathways. In the present study, we have systematically defined the temporal and spatial expression of steroidogenic enzymes involved in glucocorticoid biosynthesis (cyp21a2, cyp11c1, cyp11a1, cyp11a2, cyp17a1, cyp17a2, hsd3b1, hsd3b2), as well as the mitochondrial electron-providing ferredoxin co-factors (fdx1, fdx1b), during zebrafish development. Our studies showed an early expression of all these genes during embryogenesis. In larvae, expression of cyp11a2, cyp11c1, cyp17a2, cyp21a2, hsd3b1 and fdx1b can be detected in the interrenal gland, which is the zebrafish counterpart of the mammalian adrenal gland, whereas the fdx1 transcript is mainly found in the digestive system. Gene expression studies using quantitative reverse transcriptase-PCR and whole-mount in situ hybridisation in the adult zebrafish brain revealed a wide expression of these genes throughout the encephalon, including neurogenic regions. Using ultra-high-performance liquid chromatography tandem mass spectrometry, we were able to demonstrate the presence of the glucocorticoid cortisol in the adult zebrafish brain. Moreover, we demonstrate de novo biosynthesis of cortisol and the neurosteroid tetrahydrodeoxycorticosterone in the adult zebrafish brain from radiolabelled pregnenolone. Taken together, the present study comprises a comprehensive characterisation of the steroidogenic genes and the fdx co-factors facilitating glucocorticoid biosynthesis in zebrafish. Furthermore, we provide additional evidence of de novo neurosteroid biosynthesising in the brain of adult zebrafish facilitated by enzymes involved in glucocorticoid biosynthesis. Our study provides a valuable source for establishing the zebrafish as a translational model with respect to understanding the roles of the genes for glucocorticoid biosynthesis and fdx co-factors during embryonic development and stress, as well as in brain homeostasis and function.
Collapse
Affiliation(s)
- M Weger
- College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - N Diotel
- INSERM, UMR 1188, Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI), Université de La Réunion, Saint-Denis de La Réunion, France
| | - B D Weger
- Nestlé Institute of Health Sciences SA, Lausanne, Switzerland
| | - T Beil
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - A Zaucker
- College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - H L Eachus
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
- Department of Biomedical Science, The Bateson Centre, Sheffield, UK
| | - J A Oakes
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
- Department of Biomedical Science, The Bateson Centre, Sheffield, UK
| | - J L do Rego
- Plateforme d'Analyse Comportementale (SCAC), Institut de Recherche et d'Innovation Biomédicale, Inserm U1234, Université de Rouen, Rouen Cedex, France
| | - K-H Storbeck
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa
| | - P Gut
- Nestlé Institute of Health Sciences SA, Lausanne, Switzerland
| | - U Strähle
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - S Rastegar
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - F Müller
- College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - N Krone
- College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
- Department of Biomedical Science, The Bateson Centre, Sheffield, UK
| |
Collapse
|
20
|
Gebhardt C, Albrecht D. Glutamate receptor GluA1 subunit is implicated in capsaicin induced modulation of amygdala LTP but not LTD. Learn Mem 2018; 25:1-7. [PMID: 29246976 PMCID: PMC5733465 DOI: 10.1101/lm.045948.117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 09/14/2017] [Indexed: 11/24/2022]
Abstract
Capsaicin has been shown to modulate synaptic plasticity in various brain regions including the amygdala. Whereas in the lateral amygdala the modulatory effect of capsaicin on long-term potentiation (LA-LTP) is mediated by TRPV1 channels, we have recently shown that capsaicin-induced enhancement of long term depression (LA-LTD) is mediated by TRPM1 receptors. However, the underlying mechanism by which capsaicin modulates synaptic plasticity is poorly understood. In the present study, we investigate the modulatory effect of capsaicin on synaptic plasticity in mice lacking the AMPAR subunit GluA1. Capsaicin reduced the magnitude of LA-LTP in slices derived from wild-type mice as previously described, whereas this capsaicin-induced suppression was absent in GluA1-deficient mice. In contrast, neither LA-LTD nor the capsaicin-mediated enhancement of LA-LTD was changed in GluA1 knockout mice. Our data indicate that capsaicin-induced modulation of LA-LTP via TRPV1 involves GluA1-containing AMPARs whereas capsaicin-induced modulation of LA-LTD via TRPM1 is independent of the expression of the AMPAR GluA1 subunit.
Collapse
|
21
|
Feng HJ, Forman SA. Comparison of αβδ and αβγ GABA A receptors: Allosteric modulation and identification of subunit arrangement by site-selective general anesthetics. Pharmacol Res 2017; 133:289-300. [PMID: 29294355 DOI: 10.1016/j.phrs.2017.12.031] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 12/28/2017] [Accepted: 12/29/2017] [Indexed: 12/27/2022]
Abstract
GABAA receptors play a dominant role in mediating inhibition in the mature mammalian brain, and defects of GABAergic neurotransmission contribute to the pathogenesis of a variety of neurological and psychiatric disorders. Two types of GABAergic inhibition have been described: αβγ receptors mediate phasic inhibition in response to transient high-concentrations of synaptic GABA release, and αβδ receptors produce tonic inhibitory currents activated by low-concentration extrasynaptic GABA. Both αβδ and αβγ receptors are important targets for general anesthetics, which induce apparently different changes both in GABA-dependent receptor activation and in desensitization in currents mediated by αβγ vs. αβδ receptors. Many of these differences are explained by correcting for the high agonist efficacy of GABA at most αβγ receptors vs. much lower efficacy at αβδ receptors. The stoichiometry and subunit arrangement of recombinant αβγ receptors are well established as β-α-γ-β-α, while those of αβδ receptors remain controversial. Importantly, some potent general anesthetics selectively bind in transmembrane inter-subunit pockets of αβγ receptors: etomidate acts at β+/α- interfaces, and the barbiturate R-5-allyl-1-methyl-5-(m-trifluoromethyl-diazirynylphenyl) barbituric acid (R-mTFD-MPAB) acts at α+/β- and γ+/β- interfaces. Thus, these drugs are useful as structural probes in αβδ receptors formed from free subunits or concatenated subunit assemblies designed to constrain subunit arrangement. Although a definite conclusion cannot be drawn, studies using etomidate and R-mTFD-MPAB support the idea that recombinant α1β3δ receptors may share stoichiometry and subunit arrangement with α1β3γ2 receptors.
Collapse
Affiliation(s)
- Hua-Jun Feng
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, and Department of Anesthesia, Harvard Medical School, Boston, MA 02114, USA.
| | - Stuart A Forman
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, and Department of Anesthesia, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
22
|
Melón LC, Nolan ZT, Colar D, Moore EM, Boehm SL. Activation of extrasynaptic δ-GABA A receptors globally or within the posterior-VTA has estrous-dependent effects on consumption of alcohol and estrous-independent effects on locomotion. Horm Behav 2017; 95:65-75. [PMID: 28765080 PMCID: PMC5623082 DOI: 10.1016/j.yhbeh.2017.07.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 07/26/2017] [Accepted: 07/26/2017] [Indexed: 11/21/2022]
Abstract
Recent reports support higher than expected rates of binge alcohol consumption among women and girls. Unfortunately, few studies have assessed the mechanisms underlying this pattern of intake in females. Studies in males suggest that alcohol concentrations relevant to the beginning stages of binge intoxication may selectively target tonic GABAergic inhibition mediated by GABAA receptor subtypes expressing the δ-subunit protein (δ-GABAARs). Indeed, administration of agonists that interact with these δ-GABAARs prior to alcohol access can abolish binge drinking behavior in male mice. These δ-GABAARs have also been shown to exhibit estrous-dependent plasticity in regions relevant to drug taking behavior, like the hippocampus and periaqueductal gray. The present experiments were designed to determine whether the estrous cycle would alter binge drinking, or our ability to modulate this pattern of alcohol use with THIP, an agonist with high selectivity and efficacy at δ-GABAARs. Using the Drinking-in-the-Dark (DID) binge-drinking model, regularly cycling female mice were given 2h of daily access to alcohol (20%v/v). Vaginal cytology or vaginal impedance was assessed after drinking sessions to track estrous status. There was no fluctuation in binge drinking associated with the estrous cycle. Both Intra-posterior-VTA administration of THIP and systemic administration of the drug was also associated with an estrous cycle dependent reduction in drinking behavior. Pre-treatment with finasteride to inhibit synthesis of 5α-reduced neurosteroids did not disrupt THIP's effects. Analysis of δ-subunit mRNA from posterior-VTA enriched tissue samples revealed that expression of this GABAA receptor subunit is elevated during diestrus in this region. Taken together, these studies demonstrate that δGABAARs in the VTA are an important target for binge drinking in females and confirm that the estrous cycle is an important moderator of the pharmacology of this GABAA receptor subtype.
Collapse
Affiliation(s)
- Laverne C Melón
- Addiction Neuroscience, Department of Psychology, Indiana University/Purdue University-Indianapolis, Indianapolis, IN 46202, USA; Department of Neuroscience, Tufts University School of Medicine, Boston, MA 02111, USA
| | | | - Delphine Colar
- Addiction Neuroscience, Department of Psychology, Indiana University/Purdue University-Indianapolis, Indianapolis, IN 46202, USA
| | - Eileen M Moore
- Center for Behavioral Teratology, Department of Psychology, San Diego State University, San Diego, CA 92120, USA
| | - Stephen L Boehm
- Addiction Neuroscience, Department of Psychology, Indiana University/Purdue University-Indianapolis, Indianapolis, IN 46202, USA.
| |
Collapse
|
23
|
Bixo M, Ekberg K, Poromaa IS, Hirschberg AL, Jonasson AF, Andréen L, Timby E, Wulff M, Ehrenborg A, Bäckström T. Treatment of premenstrual dysphoric disorder with the GABA A receptor modulating steroid antagonist Sepranolone (UC1010)-A randomized controlled trial. Psychoneuroendocrinology 2017; 80:46-55. [PMID: 28319848 DOI: 10.1016/j.psyneuen.2017.02.031] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 02/07/2017] [Accepted: 02/27/2017] [Indexed: 01/04/2023]
Abstract
CONTEXT Allopregnanolone is a metabolite from progesterone and a positive modulator of the GABAA receptor. This endogenous steroid may induce negative mood in sensitive women when present in serum levels comparable to the premenstrual phase. Its endogenous isomer, isoallopregnanolone, has been shown to antagonize allopregnanolone effects in experimental animal and human models. OBJECTIVE The objective was to test whether inhibition of allopregnanolone by treatment with the GABAA modulating steroid antagonist (GAMSA) Sepranolone (UC1010) during the premenstrual phase could reduce symptoms of the premenstrual dysphoric disorder (PMDD). The pharmacokinetic parameters of UC1010 when given as a subcutaneous injection were measured in healthy women prior to the study in women with PMDD. DESIGN This was an explorative randomized, double-blind, placebo-controlled study. SETTING Swedish multicentre study with 10 centers. PARTICIPANTS Participants were 26 healthy women in a pharmacokinetic phase I study part, and 126 women with PMDD in a phase II study part. Diagnosis followed the criteria for PMDD in DSM-5 using Daily Record of Severity of Problems (DRSP) and Endicott's algorithm. INTERVENTION Subjects were randomized to treatment with UC1010 (10 or 16mg) subcutaneously every second day during the luteal phase or placebo during one menstrual cycle. OUTCOME MEASURES The primary outcome measure was the sum of all 21 items in DRSP (Total DRSP score). Secondary outcomes were Negative mood score i.e. the ratings of the 4 key symptoms in PMDD (anger/irritability, depression, anxiety and lability) and impairment (impact on daily life). RESULTS 26 healthy women completed the pharmacokinetic phase I study and the dosing in the following trial was adjusted according to the results. 106 of the 126 women completed the phase II study. Within this group, a significant treatment effect with UC1010 compared to placebo was obtained for the Total DRSP score (p=0.041) and borderline significance (p=0.051) for the sum of Negative mood score. Nineteen participants however showed symptoms during the follicular phase that might be signs of an underlying other conditions, and 27 participants had not received the medication as intended during the symptomatic phase. Hence, to secure that the significant result described above was not due to chance, a post hoc sub-group analysis was performed, including only women with pure PMDD who completed the trial as intended (n=60). In this group UC1010 reduced Total DRSP scores by 75% compared with 47% following placebo; the effect size 0.7 (p=0.006), and for sum of Negative mood score (p=0.003) and impairment (p=0.010) with the effect size 0.6. No severe adverse events were reported during the treatment and safety parameters (vital signs and blood chemistry) remained normal during the study. CONCLUSIONS This explorative study indicates promising results for UC1010 as a potential treatment for PMDD. The effect size was comparable to that of SSRIs and drospirenone containing oral contraceptives. UC1010 was well tolerated and deemed safe.
Collapse
Affiliation(s)
- Marie Bixo
- Department of Clinical Science, Umeå University, SE-901 85 Umeå, Sweden.
| | - Karin Ekberg
- Asarina Pharma AB, Fogdevreten 2, SE-171 65 Solna, Sweden
| | | | - Angelica Lindén Hirschberg
- Department of Women's and Children's Health, Karolinska Institutet and Department of Obstetrics and Gynecology, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | - Aino Fianu Jonasson
- Kvinnoforskningsenheten, Karolinska University Hospital, SE-141 46 Huddinge, Sweden
| | - Lotta Andréen
- Department of Obstetrics and Gynecology, Sundsvall Hospital, SE-851 86 Sundsvall, Sweden
| | - Erika Timby
- Department of Clinical Science, Umeå University, SE-901 85 Umeå, Sweden
| | - Marianne Wulff
- Slottsstadens Läkarhus Malmö, Fågelbacksgatan 11, SE-217 44 Malmö, Sweden
| | - Agneta Ehrenborg
- Specialistläkarna Kungsbacka (Qvinnolivet), Södra Torggatan 18, SE-434 30 Kungsbacka, Sweden
| | | |
Collapse
|
24
|
Afroz S, Shen H, Smith SS. α4βδ GABA A receptors reduce dendritic spine density in CA1 hippocampus and impair relearning ability of adolescent female mice: Effects of a GABA agonist and a stress steroid. Neuroscience 2017; 347:22-35. [PMID: 28189613 DOI: 10.1016/j.neuroscience.2017.01.051] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 01/22/2017] [Accepted: 01/31/2017] [Indexed: 01/10/2023]
Abstract
Synaptic pruning underlies the transition from an immature to an adult CNS through refinements of neuronal circuits. Our recent study indicates that pubertal synaptic pruning is triggered by the inhibition generated by extrasynaptic α4βδ GABAA receptors (GABARs) which are increased for 10 d on dendritic spines of CA1 pyramidal cells at the onset of puberty (PND 35-44) in the female mouse, suggesting α4βδ GABARs as a novel target for the regulation of adolescent synaptic pruning. In the present study we used a pharmacological approach to further examine the role of these receptors in altering spine density during puberty of female mice and the impact of these changes on spatial learning, assessed in adulthood. Two drugs were chronically administered during the pubertal period (PND 35-44): the GABA agonist gaboxadol (GBX, 0.1mg/kg, i.p.), to enhance current gated by α4βδ GABARs and the neurosteroid/stress steroid THP (3α-OH-5β-pregnan-20-one, 10mg/kg, i.p.) to decrease expression of α4βδ. Spine density was determined on PND 56 with Golgi staining. Spatial learning and relearning were assessed using the multiple object relocation task and an active place avoidance task on PND 56. Pubertal GBX decreased spine density post-pubertally by 70% (P<0.05), while decreasing α4βδ expression with THP increased spine density by twofold (P<0.05), in both cases, with greatest effects on the mushroom spines. Adult relearning ability was compromised in both hippocampus-dependent tasks after pubertal administration of either drug. These findings suggest that an optimal spine density produced by α4βδ GABARs is necessary for optimal cognition in adults.
Collapse
Affiliation(s)
- Sonia Afroz
- Department of Physiology and Pharmacology, SUNY Downstate Medical Center, 450 Clarkson Ave., Brooklyn, NY 11203, USA
| | - Hui Shen
- Department of Physiology and Pharmacology, SUNY Downstate Medical Center, 450 Clarkson Ave., Brooklyn, NY 11203, USA; School of Biomedical Engineering, Tianjin Medical University, No. 22 Qixiangtai Road, Heping District, Tianjin 300070, China
| | - Sheryl S Smith
- Department of Physiology and Pharmacology, SUNY Downstate Medical Center, 450 Clarkson Ave., Brooklyn, NY 11203, USA.
| |
Collapse
|
25
|
Borrow AP, Cameron NM. Maternal care and affective behavior in female offspring: Implication of the neurosteroid/GABAergic system. Psychoneuroendocrinology 2017; 76:29-37. [PMID: 27883962 DOI: 10.1016/j.psyneuen.2016.10.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Revised: 10/17/2016] [Accepted: 10/29/2016] [Indexed: 11/18/2022]
Abstract
In female rats, the proestrus phase of the estrous cycle is associated with decreased levels of anxiety-like and depressive-like behavior relative to the metestrus phase. Progesterone likely modulate these behaviors, in part through the influence of its metabolite, allopregnanolone (THP) on hippocampal GABAAR subunit expression. As natural variations in maternal care have been found to influence both progesterone levels at proestrus and anxiety-like behavior in female offspring, we sought to investigate the importance of maternal care and the estrous cycle on affective behavior in female rats that had received Low or High levels of licking/grooming (LG) during early life. Subjects were tested for anxiety-like behavior in the elevated plus maze at proestrus or metestrus or for estrous cycle-dependent changes in depressive-like anhedonic behavior with a saccharin preference test. GABAAR subunit expression, and THP levels in the dorsal hippocampus and in plasma were also evaluated. Estrous cycle phase influenced saccharine preference and hippocampal THP level in both phenotypes. Low LG animals showed higher levels of hedonic behavior and anxiety-like behavior, irrespective of estrous cycle phase, as well as lower THP levels within the dorsal hippocampus when compared to High LG animals. Only High LG animals showed positive correlations between hippocampal THP levels and GABAAR subunit expression, suggesting a relative insensitivity to THP's modulation of these receptor subunits in Low LG offspring. These findings suggest that natural variations in maternal care influence anxiety-like and hedonic behavior through the modulation of the neurosteroid/GABAergic system.
Collapse
Affiliation(s)
- Amanda P Borrow
- Psychology Department, Center for Developmental and Behavioral Neuroscience, Binghamton University- SUNY, 4400 Vestal Parkway East, Binghamton, NY, 13902, USA; Department of Biomedical Sciences/Neurosciences Division, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Nicole M Cameron
- Psychology Department, Center for Developmental and Behavioral Neuroscience, Binghamton University- SUNY, 4400 Vestal Parkway East, Binghamton, NY, 13902, USA.
| |
Collapse
|
26
|
Reddy DS, Gangisetty O, Wu X. PR-independent neurosteroid regulation of α2-GABA-A receptors in the hippocampus subfields. Brain Res 2017; 1659:142-147. [PMID: 28137424 DOI: 10.1016/j.brainres.2017.01.030] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Revised: 12/27/2016] [Accepted: 01/24/2017] [Indexed: 12/13/2022]
Abstract
Progesterone (P) binding to the intracellular progesterone receptors (PRs) plays a key role in epilepsy via modulation of GABA-A receptor plasticity in the brain. This is thought to occur via conversion of P to neurosteroids such as allopregnanolone, an allosteric modulator of GABA-A receptors. In the female brain, the composition of GABA-A receptors is not static and undergoes dynamic spatial changes in response to fluctuations in P and neurosteroid levels. Synaptic α2-containing GABA-A receptors contribute to phasic neuronal excitability and seizure susceptibility. However, the mechanisms underlying α2-subunit plasticity remain unclear. Here, we utilized the neurosteroid synthesis inhibitor finasteride and PR knockout mice to investigate the role of PRs in α2-subunit in the hippocampus. α2-Subunit expression was significantly upregulated during the high-P state of diestrous stage and with P treatment in wildtype and PR knockout mice. In contrast, there was no change in α2-subunit expression when metabolism of P into neurosteroids was blocked by finasteride in both genotypes. These findings suggest that ovarian cycle-related P and neurosteroids regulate α2-GABA-A receptor expression in the hippocampus via a non-PR pathway, which may be relevant to menstrual-cycle related brain conditions.
Collapse
Affiliation(s)
- Doodipala Samba Reddy
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, College of Medicine, Bryan, TX 77807, USA.
| | - Omkaram Gangisetty
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, College of Medicine, Bryan, TX 77807, USA
| | - Xin Wu
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, College of Medicine, Bryan, TX 77807, USA
| |
Collapse
|
27
|
Mahmoud R, Wainwright SR, Galea LAM. Sex hormones and adult hippocampal neurogenesis: Regulation, implications, and potential mechanisms. Front Neuroendocrinol 2016; 41:129-52. [PMID: 26988999 DOI: 10.1016/j.yfrne.2016.03.002] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 03/12/2016] [Accepted: 03/14/2016] [Indexed: 11/16/2022]
Abstract
Neurogenesis within the adult hippocampus is modulated by endogenous and exogenous factors. Here, we review the role of sex hormones in the regulation of adult hippocampal neurogenesis in males and females. The review is framed around the potential functional implications of sex hormone regulation of adult hippocampal neurogenesis, with a focus on cognitive function and mood regulation, which may be related to sex differences in incidence and severity of dementia and depression. We present findings from preclinical studies of endogenous fluctuations in sex hormones relating to reproductive function and ageing, and from studies of exogenous hormone manipulations. In addition, we discuss the modulating roles of sex, age, and reproductive history on the relationship between sex hormones and neurogenesis. Because sex hormones have diverse targets in the central nervous system, we overview potential mechanisms through which sex hormones may influence hippocampal neurogenesis. Lastly, we advocate for a more systematic consideration of sex and sex hormones in studying the functional implications of adult hippocampal neurogenesis.
Collapse
Affiliation(s)
- Rand Mahmoud
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, Canada
| | - Steven R Wainwright
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, Canada
| | - Liisa A M Galea
- Department of Psychology, University of British Columbia, Vancouver, Canada; Centre for Brain Health, University of British Columbia, Vancouver, Canada.
| |
Collapse
|
28
|
Shen H, Sabaliauskas N, Yang L, Aoki C, Smith SS. Role of α4-containing GABA A receptors in limiting synaptic plasticity and spatial learning of female mice during the pubertal period. Brain Res 2016; 1654:116-122. [PMID: 26826007 DOI: 10.1016/j.brainres.2016.01.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 01/10/2016] [Indexed: 10/22/2022]
Abstract
Expression of α4βδ GABAA receptors (GABARs) increases at the onset of puberty on dendritic spines of CA1 hippocampal pyramidal cells. These receptors reduce activation of NMDA receptors (NMDARs), impair induction of long-term potentiation (LTP) and reduce hippocampal-dependent spatial learning. These effects are not seen in the δ-/- mouse, implicating α4βδ GABARs. Here we show that knock-out of α4 also restores synaptic plasticity and spatial learning in female mice at the onset of puberty (verified by vaginal opening). To this end, field excitatory post-synaptic potentials (fEPSPs) were recorded from the stratum radiatum of CA1 hippocampus in the slice from +/+ and α4-/- pubertal mice (PND 35-44). Induction of LTP, in response to stimulation of the Schaffer collaterals with theta burst stimulation (TBS), was unsuccessful in the +/+ hippocampus, but reinstated by α4 knock-out (~65% potentiation) but not by blockade of α5-GABARs with L-655,708 (50nM). In order to compare spatial learning in the two groups of mice, animals were trained in an active place avoidance task where the latency to first enter a shock zone is a measure of learning. α4-/- mice had significantly longer latencies by the third learning trial, suggesting better spatial learning, compared to +/+ animals, who did not reach the criterion for learning (120s latency). These findings suggest that knock-out of the GABAR α4 subunit restores synaptic plasticity and spatial learning at puberty and is consistent with the concept that the dendritic α4βδ GABARs which emerge at puberty selectively impair CNS plasticity. This article is part of a Special Issue entitled SI: Adolescent plasticity.
Collapse
Affiliation(s)
- Hui Shen
- School of Biomedical Engineering, Tianjin Medical University, No. 22 Qixiangtai Road, Heping District, Tianjin 300070 China; Department of Physiology and Pharmacology, SUNY Downstate Medical Center, 450 Clarkson Ave., Brooklyn, NY 11203, USA
| | - Nicole Sabaliauskas
- Department of Physiology and Pharmacology, SUNY Downstate Medical Center, 450 Clarkson Ave., Brooklyn, NY 11203, USA; Center for Neural Science, New York University, 4 Washington Place, New York, NY 10003, USA
| | - Lie Yang
- Department of Physiology and Pharmacology, SUNY Downstate Medical Center, 450 Clarkson Ave., Brooklyn, NY 11203, USA
| | - Chiye Aoki
- Center for Neural Science, New York University, 4 Washington Place, New York, NY 10003, USA
| | - Sheryl S Smith
- Department of Physiology and Pharmacology, SUNY Downstate Medical Center, 450 Clarkson Ave., Brooklyn, NY 11203, USA.
| |
Collapse
|
29
|
Kuver A, Smith SS. Flumazenil decreases surface expression of α4β2δ GABAA receptors by increasing the rate of receptor internalization. Brain Res Bull 2015; 120:131-43. [PMID: 26592470 DOI: 10.1016/j.brainresbull.2015.11.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Revised: 11/15/2015] [Accepted: 11/18/2015] [Indexed: 11/25/2022]
Abstract
Increases in expression of α4βδ GABAA receptors (GABARs), triggered by fluctuations in the neurosteroid THP (3α-OH-5α[β]-pregnan-20-one), are associated with changes in mood and cognition. We tested whether α4βδ trafficking and surface expression would be altered by in vitro exposure to flumazenil, a benzodiazepine ligand which reduces α4βδ expression in vivo. We first determined that flumazenil (100 nM-100 μM, IC50=∼1 μM) acted as a negative modulator, reducing GABA (10 μM)-gated current in the presence of 100 nM THP (to increase receptor efficacy), assessed with whole cell patch clamp recordings of recombinant α4β2δ expressed in HEK-293 cells. Surface expression of recombinant α4β2δ receptors was detected using a 3XFLAG reporter at the C-terminus of α4 (α4F) using confocal immunocytochemical techniques following 48 h exposure of cells to GABA (10 μM)+THP (100 nM). Flumazenil (10 μM) decreased surface expression of α4F by ∼60%, while increasing its intracellular accumulation, after 48 h. Reduced surface expression of α4β2δ after flumazenil treatment was confirmed by decreases in the current responses to 100 nM of the GABA agonist gaboxadol. Flumazenil-induced decreases in surface expression of α4β2δ were prevented by the dynamin blocker, dynasore, and by leupeptin, which blocks lysosomal enzymes, suggesting that flumazenil is acting to increase endocytosis and lysosomal degradation of the receptor. Flumazenil increased the rate of receptor removal from the cell surface by 2-fold, assessed using botulinum toxin B to block insertion of new receptors. These findings may suggest new therapeutic strategies for regulation of α4β2δ expression using flumazenil.
Collapse
Affiliation(s)
- Aarti Kuver
- Department of Physiology and Pharmacology, SUNY Downstate Medical Center, 450 Clarkson Ave, Brooklyn, NY 11203, USA
| | - Sheryl S Smith
- Department of Physiology and Pharmacology, SUNY Downstate Medical Center, 450 Clarkson Ave, Brooklyn, NY 11203, USA.
| |
Collapse
|