1
|
Turkistani A, Al-Kuraishy HM, Al-Gareeb AI, Albuhadily AK, Alexiou A, Papadakis M, Elfiky MM, Saad HM, Batiha GES. Therapeutic Potential Effect of Glycogen Synthase Kinase 3 Beta (GSK-3β) Inhibitors in Parkinson Disease: Exploring an Overlooked Avenue. Mol Neurobiol 2024; 61:7092-7108. [PMID: 38367137 PMCID: PMC11338983 DOI: 10.1007/s12035-024-04003-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 01/20/2024] [Indexed: 02/19/2024]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disease of the brain due to degeneration of dopaminergic neurons in the substantia nigra (SN). Glycogen synthase kinase 3 beta (GSK-3β) is implicated in the pathogenesis of PD. Therefore, the purpose of the present review was to revise the mechanistic role of GSK-3β in PD neuropathology, and how GSK-3β inhibitors affect PD neuropathology. GSK-3 is a conserved threonine/serine kinase protein that is intricate in the regulation of cellular anabolic and catabolic pathways by modulating glycogen synthase. Over-expression of GSK-3β is also interconnected with the development of different neurodegenerative diseases. However, the underlying mechanism of GSK-3β in PD neuropathology is not fully clarified. Over-expression of GSK-3β induces the development of PD by triggering mitochondrial dysfunction and oxidative stress in the dopaminergic neurons of the SN. NF-κB and NLRP3 inflammasome are activated in response to dysregulated GSK-3β in PD leading to progressive neuronal injury. Higher expression of GSK-3β in the early stages of PD neuropathology might contribute to the reduction of neuroprotective brain-derived neurotrophic factor (BDNF). Thus, GSK-3β inhibitors may be effective in PD by reducing inflammatory and oxidative stress disorders which are associated with degeneration of dopaminergic in the SN.
Collapse
Affiliation(s)
- Areej Turkistani
- Department of Pharmacology and Toxicology, College of Medicine, Taif University, 21944, Taif, Saudi Arabia
| | - Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, P.O. Box 14132, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, P.O. Box 14132, Baghdad, Iraq
| | - Ali K Albuhadily
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, P.O. Box 14132, Baghdad, Iraq
| | - Athanasios Alexiou
- University Centre for Research & Development, Chandigarh University, Chandigarh-Ludhiana Highway, Mohali, Punjab, India
- Department of Research & Development, Funogen, Athens, Greece
- Department of Research & Development, AFNP Med, 1030, Vienna, Austria
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW, 2770, Australia
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, Heusnerstrasse 40, University of Witten-Herdecke, 42283, Wuppertal, Germany.
| | - Mohamed M Elfiky
- Anatomy Department, General Medicine Practice Program, Batterjee Medical College, Jeddah, Saudi Arabia
- Anatomy Department, Faculty of Medicine, Menoufia University, Shibin El Kom, Al Minufya, Egypt
| | - Hebatallah M Saad
- Department of Pathology, Faculty of Veterinary Medicine, Matrouh University, Matrouh, 51744, Egypt
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, AlBeheira, Egypt
| |
Collapse
|
2
|
Singulani MP, Ferreira AFF, Figueroa PS, Cuyul-Vásquez I, Talib LL, Britto LR, Forlenza OV. Lithium and disease modification: A systematic review and meta-analysis in Alzheimer's and Parkinson's disease. Ageing Res Rev 2024; 95:102231. [PMID: 38364914 DOI: 10.1016/j.arr.2024.102231] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 02/11/2024] [Indexed: 02/18/2024]
Abstract
The role of lithium as a possible therapeutic strategy for neurodegenerative diseases has generated scientific interest. We systematically reviewed and meta-analyzed pre-clinical and clinical studies that evidenced the neuroprotective effects of lithium in Alzheimer's (AD) and Parkinson's disease (PD). We followed the PRISMA guidelines and performed the systematic literature search using PubMed, EMBASE, Web of Science, and Cochrane Library. A total of 32 articles were identified. Twenty-nine studies were performed in animal models and 3 studies were performed on human samples of AD. A total of 17 preclinical studies were included in the meta-analysis. Our analysis showed that lithium treatment has neuroprotective effects in diseases. Lithium treatment reduced amyloid-β and tau levels and significantly improved cognitive behavior in animal models of AD. Lithium increased the tyrosine hydroxylase levels and improved motor behavior in the PD model. Despite fewer clinical studies on these aspects, we evidenced the positive effects of lithium in AD patients. This study lends further support to the idea of lithium's therapeutic potential in neurodegenerative diseases.
Collapse
Affiliation(s)
- Monique Patricio Singulani
- Laboratory of Neuroscience LIM27, Departamento e Instituto de Psiquiatria, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, Brazil; Centro de Neurociências Translacionais (CNT), Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil; Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBioN), Conselho Nacional de Desenvolvimento Científico e Tecnológico, São Paulo, Brazil
| | - Ana Flávia Fernandes Ferreira
- Laboratory of Cellular Neurobiology, Department of Physiology and Biophysics, Instituto de Ciências Biomédicas da Universidade de São Paulo (USP), São Paulo, Brazil
| | | | - Iván Cuyul-Vásquez
- Departamento de Procesos Terapéuticos, Facultad de Ciencias de la Salud, Universidad Católica de Temuco, Temuco, Chile; Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Chile
| | - Leda Leme Talib
- Laboratory of Neuroscience LIM27, Departamento e Instituto de Psiquiatria, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, Brazil; Centro de Neurociências Translacionais (CNT), Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil; Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBioN), Conselho Nacional de Desenvolvimento Científico e Tecnológico, São Paulo, Brazil
| | - Luiz Roberto Britto
- Laboratory of Cellular Neurobiology, Department of Physiology and Biophysics, Instituto de Ciências Biomédicas da Universidade de São Paulo (USP), São Paulo, Brazil
| | - Orestes Vicente Forlenza
- Laboratory of Neuroscience LIM27, Departamento e Instituto de Psiquiatria, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, Brazil; Centro de Neurociências Translacionais (CNT), Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil; Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBioN), Conselho Nacional de Desenvolvimento Científico e Tecnológico, São Paulo, Brazil.
| |
Collapse
|
3
|
Hatta D, Kanamoto K, Makiya S, Watanabe K, Kishino T, Kinoshita A, Yoshiura KI, Kurotaki N, Shirotani K, Iwata N. Proline-rich transmembrane protein 2 knock-in mice present dopamine-dependent motor deficits. J Biochem 2023; 174:561-570. [PMID: 37793168 DOI: 10.1093/jb/mvad074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/19/2023] [Accepted: 09/26/2023] [Indexed: 10/06/2023] Open
Abstract
Mutations of proline-rich transmembrane protein 2 (PRRT2) lead to dyskinetic disorders such as paroxysmal kinesigenic dyskinesia (PKD), which is characterized by attacks of involuntary movements precipitated by suddenly initiated motion, and some convulsive disorders. Although previous studies have shown that PKD might be caused by cerebellar dysfunction, PRRT2 has not been sufficiently analyzed in some motor-related regions, including the basal ganglia, where dopaminergic neurons are most abundant in the brain. Here, we generated several types of Prrt2 knock-in (KI) mice harboring mutations, such as c.672dupG, that mimics the human pathological mutation c.649dupC and investigated the contribution of Prrt2 to dopaminergic regulation. Regardless of differences in the frameshift sites, all truncating mutations abolished Prrt2 expression within the striatum and cerebral cortex, consistent with previous reports of similar Prrt2 mutant rodents, confirming the loss-of-function nature of these mutations. Importantly, administration of l-dopa, a precursor of dopamine, exacerbated rotarod performance, especially in Prrt2-KI mice. These findings suggest that dopaminergic dysfunction in the brain by the PRRT2 mutation might be implicated in a part of motor symptoms of PKD and related disorders.
Collapse
Key Words
-
l-dopa
- Prrt2
- dopamine
- paroxysmal kinesigenic dyskinesia
- rotarod.Abbreviations:
BFIE, benign familial infantile epilepsy; BG, basal ganglia; DA, dopamine; gRNA, guide ribonucleic acid; KI, knock-in; Kif26b, kinesin family member 26b; KLH, Keyhole Limpet Hemocyanin; LID, l-dopa-induced dyskinesia; MBS, m-maleimidobenzoyl-N-hydroxysuccinimide ester; NMD, nonsense-mediated mRNA decay; PKD, paroxysmal kinesigenic dyskinesia; PRRT2, proline-rich transmembrane protein 2; SNARE, soluble N-ethylmaleimide-sensitive factor attachment protein receptor
Collapse
Affiliation(s)
- Daisuke Hatta
- Department of Genome-Based Drug Discovery, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki-shi, Nagasaki 852-8521, Japan
| | - Kaito Kanamoto
- Department of Genome-Based Drug Discovery, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki-shi, Nagasaki 852-8521, Japan
| | - Shiho Makiya
- Department of Genome-Based Drug Discovery, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki-shi, Nagasaki 852-8521, Japan
| | - Kaori Watanabe
- Department of Genome-Based Drug Discovery, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki-shi, Nagasaki 852-8521, Japan
| | - Tatsuya Kishino
- Division of Functional Genomics, Research Center for Advanced Genomics, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki-shi, Nagasaki 852-8523, Japan
- Leading Medical Research Core Unit, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki-shi, Nagasaki 852-8523, Japan
| | - Akira Kinoshita
- Department of Human Genetics, Atomic Bomb Disease Institute, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki-shi, Nagasaki 852-8523, Japan
- Leading Medical Research Core Unit, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki-shi, Nagasaki 852-8523, Japan
| | - Koh-Ichiro Yoshiura
- Department of Human Genetics, Atomic Bomb Disease Institute, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki-shi, Nagasaki 852-8523, Japan
- Leading Medical Research Core Unit, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki-shi, Nagasaki 852-8523, Japan
| | - Naohiro Kurotaki
- Department of Human Genetics, Atomic Bomb Disease Institute, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki-shi, Nagasaki 852-8523, Japan
| | - Keiro Shirotani
- Department of Genome-Based Drug Discovery, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki-shi, Nagasaki 852-8521, Japan
- Leading Medical Research Core Unit, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki-shi, Nagasaki 852-8523, Japan
| | - Nobuhisa Iwata
- Department of Genome-Based Drug Discovery, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki-shi, Nagasaki 852-8521, Japan
- Leading Medical Research Core Unit, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki-shi, Nagasaki 852-8523, Japan
| |
Collapse
|
4
|
Ofori K, Ghosh A, Verma DK, Wheeler D, Cabrera G, Seo JB, Kim YH. A Novel NOX Inhibitor Alleviates Parkinson's Disease Pathology in PFF-Injected Mice. Int J Mol Sci 2023; 24:14278. [PMID: 37762579 PMCID: PMC10531511 DOI: 10.3390/ijms241814278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/11/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Oxidative stress-mediated damage is often a downstream result of Parkinson's disease (PD), which is marked by sharp decline in dopaminergic neurons within the nigrostriatal regions of the brain, accounting for the symptomatic motor deficits in patients. Regulating the level of oxidative stress may present a beneficial approach in preventing PD pathology. Here, we assessed the efficacy of a nicotinamide adenine phosphate (NADPH) oxidase (NOX) inhibitor, an exogenous reactive oxygen species (ROS) regulator synthesized by Aptabio therapeutics with the specificity to NOX-1, 2 and 4. Utilizing N27 rat dopaminergic cells and C57Bl/6 mice, we confirmed that the exposures of alpha-synuclein preformed fibrils (PFF) induced protein aggregation, a hallmark in PD pathology. In vitro assessment of the novel compound revealed an increase in cell viability and decreases in cytotoxicity, ROS, and protein aggregation (Thioflavin-T stain) against PFF exposure at the optimal concentration of 10 nM. Concomitantly, the oral treatment alleviated motor-deficits in behavioral tests, such as hindlimb clasping, rotarod, pole, nesting and grooming test, via reducing protein aggregation, based on rescued dopaminergic neuronal loss. The suppression of NOX-1, 2 and 4 within the striatum and ventral midbrain regions including Substantia Nigra compacta (SNc) contributed to neuroprotective/recovery effects, making it a potential therapeutic option for PD.
Collapse
Affiliation(s)
- Kwadwo Ofori
- Department of Biological Sciences/Neuroscience Program, Delaware State University, Dover, DE 19901, USA; (K.O.); (A.G.); (D.K.V.); (D.W.); (G.C.)
| | - Anurupa Ghosh
- Department of Biological Sciences/Neuroscience Program, Delaware State University, Dover, DE 19901, USA; (K.O.); (A.G.); (D.K.V.); (D.W.); (G.C.)
| | - Dinesh Kumar Verma
- Department of Biological Sciences/Neuroscience Program, Delaware State University, Dover, DE 19901, USA; (K.O.); (A.G.); (D.K.V.); (D.W.); (G.C.)
| | - Darice Wheeler
- Department of Biological Sciences/Neuroscience Program, Delaware State University, Dover, DE 19901, USA; (K.O.); (A.G.); (D.K.V.); (D.W.); (G.C.)
| | - Gabriela Cabrera
- Department of Biological Sciences/Neuroscience Program, Delaware State University, Dover, DE 19901, USA; (K.O.); (A.G.); (D.K.V.); (D.W.); (G.C.)
| | - Jong-Bok Seo
- Seoul Center, Korea Basic Science Institute, Seongbuk-gu, Seoul 02841, Republic of Korea;
| | - Yong-Hwan Kim
- Department of Biological Sciences/Neuroscience Program, Delaware State University, Dover, DE 19901, USA; (K.O.); (A.G.); (D.K.V.); (D.W.); (G.C.)
| |
Collapse
|
5
|
Singh A, Kumar T, Velagala VR, Thakre S, Joshi A. The Actions of Lithium on Glaucoma and Other Senile Neurodegenerative Diseases Through GSK-3 Inhibition: A Narrative Review. Cureus 2022; 14:e28265. [PMID: 36158406 PMCID: PMC9491486 DOI: 10.7759/cureus.28265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 08/22/2022] [Indexed: 11/27/2022] Open
Abstract
Glaucoma can be described as a set of progressive optic neuropathies. They cause a gradual, irreversible loss of the field of view, which concludes in complete blindness. Evidence suggests that patients who have glaucoma face a greater risk of suffering from senile dementia. Dementia is a group of conditions that occur in old age individuals. Neurodegeneration is a characteristic pathological feature of dementia, the progression of which causes a decline in cognition, which may be accompanied by memory loss. Severe dementia in old individuals usually presents as Alzheimer’s disease, which significantly contributes to a load of dementia in India. Parkinsonism is another common neurodegenerative disease that is known to occur in the elderly. The WNT (Wingless-related integration site)/β-catenin pathway is a multistep process that is responsible for the regulation of various cellular functions. Lithium can up-regulate this pathway by disrupting Glycogen synthase kinase-3β (GSK-3β). This action of Lithium can effectively counteract neuroinflammation and neurodegeneration. The current use of Lithium remains majorly confined to its use for episodes of mania in bipolar disorder (BD). However, recent literature gives insight into how Lithium can improve the visual field in glaucomatous eyes. Symptomatic improvement after lithium administration is seen as it has neuroprotective actions on the retinal ganglion cells (RGCs). Prolonged lithium use improves axonal regeneration and neuronal survival. Lithium also improves the worsening of symptoms in other dementia-related neurodegenerative diseases like Alzheimer’s and Parkinsonism. The physiological actions of Lithium can be utilized in providing effective, holistic therapy options in pathologically related senile degenerative disorders. Significantly better results can be obtained if Lithium therapy is given in conjunction with the drugs used to manage these disorders.
Collapse
|
6
|
Salehipour A, Bagheri M, Sabahi M, Dolatshahi M, Boche D. Combination Therapy in Alzheimer’s Disease: Is It Time? J Alzheimers Dis 2022; 87:1433-1449. [DOI: 10.3233/jad-215680] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Alzheimer’s disease (AD) is the most common cause of dementia globally. There is increasing evidence showing AD has no single pathogenic mechanism, and thus treatment approaches focusing only on one mechanism are unlikely to be meaningfully effective. With only one potentially disease modifying treatment approved, targeting amyloid-β (Aβ), AD is underserved regarding effective drug treatments. Combining multiple drugs or designing treatments that target multiple pathways could be an effective therapeutic approach. Considering the distinction between added and combination therapies, one can conclude that most trials fall under the category of added therapies. For combination therapy to have an actual impact on the course of AD, it is likely necessary to target multiple mechanisms including but not limited to Aβ and tau pathology. Several challenges have to be addressed regarding combination therapy, including choosing the correct agents, the best time and stage of AD to intervene, designing and providing proper protocols for clinical trials. This can be achieved by a cooperation between the pharmaceutical industry, academia, private research centers, philanthropic institutions, and the regulatory bodies. Based on all the available information, the success of combination therapy to tackle complicated disorders such as cancer, and the blueprint already laid out on how to implement combination therapy and overcome its challenges, an argument can be made that the field has to move cautiously but quickly toward designing new clinical trials, further exploring the pathological mechanisms of AD, and re-examining the previous studies with combination therapies so that effective treatments for AD may be finally found.
Collapse
Affiliation(s)
- Arash Salehipour
- Neurosurgery Research Group (NRG), Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran
- NeuroImaging Network (NIN), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Motahareh Bagheri
- Neurosurgery Research Group (NRG), Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammadmahdi Sabahi
- Neurosurgery Research Group (NRG), Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran
- NeuroImaging Network (NIN), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mahsa Dolatshahi
- NeuroImaging Network (NIN), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Students’ Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran
| | - Delphine Boche
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, United Kingdom
| |
Collapse
|
7
|
Ghosh AA, Verma DK, Cabrera G, Ofori K, Hernandez-Quijada K, Kim JK, Chung JH, Moore M, Moon SH, Seo JB, Kim YH. A Novel NOX Inhibitor Treatment Attenuates Parkinson's Disease-Related Pathology in Mouse Models. Int J Mol Sci 2022; 23:4262. [PMID: 35457082 PMCID: PMC9030373 DOI: 10.3390/ijms23084262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/04/2022] [Accepted: 04/08/2022] [Indexed: 02/04/2023] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative motor disorder without an available therapeutic to halt the formation of Lewy bodies for preventing dopaminergic neuronal loss in the nigrostriatal pathway. Since oxidative-stress-mediated damage has been commonly reported as one of the main pathological mechanisms in PD, we assessed the efficacy of a novel NOX inhibitor from AptaBio Therapeutics (C-6) in dopaminergic cells and PD mouse models. The compound reduced the cytotoxicity and enhanced the cell viability at various concentrations against MPP+ and α-synuclein preformed fibrils (PFFs). Further, the levels of ROS and protein aggregation were significantly reduced at the optimal concentration (1 µM). Using two different mouse models, we gavaged C-6 at two different doses to the PD sign-displaying transgenic mice for 2 weeks and stereotaxically PFF-injected mice for 5 weeks. Our results demonstrated that both C-6-treated mouse models showed alleviated motor deficits in pole test, hindlimb clasping, crossbeam, rotarod, grooming, and nesting analyses. We also confirmed that the compound treatment reduced the levels of protein aggregation, along with phosphorylated-α-synuclein, in the striatum and ventral midbrain and further dopaminergic neuronal loss. Taken together, our results strongly suggest that NOX inhibition can be a potential therapeutic target for PD.
Collapse
Affiliation(s)
- Anurupa A. Ghosh
- Department of Biological Sciences/Neuroscience Program, Delaware State University, Dover, DE 19901, USA; (D.K.V.); (G.C.); (K.O.); (K.H.-Q.)
| | - Dinesh Kumar Verma
- Department of Biological Sciences/Neuroscience Program, Delaware State University, Dover, DE 19901, USA; (D.K.V.); (G.C.); (K.O.); (K.H.-Q.)
| | - Gabriela Cabrera
- Department of Biological Sciences/Neuroscience Program, Delaware State University, Dover, DE 19901, USA; (D.K.V.); (G.C.); (K.O.); (K.H.-Q.)
| | - Kwadwo Ofori
- Department of Biological Sciences/Neuroscience Program, Delaware State University, Dover, DE 19901, USA; (D.K.V.); (G.C.); (K.O.); (K.H.-Q.)
| | - Karina Hernandez-Quijada
- Department of Biological Sciences/Neuroscience Program, Delaware State University, Dover, DE 19901, USA; (D.K.V.); (G.C.); (K.O.); (K.H.-Q.)
| | - Jae-Kwan Kim
- Seoul Center, Korea Basic Science Institute, Seongbuk-gu, Seoul 02841, Korea; (J.-K.K.); (J.H.C.); (J.B.S.)
| | - Joo Hee Chung
- Seoul Center, Korea Basic Science Institute, Seongbuk-gu, Seoul 02841, Korea; (J.-K.K.); (J.H.C.); (J.B.S.)
| | - Michael Moore
- Imaging Core, Delaware State University, Dover, DE 19901, USA;
| | - Sung Hwan Moon
- AptaBio Therapeutics Inc., 504 Tower, Heungdeok IT Valley, Heungdeok 1-ro 13, Gyeonggi-do, Yongin-si 16954, Korea;
| | - Jong Bok Seo
- Seoul Center, Korea Basic Science Institute, Seongbuk-gu, Seoul 02841, Korea; (J.-K.K.); (J.H.C.); (J.B.S.)
| | - Yong-Hwan Kim
- Department of Biological Sciences/Neuroscience Program, Delaware State University, Dover, DE 19901, USA; (D.K.V.); (G.C.); (K.O.); (K.H.-Q.)
| |
Collapse
|
8
|
Verma DK, Seo BA, Ghosh A, Ma SX, Hernandez-Quijada K, Andersen JK, Ko HS, Kim YH. Alpha-Synuclein Preformed Fibrils Induce Cellular Senescence in Parkinson's Disease Models. Cells 2021; 10:1694. [PMID: 34359864 PMCID: PMC8304385 DOI: 10.3390/cells10071694] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 06/28/2021] [Accepted: 06/30/2021] [Indexed: 12/24/2022] Open
Abstract
Emerging evidence indicates that cellular senescence could be a critical inducing factor for aging-associated neurodegenerative disorders. However, the involvement of cellular senescence remains unclear in Parkinson's disease (PD). To determine this, we assessed the effects of α-synuclein preformed fibrils (α-syn PFF) or 1-methyl-4-phenylpyridinium (MPP+) on changes in cellular senescence markers, employing α-syn PFF treated-dopaminergic N27 cells, primary cortical neurons, astrocytes and microglia and α-syn PFF-injected mouse brain tissues, as well as human PD patient brains. Our results demonstrate that α-syn PFF-induced toxicity reduces the levels of Lamin B1 and HMGB1, both established markers of cellular senescence, in correlation with an increase in the levels of p21, a cell cycle-arrester and senescence marker, in both reactive astrocytes and microglia in mouse brains. Using Western blot and immunohistochemistry, we found these cellular senescence markers in reactive astrocytes as indicated by enlarged cell bodies within GFAP-positive cells and Iba1-positive activated microglia in α-syn PFF injected mouse brains. These results indicate that PFF-induced pathology could lead to astrocyte and/or microglia senescence in PD brains, which may contribute to neuropathology in this model. Targeting senescent cells using senolytics could therefore constitute a viable therapeutic option for the treatment of PD.
Collapse
Affiliation(s)
- Dinesh Kumar Verma
- Neuroscience Program, Department of Biological Sciences, Delaware State University, Dover, DE 19901, USA; (D.K.V.); (A.G.); (K.H.-Q.)
| | - Bo Am Seo
- Department of Neurology, School of Medicine, The Johns Hopkins University, Baltimore, MD 21205, USA; (B.A.S.); (S.-X.M.)
- Neuroregeneration & Stem Cell Program, Institute for Cell Engineering, School of Medicine, The Johns Hopkins University, Baltimore, MD 21205, USA
| | - Anurupa Ghosh
- Neuroscience Program, Department of Biological Sciences, Delaware State University, Dover, DE 19901, USA; (D.K.V.); (A.G.); (K.H.-Q.)
| | - Shi-Xun Ma
- Department of Neurology, School of Medicine, The Johns Hopkins University, Baltimore, MD 21205, USA; (B.A.S.); (S.-X.M.)
- Neuroregeneration & Stem Cell Program, Institute for Cell Engineering, School of Medicine, The Johns Hopkins University, Baltimore, MD 21205, USA
| | - Karina Hernandez-Quijada
- Neuroscience Program, Department of Biological Sciences, Delaware State University, Dover, DE 19901, USA; (D.K.V.); (A.G.); (K.H.-Q.)
| | | | - Han Seok Ko
- Department of Neurology, School of Medicine, The Johns Hopkins University, Baltimore, MD 21205, USA; (B.A.S.); (S.-X.M.)
- Neuroregeneration & Stem Cell Program, Institute for Cell Engineering, School of Medicine, The Johns Hopkins University, Baltimore, MD 21205, USA
| | - Yong-Hwan Kim
- Neuroscience Program, Department of Biological Sciences, Delaware State University, Dover, DE 19901, USA; (D.K.V.); (A.G.); (K.H.-Q.)
| |
Collapse
|
9
|
Vallée A, Vallée JN, Lecarpentier Y. Parkinson's Disease: Potential Actions of Lithium by Targeting the WNT/β-Catenin Pathway, Oxidative Stress, Inflammation and Glutamatergic Pathway. Cells 2021; 10:230. [PMID: 33503974 PMCID: PMC7911116 DOI: 10.3390/cells10020230] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/04/2021] [Accepted: 01/08/2021] [Indexed: 12/13/2022] Open
Abstract
Parkinson's disease (PD) is one of the major neurodegenerative diseases (ND) which presents a progressive neurodegeneration characterized by loss of dopamine in the substantia nigra pars compacta. It is well known that oxidative stress, inflammation and glutamatergic pathway play key roles in the development of PD. However, therapies remain uncertain and research for new treatment is mandatory. This review focuses on the potential effects of lithium, as a potential therapeutic strategy, on PD and some of the presumed mechanisms by which lithium provides its benefit properties. Lithium medication downregulates GSK-3beta, the main inhibitor of the WNT/β-catenin pathway. The stimulation of the WNT/β-catenin could be associated with the control of oxidative stress, inflammation, and glutamatergic pathway. Future prospective clinical trials could focus on lithium and its different and multiple interactions in PD.
Collapse
Affiliation(s)
- Alexandre Vallée
- Department of Clinical Research and Innovation (DRCI), Hôpital Foch, 92150 Suresnes, France
| | - Jean-Noël Vallée
- Centre Hospitalier Universitaire (CHU) Amiens Picardie, Université Picardie Jules Verne (UPJV), 80054 Amiens, France;
- Laboratoire de Mathématiques et Applications (LMA), UMR CNRS 7348, Université de Poitiers, 86021 Poitiers, France
| | - Yves Lecarpentier
- Centre de Recherche Clinique, Grand Hôpital de l’Est Francilien (GHEF), 6-8 rue Saint-Fiacre, 77100 Meaux, France;
| |
Collapse
|
10
|
Verma DK, Ghosh A, Ruggiero L, Cartier E, Janezic E, Williams D, Jung EG, Moore M, Seo JB, Kim YH. The SUMO Conjugase Ubc9 Protects Dopaminergic Cells from Cytotoxicity and Enhances the Stability of α-Synuclein in Parkinson's Disease Models. eNeuro 2020; 7:ENEURO.0134-20.2020. [PMID: 32887693 PMCID: PMC7519168 DOI: 10.1523/eneuro.0134-20.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 12/23/2022] Open
Abstract
Small ubiquitin-like modifier (SUMO) is a widespread regulatory mechanism of post-translational modification (PTM) that induces rapid and reversible changes in protein function and stability. Using SUMO conjugase Ubc9-overexpressing or knock-down cells in Parkinson's disease (PD) models, we demonstrate that SUMOylation protects dopaminergic cells against MPP+ or preformed fibrils (PFFs) of α-synuclein (α-syn)-induced toxicities in cell viability and cytotoxicity assays. In the mechanism of protection, Ubc9 overexpression significantly suppressed the MPP+ or PFF-induced reactive oxygen species (ROS) generation, while Ubc9-RNAi enhanced the toxicity-induced ROS production. Further, PFF-mediated protein aggregation was exacerbated by Ubc9-RNAi in thioflavin T staining, compared with NC1 controls. In cycloheximide (Chx)-based protein stability assays, higher protein level of α-syn was identified in Ubc9-enhanced green fluorescent protein (EGFP) than in EGFP cells. Since there was no difference in endogenous mRNA levels of α-syn between Ubc9 and EGFP cells in quantitative real-time PCR (qRT-PCR), we assessed the mechanisms of SUMO-mediated delayed α-syn degradation via MG132, proteasomal inhibitor, and PMA, lysosomal degradation inducer. Ubc9-mediated SUMOylated α-syn avoided PMA-induced lysosomal degradation because of its high solubility. Our results suggest that Ubc9 enhances the levels of SUMO1 and ubiquitin on α-syn and interrupts SUMO1 removal from α-syn. In immunohistochemistry, dopaminergic axon tips in the striatum and cell bodies in the substantia nigra from Ubc9-overexpressing transgenic mice were protected from MPTP toxicities compared with wild-type (WT) siblings. Our results support that SUMOylation can be a regulatory target to protect dopaminergic neurons from oxidative stress and protein aggregation, with the implication that high levels of SUMOylation in dopaminergic neurons can prevent the pathologic progression of PD.
Collapse
Affiliation(s)
- Dinesh Kumar Verma
- Department of Biological Sciences/Neuroscience program, Delaware State University, Dover, DE 19901
| | - Anurupa Ghosh
- Department of Biological Sciences/Neuroscience program, Delaware State University, Dover, DE 19901
| | - Lindsey Ruggiero
- Department of Biological Sciences/Neuroscience program, Delaware State University, Dover, DE 19901
| | - Etienne Cartier
- Department of Biological Sciences/Neuroscience program, Delaware State University, Dover, DE 19901
| | - Eric Janezic
- Department of Biological Sciences/Neuroscience program, Delaware State University, Dover, DE 19901
| | - Dionne Williams
- Department of Biological Sciences/Neuroscience program, Delaware State University, Dover, DE 19901
| | - Eui-Gil Jung
- Seoul Center, Korea Basic Science Institute, Seoul 02841, Republic of Korea
| | - Michael Moore
- Imaging Core, Delaware State University, Dover, DE 19901
| | - Jong Bok Seo
- Seoul Center, Korea Basic Science Institute, Seoul 02841, Republic of Korea
| | - Yong-Hwan Kim
- Department of Biological Sciences/Neuroscience program, Delaware State University, Dover, DE 19901
| |
Collapse
|
11
|
Guttuso T, Andrzejewski KL, Lichter DG, Andersen JK. Targeting kinases in Parkinson's disease: A mechanism shared by LRRK2, neurotrophins, exenatide, urate, nilotinib and lithium. J Neurol Sci 2019; 402:121-130. [PMID: 31129265 DOI: 10.1016/j.jns.2019.05.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 05/10/2019] [Accepted: 05/14/2019] [Indexed: 12/16/2022]
Abstract
Several kinases have been implicated in the pathogenesis of Parkinson's disease (PD), most notably leucine-rich repeat kinase 2 (LRRK2), as LRRK2 mutations are the most common genetic cause of a late-onset parkinsonism that is clinically indistinguishable from sporadic PD. More recently, several other kinases have emerged as promising disease-modifying targets in PD based on both preclinical studies and clinical reports on exenatide, the urate precursor inosine, nilotinib and lithium use in PD patients. These kinases include protein kinase B (Akt), glycogen synthase kinases-3β and -3α (GSK-3β and GSK-3α), c-Abelson kinase (c-Abl) and cyclin-dependent kinase 5 (cdk5). Activities of each of these kinases are involved either directly or indirectly in phosphorylating tau or increasing α-synuclein levels, intracellular proteins whose toxic oligomeric forms are strongly implicated in the pathogenesis of PD. GSK-3β, GSK-3α and cdk5 are the principle kinases involved in phosphorylating tau at sites critical for the formation of tau oligomers. Exenatide analogues, urate, nilotinib and lithium have been shown to affect one or more of the above kinases, actions that can decrease the formation and increase the clearance of intraneuronal phosphorylated tau and α-synuclein. Here we review the current preclinical and clinical evidence supporting kinase-targeting agents as potential disease-modifying therapies for PD patients enriched with these therapeutic targets and incorporate LRRK2 physiology into this novel model.
Collapse
Affiliation(s)
- Thomas Guttuso
- Jacobs School of Medicine & Biomedical Sciences, University at Buffalo, Buffalo, NY, United States of America.
| | - Kelly L Andrzejewski
- Jacobs School of Medicine & Biomedical Sciences, University at Buffalo, Buffalo, NY, United States of America.
| | - David G Lichter
- Jacobs School of Medicine & Biomedical Sciences, University at Buffalo, Buffalo, NY, United States of America.
| | - Julie K Andersen
- The Buck Institute for Research on Aging, Novato, CA, United States of America.
| |
Collapse
|
12
|
Cartier E, Garcia-Olivares J, Janezic E, Viana J, Moore M, Lin ML, Caplan JL, Torres G, Kim YH. The SUMO-Conjugase Ubc9 Prevents the Degradation of the Dopamine Transporter, Enhancing Its Cell Surface Level and Dopamine Uptake. Front Cell Neurosci 2019; 13:35. [PMID: 30828290 PMCID: PMC6386010 DOI: 10.3389/fncel.2019.00035] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 01/23/2019] [Indexed: 12/12/2022] Open
Abstract
The dopamine transporter (DAT) is a plasma membrane protein responsible for the uptake of released dopamine back to the presynaptic terminal and ending dopamine neurotransmission. The DAT is the molecular target for cocaine and amphetamine as well as a number of pathological conditions including autism spectrum disorders, attention-deficit hyperactivity disorder (ADHD), dopamine transporter deficiency syndrome (DTDS), and Parkinson’s disease. The DAT uptake capacity is dependent on its level in the plasma membrane. In vitro studies show that DAT functional expression is regulated by a balance of endocytosis, recycling, and lysosomal degradation. However, recent reports suggest that DAT regulation by endocytosis in neurons is less significant than previously reported. Therefore, additional mechanisms appear to determine DAT steady-state level and functional expression in the neuronal plasma membrane. Here, we hypothesize that the ubiquitin-like protein small ubiquitin-like modifier 1 (SUMO1) increases the DAT steady-state level in the plasma membrane. In confocal microscopy, fluorescent resonance energy transfer (FRET), and Western blot analyses, we demonstrate that DAT is associated with SUMO1 in the rat dopaminergic N27 and DAT overexpressing Human Embryonic Kidney cells (HEK)-293 cells. The overexpression of SUMO1 and the Ubc9 SUMO-conjugase induces DAT SUMOylation, reduces DAT ubiquitination and degradation, enhancing DAT steady-state level. In addition, the Ubc9 knock-down by interference RNA (RNAi) increases DAT degradation and reduces DAT steady-state level. Remarkably, the Ubc9-mediated SUMOylation increases the expression of DAT in the plasma membrane and dopamine uptake capacity. Our results strongly suggest that SUMOylation is a novel mechanism that plays a central role in regulating DAT proteostasis, dopamine uptake, and dopamine signaling in neurons. For that reason, the SUMO pathway including SUMO1, SUMO2, Ubc9, and DAT SUMOylation, can be critical therapeutic targets in regulating DAT stability and dopamine clearance in health and pathological states.
Collapse
Affiliation(s)
- Etienne Cartier
- Department of Biological Sciences, Delaware State University, Dover, DE, United States
| | | | - Eric Janezic
- Department of Biological Sciences, Delaware State University, Dover, DE, United States
| | - Juan Viana
- Department of Biological Sciences, Delaware State University, Dover, DE, United States
| | - Michael Moore
- Imaging Core, Delaware State University, Dover, DE, United States
| | - Min Landon Lin
- Department of Neuroscience and Department of Pharmacology, University of Florida, Gainesville, FL, United States
| | - Jeffrey L Caplan
- BioImaging Center, University of Delaware, Newark, DE, United States
| | - Gonzalo Torres
- Department of Neuroscience and Department of Pharmacology, University of Florida, Gainesville, FL, United States
| | - Yong-Hwan Kim
- Department of Biological Sciences, Delaware State University, Dover, DE, United States
| |
Collapse
|
13
|
Administration of Momordica charantia Enhances the Neuroprotection and Reduces the Side Effects of LiCl in the Treatment of Alzheimer's Disease. Nutrients 2018; 10:nu10121888. [PMID: 30513908 PMCID: PMC6316175 DOI: 10.3390/nu10121888] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 11/14/2018] [Accepted: 11/28/2018] [Indexed: 12/15/2022] Open
Abstract
Recently, the use of natural food supplements to reduce the side effects of chemical compounds used for the treatment of various diseases has become popular. Lithium chloride (LiCl) has some protective effects in neurological diseases, including Alzheimer’s disease (AD). However, its toxic effects on various systems and some relevant interactions with other drugs limit its broader use in clinical practice. In this study, we investigated the in vitro and in vivo pharmacological functions of LiCl combined with Momordica charantia (MC) in the treatment of AD. The in vitro results show that the order of the neuroprotective effect is MC5, MC3, MC2, and MC5523 under hyperglycemia or tau hyperphosphorylation. Therefore, MC5523 (80 mg/kg; oral gavage) and/or LiCl (141.3 mg/kg; intraperitoneal injection) were applied to ovariectomized (OVX) 3×Tg-AD female and C57BL/6J (B6) male mice that received intracerebroventricular injections of streptozotocin (icv-STZ, 3 mg/kg) for 28 days. We found that the combined treatment not only increased the survival rate by reducing hepatotoxicity but also increased neuroprotection associated with anti-gliosis in the icv-STZ OVX 3×Tg-AD mice. Furthermore, the cotreatment with MC5523 and LiCl prevented memory deficits associated with reduced neuronal loss, gliosis, oligomeric Aβ level, and tau hyperphosphorylation and increased the expression levels of synaptic-related protein and pS9-GSK3β (inactive form) in the icv-STZ B6 mice. Therefore, MC5523 combined with LiCl could be a potential strategy for the treatment of AD.
Collapse
|
14
|
Kalkman HO, Feuerbach D. Modulatory effects of α7 nAChRs on the immune system and its relevance for CNS disorders. Cell Mol Life Sci 2016; 73:2511-30. [PMID: 26979166 PMCID: PMC4894934 DOI: 10.1007/s00018-016-2175-4] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 02/25/2016] [Accepted: 03/01/2016] [Indexed: 02/08/2023]
Abstract
The clinical development of selective alpha-7 nicotinic acetylcholine receptor (α7 nAChR) agonists has hitherto been focused on disorders characterized by cognitive deficits (e.g., Alzheimer's disease, schizophrenia). However, α7 nAChRs are also widely expressed by cells of the immune system and by cells with a secondary role in pathogen defense. Activation of α7 nAChRs leads to an anti-inflammatory effect. Since sterile inflammation is a frequently observed phenomenon in both psychiatric disorders (e.g., schizophrenia, melancholic and bipolar depression) and neurological disorders (e.g., Alzheimer's disease, Parkinson's disease, and multiple sclerosis), α7 nAChR agonists might show beneficial effects in these central nervous system disorders. In the current review, we summarize information on receptor expression, the intracellular signaling pathways they modulate and reasons for receptor dysfunction. Information from tobacco smoking, vagus nerve stimulation, and cholinesterase inhibition is used to evaluate the therapeutic potential of selective α7 nAChR agonists in these inflammation-related disorders.
Collapse
Affiliation(s)
- Hans O Kalkman
- Neuroscience Research, NIBR, Fabrikstrasse 22-3.001.02, 4002, Basel, Switzerland.
- , Gänsbühlgartenweg 7, 4132, Muttenz, Switzerland.
| | - Dominik Feuerbach
- Neuroscience Research, NIBR, Fabrikstrasse 22-3.001.02, 4002, Basel, Switzerland
| |
Collapse
|
15
|
Lazzara CA, Kim YH. Potential application of lithium in Parkinson's and other neurodegenerative diseases. Front Neurosci 2015; 9:403. [PMID: 26578864 PMCID: PMC4621308 DOI: 10.3389/fnins.2015.00403] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 10/12/2015] [Indexed: 12/12/2022] Open
Abstract
Lithium, the long-standing hallmark treatment for bipolar disorder, has recently been identified as a potential neuroprotective agent in neurodegeneration. Here we focus on introducing numerous in vitro and in vivo studies that have shown lithium treatment to be efficacious in reducing oxidative stress and inflammation, increasing autophagy, inhibiting apoptosis, and decreasing the accumulation of α-synulcein, with an emphasis on Parkinson's disease. A number of biological pathways have been shown to be involved in causing these neuroprotective effects. The inhibition of GSK-3β has been the mechanism most studied; however, other modes of action include the regulation of apoptotic proteins and glutamate excitotoxicity as well as down-regulation of calpain. This review provides a framework of the neuroprotective effects of lithium in neurodegenerative diseases and the putative mechanisms by which lithium provides the protection. Lithium-only treatment may not be a suitable therapeutic option for neurodegenerative diseases due to inconsistent efficacy and potential side-effects, however, the use of low dose lithium in combination with other potential or existing therapeutic compounds may be a promising approach to reduce symptoms and disease progression in neurodegenerative diseases.
Collapse
Affiliation(s)
- Carol A Lazzara
- Department of Biological Sciences, Delaware State University Dover, DE, USA
| | - Yong-Hwan Kim
- Department of Biological Sciences, Delaware State University Dover, DE, USA
| |
Collapse
|
16
|
Huang L, Deng M, Fang Y, Li L. Dynamic changes of five neurotransmitters and their related enzymes in various rat tissues following β-asarone and levodopa co-administration. Exp Ther Med 2015; 10:1566-1572. [PMID: 26622527 DOI: 10.3892/etm.2015.2704] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 07/23/2015] [Indexed: 12/30/2022] Open
Abstract
The aim of the present study was to investigate the dynamic changes of five neurotransmitters and their associated enzymes in the rat plasma and brain tissues following the co-administration of β-asarone and levodopa (L-dopa). The rats were divided into five groups, including the control group and four treatment groups that were intragastrically co-administered β-asarone and L-dopa and sacrificed at 1, 5, 18 and 48 h, respectively. Neurotransmitter levels in the brain tissues and plasma were detected using high performance liquid chromatograph and the related enzymes of dopamine (DA) were measured using an enzyme-linked immunosorbent assay. The results indicated that the striatal levels of L-dopa and 3,4-dihydroxyphenylacetic acid (DOPAC) peaked at 1 h and then returned to the normal levels, while the striatal levels of DA were stable within 48 h. In the cortex and hippocampus tissue, L-dopa, DA, DOPAC and homovanillic acid (HVA) levels peaked at 1 h and then returned to normal levels. In the plasma, L-dopa, DA, DOPAC and HVA levels peaked at 1 h. Compared with the control group, L-dopa, DA and HVA levels were higher between 18 and 48 h, whereas the DOPAC level was lower. By contrast, no statistically significant differences were observed in the serotonin (5-HT) levels among the plasma, hippocampus, cortex and striatum. Furthermore, the DA/L-dopa ratio in the brain tissues and plasma increased in the first 5 h, while (DOPAC + HVA)/DA ratios demonstrated a significant reduction. Striatal tyrosine hydroxylase (TH) and aromatic amino acid decarboxylase (AADC) levels were higher compared with the control group; however, catechol-O-methyltransferase (COMT) and monoamine oxidase B levels were reduced. In the rat plasma, TH and COMT peaked at 1 h, while AADC peaked at 5 h. In conclusion, the results of the present study indicate that the co-administration of L-dopa and β-asarone may be used to maintain a stable striatal DA level within 48 h. In addition, this treatment may promote DA generation by AADC and reduce the metabolism of DA by COMT.
Collapse
Affiliation(s)
- Liping Huang
- Laboratory Center, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China ; Hainan Medical University, Haikou, Hainan 571199, P.R. China
| | - Minzhen Deng
- Laboratory Center, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Yongqi Fang
- Laboratory Center, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Ling Li
- Laboratory Center, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| |
Collapse
|
17
|
Valera E, Masliah E. Combination therapies: The next logical Step for the treatment of synucleinopathies? Mov Disord 2015; 31:225-34. [PMID: 26388203 DOI: 10.1002/mds.26428] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 08/11/2015] [Indexed: 01/13/2023] Open
Abstract
Currently there are no disease-modifying alternatives for the treatment of most neurodegenerative disorders. The available therapies for diseases such as Parkinson's disease (PD), PD dementia (PDD), dementia with Lewy bodies (DLB), and multiple system atrophy (MSA), in which the protein alpha-synuclein (α-Syn) accumulates within neurons and glial cells with toxic consequences, are focused on managing the disease symptoms. However, using strategic drug combinations and/or multi-target drugs might increase the treatment efficiency when compared with monotherapies. Synucleinopathies are complex disorders that progress through several stages, and toxic α-Syn aggregates exhibit prion-like behavior spreading from cell to cell. Therefore, it follows that these neurodegenerative disorders might require equally complex therapeutic approaches to obtain significant and long-lasting results. Hypothetically, therapies aimed at reducing α-Syn accumulation and cell-to-cell transfer, such as immunotherapy against α-Syn, could be combined with agents that reduce neuroinflammation with potential synergistic outcomes. Here we review the current evidence supporting this type of approach, suggesting that such rational therapy combinations, together with the use of multi-target drugs, may hold promise as the next logical step for the treatment of synucleinopathies.
Collapse
Affiliation(s)
- Elvira Valera
- Department of Neurosciences, University of California, San Diego, La Jolla, California, USA
| | - Eliezer Masliah
- Department of Neurosciences, University of California, San Diego, La Jolla, California, USA.,Department of Pathology, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|