1
|
Wang S, He H, Chen Y, Wang Y, Cui T, Ma N. TRPV4 modulation participates in paraoxon-induced brain injury via NMDA and NLRP3 regulation. Brain Inj 2024; 38:848-857. [PMID: 38711413 DOI: 10.1080/02699052.2024.2351104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 04/29/2024] [Indexed: 05/08/2024]
Abstract
BACKGROUND Organophosphorus pesticide poisoning can lead to severe brain damage, but the specific mechanisms involved are not fully understood. Our research aims to elucidate the function of the TRPV4 ion channel in the development of brain injury induced by paraoxon (POX). METHODS In vivo, we examined the survival rate, behavioral seizures, histopathological alterations, NMDA receptor phosphorylation, as well as the expression of the NLRP3-ASC-caspase-1 complex and downstream inflammatory factors in the POX poisoning model following intervention with the TRPV4 antagonist GSK2193874. In vitro, we investigated the effects of GSK2193874 on NMDA-induced inward current, cell viability, cell death rate, and Ca2+ accumulation in primary hippocampal neurons. RESULTS The treatment with the TRPV4 antagonist increased the survival rate, suppressed the status epilepticus, improved pathological damage, and reduced the phosphorylation level of NMDA receptors after POX exposure. Additionally, it inhibited the upregulation of NLRP3 inflammasome and inflammatory cytokines expression after POX exposure. Moreover, the TRPV4 antagonist corrected the NMDA-induced increase in inward current and cell death rate, decrease in cell viability, and Ca2+ accumulation. CONCLUSION TRPV4 participates in the mechanisms of brain injury induced by POX exposure through NMDA-mediated excitotoxicity and NLRP3-mediated inflammatory response.
Collapse
Affiliation(s)
- Shuai Wang
- College of Medicine, Xinyang Normal University, Xinyang, China
| | - Huanhuan He
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yu Chen
- College of Medicine, Xinyang Normal University, Xinyang, China
| | - Yaru Wang
- College of Medicine, Xinyang Normal University, Xinyang, China
| | - Tingting Cui
- College of Medicine, Xinyang Normal University, Xinyang, China
| | - Ninghong Ma
- College of Medicine, Xinyang Normal University, Xinyang, China
| |
Collapse
|
2
|
Blockage of TRPV4 Downregulates the Nuclear Factor-Kappa B Signaling Pathway to Inhibit Inflammatory Responses and Neuronal Death in Mice with Pilocarpine-Induced Status Epilepticus. Cell Mol Neurobiol 2023; 43:1283-1300. [PMID: 35840809 DOI: 10.1007/s10571-022-01249-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 06/25/2022] [Indexed: 11/03/2022]
Abstract
The blockage of transient receptor potential vanilloid 4 (TRPV4) inhibits inflammation and reduces hippocampal neuronal injury in a pilocarpine-induced mouse model of temporal lobe epilepsy. However, the underlying mechanisms remain largely unclear. NF-κB signaling pathway is responsible for the inflammation and neuronal injury during epilepsy. Here, we explored whether TRPV4 blockage could affect the NF-κB pathway in mice with pilocarpine-induced status epilepticus (PISE). Application of a TRPV4 antagonist markedly attenuated the PISE-induced increase in hippocampal HMGB1, TLR4, phospho (p)-IκK (p-IκK), and p-IκBα protein levels, as well as those of cytoplasmic p-NF-κB p65 (p-p65) and nuclear NF-κB p65 and p50; in contrast, the application of GSK1016790A, a TRPV4 agonist, showed similar changes to PISE mice. Administration of the TLR4 antagonist TAK-242 or the NF-κB pathway inhibitor BAY 11-7082 led to a noticeable reduction in the hippocampal protein levels of cleaved IL-1β, IL-6 and TNF, as well as those of cytoplasmic p-p65 and nuclear p65 and p50 in GSK1016790A-injected mice. Finally, administration of either TAK-242 or BAY 11-7082 greatly increased neuronal survival in hippocampal CA1 and CA2/3 regions in GSK1016790A-injected mice. Therefore, TRPV4 activation increases HMGB1 and TLR4 expression, leading to IκK and IκBα phosphorylation and, consequently, NF-κB activation and nuclear translocation. The resulting increase in pro-inflammatory cytokine production is responsible for TRPV4 activation-induced neuronal injury. We conclude that blocking TRPV4 can downregulate HMGB1/TLR4/IκK/κBα/NF-κB signaling following PISE onset, an effect that may underlie the anti-inflammatory response and neuroprotective ability of TRPV4 blockage in mice with PISE.
Collapse
|
3
|
Zeng ML, Kong S, Chen TX, Peng BW. Transient Receptor Potential Vanilloid 4: a Double-Edged Sword in the Central Nervous System. Mol Neurobiol 2023; 60:1232-1249. [PMID: 36434370 DOI: 10.1007/s12035-022-03141-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 11/17/2022] [Indexed: 11/26/2022]
Abstract
Transient receptor potential vanilloid 4 (TRPV4) is a nonselective cation channel that can be activated by diverse stimuli, such as heat, mechanical force, hypo-osmolarity, and arachidonic acid metabolites. TRPV4 is widely expressed in the central nervous system (CNS) and participates in many significant physiological processes. However, accumulative evidence has suggested that deficiency, abnormal expression or distribution, and overactivation of TRPV4 are involved in pathological processes of multiple neurological diseases. Here, we review the latest studies concerning the known features of this channel, including its expression, structure, and its physiological and pathological roles in the CNS, proposing an emerging therapeutic strategy for CNS diseases.
Collapse
Affiliation(s)
- Meng-Liu Zeng
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Donghu Rd185#, Wuhan, 430071, Hubei, China.,Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Shuo Kong
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Donghu Rd185#, Wuhan, 430071, Hubei, China
| | - Tao-Xiang Chen
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Donghu Rd185#, Wuhan, 430071, Hubei, China
| | - Bi-Wen Peng
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Donghu Rd185#, Wuhan, 430071, Hubei, China.
| |
Collapse
|
4
|
Liu T, Chen F, Zhai F, Liang S. Progress of clinical research studies on tuberous sclerosis complex-related epilepsy in China. Acta Neurol Scand 2022; 146:743-751. [PMID: 36000491 DOI: 10.1111/ane.13692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/31/2022] [Accepted: 08/11/2022] [Indexed: 11/29/2022]
Abstract
Tuberous sclerosis complex (TSC) is an autosomal dominant neurocutaneous syndrome, with 75.6%-83.5% and 54.1% patients presenting with epilepsy and drug-resistant epilepsy (DRE), respectively. Clinical studies on TSC, particularly surgical interventions, have achieved rapid and substantial progress. The TSC-Task Force Committee of the China Association Against Epilepsy (CAAE-TFTSC) was founded in 2012, and annual academic conferences on the surgical treatment of TSC-related epilepsy have been held since 2013. 'China experts' consensus on surgical treatment of TSC-related epilepsy' was published in 2019. This review focuses on surgical treatment, including resective surgery, neuromodulations, corpus callosotomy and mini-invasive ablations, as well as studies on phenotype, genotype and anti-seizure therapies of mammalian target of rapamycin inhibitor, vigabatrin and ketogenic diet in patients with TSC-related DRE in China.
Collapse
Affiliation(s)
- Tinghong Liu
- Functional Neurosurgery Department, National Children's Health Center of China, Beijing Children's Hospital, Capital Medical University, Beijing, China.,Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing, China
| | - Feng Chen
- Functional Neurosurgery Department, National Children's Health Center of China, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Feng Zhai
- Functional Neurosurgery Department, National Children's Health Center of China, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Shuli Liang
- Functional Neurosurgery Department, National Children's Health Center of China, Beijing Children's Hospital, Capital Medical University, Beijing, China.,Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing, China
| |
Collapse
|
5
|
Li M, Zheng J, Wu T, He Y, Guo J, Xu J, Gao C, Qu S, Zhang Q, Zhao J, Cheng W. Activation of TRPV4 Induces Exocytosis and Ferroptosis in Human Melanoma Cells. Int J Mol Sci 2022; 23:ijms23084146. [PMID: 35456964 PMCID: PMC9030060 DOI: 10.3390/ijms23084146] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/04/2022] [Accepted: 04/06/2022] [Indexed: 12/20/2022] Open
Abstract
TRPV4 (transient receptor potential vanilloid 4), a calcium permeable TRP ion channel, is known to play a key role in endocytosis. However, whether it contributes to exocytosis remains unclear. Here, we report that activation of TRPV4 induced massive exocytosis in both melanoma A375 cell and heterologous expression systems. We show here that, upon application of TRPV4-specific agonists, prominent vesicle priming from endoplasmic reticulum (ER) was observed, followed by morphological changes of mitochondrial crista may lead to cell ferroptosis. We further identified interactions between TRPV4 and folding/vesicle trafficking proteins, which were triggered by calcium entry through activated TRPV4. This interplay, in turn, enhanced TRPV4-mediated activation of folding and vesicle trafficking proteins to promote exocytosis. Our study revealed a signaling mechanism underlying stimulus-triggered exocytosis in melanoma and highlighted the role of cellular sensor TRPV4 ion channel in mediating ferroptosis.
Collapse
|
6
|
Zeng ML, Cheng JJ, Kong S, Yang XL, Jia XL, Cheng XL, Chen L, He FG, Liu YM, Fan YT, Gongga L, Chen TX, Liu WH, He XH, Peng BW. Inhibition of Transient Receptor Potential Vanilloid 4 (TRPV4) Mitigates Seizures. Neurotherapeutics 2022; 19:660-681. [PMID: 35182379 PMCID: PMC9226259 DOI: 10.1007/s13311-022-01198-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2022] [Indexed: 02/08/2023] Open
Abstract
Astrocytes are critical regulators of the immune/inflammatory response in several human central nervous system (CNS) diseases. Emerging evidence suggests that dysfunctional astrocytes are crucial players in seizures. The objective of this study was to investigate the role of transient receptor potential vanilloid 4 (TRPV4) in 4-aminopyridine (4-AP)-induced seizures and the underlying mechanism. We also provide evidence for the role of Yes-associated protein (YAP) in seizures. 4-AP was administered to mice or primary cultured astrocytes. YAP-specific small interfering RNA (siRNA) was administered to primary cultured astrocytes. Mouse brain tissue and surgical specimens from epileptic patient brains were examined, and the results showed that TRPV4 was upregulated, while astrocytes were activated and polarized to the A1 phenotype. The levels of glial fibrillary acidic protein (GFAP), cytokine production, YAP, signal transducer activator of transcription 3 (STAT3), intracellular Ca2+([Ca2+]i) and the third component of complement (C3) were increased in 4-AP-induced mice and astrocytes. Perturbations in the immune microenvironment in the brain were balanced by TRPV4 inhibition or the manipulation of [Ca2+]i in astrocytes. Knocking down YAP with siRNA significantly inhibited 4-AP-induced pathological changes in astrocytes. Our study demonstrated that astrocytic TRPV4 activation promoted neuroinflammation through the TRPV4/Ca2+/YAP/STAT3 signaling pathway in mice with seizures. Astrocyte TRPV4 inhibition attenuated neuroinflammation, reduced neuronal injury, and improved neurobehavioral function. Targeting astrocytic TRPV4 activation may provide a promising therapeutic approach for managing epilepsy.
Collapse
Affiliation(s)
- Meng-liu Zeng
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Donghu Rd185#, 430071 Wuhan, Hubei China
| | - Jing-jing Cheng
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Donghu Rd185#, 430071 Wuhan, Hubei China
| | - Shuo Kong
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Donghu Rd185#, 430071 Wuhan, Hubei China
| | - Xing-liang Yang
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Donghu Rd185#, 430071 Wuhan, Hubei China
| | - Xiang-lei Jia
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Donghu Rd185#, 430071 Wuhan, Hubei China
| | - Xue-lei Cheng
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Donghu Rd185#, 430071 Wuhan, Hubei China
| | - Ling Chen
- Institute of Forensic Medicine, School of Basic Medical Sciences, Wuhan University, 430071 Wuhan, Hubei China
| | - Fang-gang He
- Institute of Forensic Medicine, School of Basic Medical Sciences, Wuhan University, 430071 Wuhan, Hubei China
| | - Yu-min Liu
- Department of Neurology, Zhongnan Hospital, Wuhan University, Donghu Road 169#, 430071 Wuhan, Hubei China
| | - Yuan-teng Fan
- Department of Neurology, Zhongnan Hospital, Wuhan University, Donghu Road 169#, 430071 Wuhan, Hubei China
| | - Lanzi Gongga
- Tibet University Medical College, 850000 Lhasa, Tibet China
| | - Tao-xiang Chen
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Donghu Rd185#, 430071 Wuhan, Hubei China
| | - Wan-hong Liu
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, 430071 Wuhan, Hubei China
| | - Xiao-hua He
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, 430071 Wuhan, Hubei China
| | - Bi-wen Peng
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Donghu Rd185#, 430071 Wuhan, Hubei China
| |
Collapse
|
7
|
Xu W, Wang Y, Qi X, Li K, Zhou L, Sha S, Wang X, Wu C, Du Y, Chen L. Involvement of TRPV4 in changes in rapidly inactivating potassium channels in the early stage of pilocarpine-induced status epilepticus in mice. J Cell Physiol 2021; 237:856-867. [PMID: 34415059 DOI: 10.1002/jcp.30558] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 08/06/2021] [Accepted: 08/11/2021] [Indexed: 11/11/2022]
Abstract
The rapidly inactivating potassium current (IA ) is important in controlling neuronal action potentials. Altered IA function and K+ channel expression have been found in epilepsy, and activation of the transient receptor potential vanilloid 4 (TRPV4) channel is involved in epilepsy pathogenesis. This study examined whether TRPV4 affects Kv4.2 and K+ channel interacting protein (KCHIP) expression and IA changes following pilocarpine-induced status epilepticus (PISE) in mice. Herein, hippocampal protein levels of Kv4.2 and KCHIP2 increased 3 h-3 d and decreased 7-30 d; that of KCHIP1 increased 3-24 h and decreased 3-30 d post-PISE. The TRPV4 antagonist HC-067047 attenuated the increased protein levels of Kv4.2 and KCHIP2 but not that of KCHIP1 post-PISE. The TRPV4 agonist GSK1016790A increased hippocampal protein levels of Kv4.2 and KCHIP2 but had no effect on KCHIP1 expression. HC-067047 attenuated the increased IA in hippocampal pyramidal neurons 24 h and 3 d post-PISE. GSK1016790A increased IA in hippocampal pyramidal neurons, shifting the voltage-dependent inactivation curve toward depolarization. The GSK1016790A-induced increase of IA was blocked by protein kinase A and calcium/calmodulin-dependent kinase II antagonists but was unaffected by protein kinase C antagonists. We conclude that TRPV4 activation may be responsible for the increases of Kv4.2 and KCHIP2 expression in hippocampi and IA in hippocampal pyramidal neurons in PISE mice, which are likely compensatory measures for hyperexcitability at the early stage of epilepsy.
Collapse
Affiliation(s)
- Weixing Xu
- Department of Physiology, Nanjing Medical University, Nanjing, P.R. China
| | - Yue Wang
- Department of Physiology, Nanjing Medical University, Nanjing, P.R. China
| | - Xiuting Qi
- Department of Physiology, Nanjing Medical University, Nanjing, P.R. China
| | - Kunpeng Li
- Department of Physiology, Nanjing Medical University, Nanjing, P.R. China
| | - Li Zhou
- Department of Physiology, Nanjing Medical University, Nanjing, P.R. China
| | - Sha Sha
- Department of Physiology, Nanjing Medical University, Nanjing, P.R. China
| | - Xiaoli Wang
- Department of Physiology, Nanjing Medical University, Nanjing, P.R. China
| | - Chunfeng Wu
- Department of Neurology, Children's Hospital of Nanjing Medical University, Nanjing, P.R. China
| | - Yimei Du
- Department of cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Lei Chen
- Department of Physiology, Nanjing Medical University, Nanjing, P.R. China
| |
Collapse
|
8
|
Wang S, He H, Long J, Sui X, Yang J, Lin G, Wang Q, Wang Y, Luo Y. TRPV4 Regulates Soman-Induced Status Epilepticus and Secondary Brain Injury via NMDA Receptor and NLRP3 Inflammasome. Neurosci Bull 2021; 37:905-920. [PMID: 33761112 DOI: 10.1007/s12264-021-00662-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 12/06/2020] [Indexed: 01/12/2023] Open
Abstract
Nerve agents are used in civil wars and terrorist attacks, posing a threat to public safety. Acute exposure to nerve agents such as soman (GD) causes serious brain damage, leading to death due to intense seizures induced by acetylcholinesterase inhibition and neuronal injury resulting from increased excitatory amino-acid levels and neuroinflammation. However, data on the anticonvulsant and neuroprotective efficacies of currently-used countermeasures are limited. Here, we evaluated the potential effects of transient receptor vanilloid 4 (TRPV4) in the treatment of soman-induced status epilepticus (SE) and secondary brain injury. We demonstrated that TRPV4 expression was markedly up-regulated in rat hippocampus after soman-induced seizures. Administration of the TRPV4 antagonist GSK2193874 prior to soman exposure significantly decreased the mortality rate in rats and reduced SE intensity. TRPV4-knockout mice also showed lower incidence of seizures and higher survival rates than wild-type mice following soman exposure. Further in vivo and in vitro experiments demonstrated that blocking TRPV4 prevented NMDA receptor-mediated glutamate excitotoxicity. The protein levels of the NLRP3 inflammasome complex and its downstream cytokines IL-1β and IL-18 increased in soman-exposed rat hippocampus. However, TRPV4 inhibition or deletion markedly reversed the activation of the NLRP3 inflammasome pathway. In conclusion, our study suggests that the blockade of TRPV4 protects against soman exposure and reduces brain injury following SE by decreasing NMDA receptor-mediated excitotoxicity and NLRP3-mediated neuroinflammation. To our knowledge, this is the first study regarding the "dual-switch" function of TRPV4 in the treatment of soman intoxication.
Collapse
Affiliation(s)
- Shuai Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, 100850, China
| | - Huanhuan He
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, 100850, China
| | - Jianhai Long
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, 100850, China
| | - Xin Sui
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, 100850, China
| | - Jun Yang
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, 100850, China
| | - Guodong Lin
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, 100850, China
| | - Qian Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, 100850, China
| | - Yongan Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, 100850, China.
| | - Yuan Luo
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, 100850, China.
| |
Collapse
|
9
|
Zhou L, Xu W, An D, Sha S, Men C, Li Y, Wang X, Du Y, Chen L. Transient receptor potential vanilloid 4 activation inhibits the delayed rectifier potassium channels in hippocampal pyramidal neurons: An implication in pathological changes following pilocarpine-induced status epilepticus. J Neurosci Res 2020; 99:914-926. [PMID: 33393091 DOI: 10.1002/jnr.24749] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/10/2020] [Accepted: 10/18/2020] [Indexed: 11/06/2022]
Abstract
Activation of transient receptor potential vanilloid 4 (TRPV4) can increase hippocampal neuronal excitability. TRPV4 has been reported to be involved in the pathogenesis of epilepsy. Voltage-gated potassium channels (VGPCs) play an important role in regulating neuronal excitability and abnormal VGPCs expression or function is related to epilepsy. Here, we examined the effect of TRPV4 activation on the delayed rectifier potassium current (IK ) in hippocampal pyramidal neurons and on the Kv subunits expression in male mice. We also explored the role of TRPV4 in changes in Kv subunits expression in male mice following pilocarpine-induced status epilepticus (PISE). Application of TRPV4 agonists, GSK1016790A and 5,6-EET, markedly reduced IK in hippocampal pyramidal neurons and shifted the voltage-dependent inactivation curve to the hyperpolarizing direction. GSK1016790A- and 5,6-EET-induced inhibition of IK was blocked by TRPV4 specific antagonists, HC-067047 and RN1734. GSK1016790A-induced inhibition of IK was markedly attenuated by calcium/calmodulin-dependent kinase II (CaMKII) antagonist. Application of GSK1016790A for up to 1 hr did not change the hippocampal protein levels of Kv1.1, Kv1.2, or Kv2.1. Intracerebroventricular injection of GSK1016790A for 3 d reduced the hippocampal protein levels of Kv1.2 and Kv2.1, leaving that of Kv1.1 unchanged. Kv1.2 and Kv2.1 protein levels as well as IK reduced markedly in hippocampi on day 3 post PISE, which was significantly reversed by HC-067047. We conclude that activation of TRPV4 inhibits IK in hippocampal pyramidal neurons, possibly by activating CaMKII. TRPV4-induced decrease in Kv1.2 and Kv2.1 expression and IK may be involved in the pathological changes following PISE.
Collapse
Affiliation(s)
- Li Zhou
- Department of Physiology, Nanjing Medical University, Nanjing, P.R. China
| | - Weixing Xu
- Department of Physiology, Nanjing Medical University, Nanjing, P.R. China
| | - Dong An
- Department of Physiology, Nanjing Medical University, Nanjing, P.R. China
| | - Sha Sha
- Department of Physiology, Nanjing Medical University, Nanjing, P.R. China
| | - Chen Men
- Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, P.R. China
| | - Yingchun Li
- Department of Physiology, Nanjing Medical University, Nanjing, P.R. China
| | - Xiaoli Wang
- Department of Physiology, Nanjing Medical University, Nanjing, P.R. China
| | - Yimei Du
- Research Center of Ion Channelopathy, Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Lei Chen
- Department of Physiology, Nanjing Medical University, Nanjing, P.R. China.,Neuroprotective Drug Discovery Key Laboratory of Nanjing Medical University, Nanjing, P.R. China
| |
Collapse
|
10
|
Liu N, Yan F, Ma Q, Zhao J. Modulation of TRPV4 and BKCa for treatment of brain diseases. Bioorg Med Chem 2020; 28:115609. [PMID: 32690264 DOI: 10.1016/j.bmc.2020.115609] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/19/2020] [Accepted: 06/23/2020] [Indexed: 12/22/2022]
Abstract
As a member of transient receptor potential family, the transient receptor potential vanilloid 4 (TRPV4) is a kind of nonselective calcium-permeable cation channel, which belongs to non-voltage gated Ca2+ channel. Large-conductance Ca2+-activated K+ channel (BKCa) represents a unique superfamily of Ca2+-activated K+ channel (KCa) that is both voltage and intracellular Ca2+ dependent. Not surprisingly, aberrant function of either TRPV4 or BKCa in neurons has been associated with brain disorders, such as Alzheimer's disease, cerebral ischemia, brain tumor, epilepsy, as well as headache. In these diseases, vascular dysfunction is a common characteristic. Notably, endothelial and smooth muscle TRPV4 can mediate BKCa to regulate cerebral blood flow and pressure. Therefore, in this review, we not only discuss the diverse functions of TRPV4 and BKCa in neurons to integrate relative signaling pathways in the context of cerebral physiological and pathological situations respectively, but also reveal the relationship between TRPV4 and BKCa in regulation of cerebral vascular tone as an etiologic factor. Based on these analyses, this review demonstrates the effective mechanisms of compounds targeting these two channels, which may be potential therapeutic strategies for diseases in the brain.
Collapse
Affiliation(s)
- Na Liu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, PR China; Department of Anesthesiology, The Affiliated Hospital of Kunming University of Science and Technology, Kunming 650032, PR China
| | - Fang Yan
- Medical School, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Qingjie Ma
- Department of Anesthesiology, The Affiliated Hospital of Kunming University of Science and Technology, Kunming 650032, PR China
| | - Jianhua Zhao
- Department of Neurosurgery, The Affiliated Hospital of Kunming University of Science and Technology, Kunming 650032, PR China.
| |
Collapse
|
11
|
Men C, Wang Z, Zhou L, Qi M, An D, Xu W, Zhan Y, Chen L. Transient receptor potential vanilloid 4 is involved in the upregulation of connexin expression following pilocarpine-induced status epilepticus in mice. Brain Res Bull 2019; 152:128-133. [PMID: 31299321 DOI: 10.1016/j.brainresbull.2019.07.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 07/03/2019] [Accepted: 07/05/2019] [Indexed: 10/26/2022]
Abstract
Epilepsy is characterized by spontaneous seizures. Changes in the expression of the connexins (Cxs) have been reported to be involved in epileptogenesis. It has previously been shown that the transient receptor potential vanilloid 4 (TRPV4) plays an important role in the modulation of neuronal excitability, and that application of a TRPV4 antagonist blocks hyperthermia-induced seizures. Accordingly, in the present study, we sought to explore whether TRPV4 is involved in the regulation of Cx expression following pilocarpine-induced status epilepticus (PISE) in mice. We observed that TRPV4 protein levels in hippocampi increased 3 h to 30 d following PISE, peaking 1-3 d after induction, and that pre-application of the TRPV4 antagonist HC-067047 increased the latency to develop SE induced by pilocarpine and reduced the success rate of PISE preparation. We demonstrated that Cx43 protein levels followed a time profile similar to that of TRPV4, and further showed that the increase in Cx43 protein levels on 3 d post-PISE was markedly attenuated by HC-067047. In contrast, the corresponding increase in Cx32 protein levels lagged substantially behind, and these levels were unaffected by HC-067047. Similarly, the TRPV4 agonist GSK1016790A increased the mRNA and protein levels of Cx43, but not those of Cx32. We thus conclude that the upregulation of Cx43 expression by TRPV4 may be involved in the pathophysiology of epilepsy.
Collapse
Affiliation(s)
- Chen Men
- Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, PR China
| | - Zhouqing Wang
- Department of Physiology, Nanjing Medical University, Nanjing, PR China
| | - Li Zhou
- Department of Physiology, Nanjing Medical University, Nanjing, PR China
| | - Mengwen Qi
- Department of Physiology, Nanjing Medical University, Nanjing, PR China
| | - Dong An
- Department of Physiology, Nanjing Medical University, Nanjing, PR China
| | - Weixing Xu
- Department of Physiology, Nanjing Medical University, Nanjing, PR China
| | - Yiyang Zhan
- Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, PR China.
| | - Lei Chen
- Department of Physiology, Nanjing Medical University, Nanjing, PR China; Neuroprotective Drug Discovery Key Laboratory of Nanjing Medical University, Nanjing, PR China.
| |
Collapse
|
12
|
Wang Y, Feng C, He H, He J, Wang J, Li X, Wang S, Li W, Hou J, Liu T, Fang D, Xie SQ. Sensitization of TRPV1 receptors by TNF-α orchestrates the development of vincristine-induced pain. Oncol Lett 2018; 15:5013-5019. [PMID: 29552137 PMCID: PMC5840530 DOI: 10.3892/ol.2018.7986] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 01/16/2018] [Indexed: 12/15/2022] Open
Abstract
Vincristine is one of the most common anticancer drugs clinically employed in the treatment of various malignancies. A major side effect associated with vincristine is the development of neuropathic pain, which is not readily relieved by available analgesics. Although efforts have been made to identify the pathogenesis of vincristine-induced neuropathic pain, the mechanisms underlying its pathogenesis have not been fully elucidated. In the present study, a neuropathic pain model was established in Sprague-Dawley rats by intraperitoneal injection of vincristine sulfate. The results demonstrated that vincristine administration induced the upregulation of transient receptor potential cation channel subfamily V member 1 (TRPV1) protein expression and current density in dorsal root ganglion (DRG) nociceptive neurons. Consistently, inhibition of TRPV1 with capsazepine alleviated vincristine-induced mechanical allodynia and thermal hyperalgesia in rats. Furthermore, vincristine administration induced the upregulation of tumor necrosis factor (TNF)-α production in DRGs, and inhibition of TNF-α synthesis with thalidomide in vivo reversed TRPV1 protein expression, as well as pain hypersensitivity induced by vincristine in rats. The present results suggested that TNF-α could sensitize TRPV1 by promoting its expression, thus leading to mechanical allodynia and thermal hyperalgesia in vincristine-treated rats. Taken together, these findings may enhance our understanding of the pathophysiological mechanisms underlying vincristine-induced pain.
Collapse
Affiliation(s)
- Ying Wang
- Department of Medical Imaging, The First Affiliated Hospital of Henan University, Kaifeng, Henan 475001, P.R. China
| | - Chenyang Feng
- Institute of Chemical Biology, College of Pharmacy, Henan University, Kaifeng, Henan 475004, P.R. China
| | - Haoying He
- Institute of Chemical Biology, College of Pharmacy, Henan University, Kaifeng, Henan 475004, P.R. China
| | - Jinjin He
- Department of Clinic Pharmacy, The First Affiliated Hospital of Henan University, Kaifeng, Henan 475001, P.R. China
| | - Jun Wang
- Institute of Chemical Biology, College of Pharmacy, Henan University, Kaifeng, Henan 475004, P.R. China
| | - Xiaomin Li
- Institute of Chemical Biology, College of Pharmacy, Henan University, Kaifeng, Henan 475004, P.R. China
| | - Shasha Wang
- Institute of Chemical Biology, College of Pharmacy, Henan University, Kaifeng, Henan 475004, P.R. China
| | - Wei Li
- Institute of Chemical Biology, College of Pharmacy, Henan University, Kaifeng, Henan 475004, P.R. China
| | - Jiuzhou Hou
- Institute of Chemical Biology, College of Pharmacy, Henan University, Kaifeng, Henan 475004, P.R. China
| | - Tong Liu
- Institute of Chemical Biology, College of Pharmacy, Henan University, Kaifeng, Henan 475004, P.R. China
| | - Dong Fang
- Institute of Chemical Biology, College of Pharmacy, Henan University, Kaifeng, Henan 475004, P.R. China
| | - Song-Qiang Xie
- Institute of Chemical Biology, College of Pharmacy, Henan University, Kaifeng, Henan 475004, P.R. China
| |
Collapse
|