1
|
Zhang Z, Mu X, Zhou X. Dexmedetomidine alleviates inflammatory response and oxidative stress injury of vascular smooth muscle cell via α2AR/GSK-3β/MKP-1/NRF2 axis in intracranial aneurysm. BMC Pharmacol Toxicol 2022; 23:81. [PMID: 36273189 PMCID: PMC9588221 DOI: 10.1186/s40360-022-00607-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 08/08/2022] [Indexed: 02/01/2023] Open
Abstract
Vascular smooth muscle cell (VSMC) phenotypic modulation regulates the initiation and progression of intracranial aneurysm (IA). Dexmedetomidine (DEX) is suggested to play neuroprotective roles in patients with craniocerebral injury. Therefore, we investigated the biological functions of DEX and its mechanisms against IA formation and progression in the current study. The rat primary VSMCs were isolated from Sprague-Dawley rats. IA and superficial temporal artery (STA) tissue samples were obtained from patients with IA. Flow cytometry was conducted to identify the characteristics of isolated VSMCs. Hydrogen peroxide (H2O2) was used to mimic IA-like conditions in vitro. Cell viability was detected using CCK-8 assays. Wound healing and Transwell assays were performed to detect cell motility. ROS production was determined by immunofluorescence using DCFH-DA probes. Western blotting and RT-qPCR were carried out to measure gene expression levels. Inflammation responses were determined by measuring inflammatory cytokines. Immunohistochemistry staining was conducted to measure α2-adrenergic receptor levels in tissue samples. DEX alleviated the H2O2-induced cytotoxicity, attenuated the promoting effects of H2O2 on cell malignancy, and protected VSMCs against H2O2-induced oxidative damage and inflammation response. DEX regulated the GSK-3β/MKP-1/NRF2 pathway via the α2AR. DEX alleviates the inflammatory responses and oxidative damage of VSMCs by regulating the GSK-3β/MKP-1/NRF2 pathway via the α2AR in IA.
Collapse
Affiliation(s)
- Ze Zhang
- grid.452458.aDepartment of Anesthesiology, The First Hospital of Hebei Medical University, 89 Donggang Road, Shijiazhuang, 050000 Hebei China
| | - Xiue Mu
- grid.452458.aDepartment of Anesthesiology, The First Hospital of Hebei Medical University, 89 Donggang Road, Shijiazhuang, 050000 Hebei China
| | - Xiaohui Zhou
- grid.452458.aDepartment of Anesthesiology, The First Hospital of Hebei Medical University, 89 Donggang Road, Shijiazhuang, 050000 Hebei China
| |
Collapse
|
2
|
Xiao QX, Xue LL, Su ZY, Huang J, Chen JL, Xiong LL, Wang TH. The neuroprotective effects of Lutongkeli in traumatic brain injury rats by anti-apoptosis mechanism. Acta Cir Bras 2022; 37:e370603. [PMID: 36134852 PMCID: PMC9488509 DOI: 10.1590/acb370603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 04/13/2022] [Accepted: 05/10/2022] [Indexed: 11/25/2022] Open
Abstract
PURPOSE To explore the neuroprotective effects of Lutongkeli (LTKL) in traumatic brain injury (TBI) and detect the related mechanism. METHODS TBI model was established with LTKL administration (2 and 4 g/kg/d, p.o.). Motor function of rats was examined by Rotarod test. Nissl staining was used to show neuron morphology. Furthermore, the disease-medicine common targets were obtained with the network pharmacology and analyzed with Kyoto Encyclopedia of Genes and Genomes. Lastly, the predicted targets were validated by real-time polymerase chain reaction. RESULTS After LTKL administration, neural behavior was significantly improved, and the number of spared neurons in brain was largely increased. Moreover, 68 bioactive compounds were identified, corresponding to 148 LTKL targets; 2,855 genes were closely associated with TBI, of which 87 overlapped with the LTKL targets and were considered to be therapeutically relevant. Functional enrichment analysis suggested LTKL exerted its pharmacological effects in TBI by modulating multiple pathways including apoptosis, inflammation, etc. Lastly, we found LTKL administration could increase the mRNA level of Bcl-2 and decrease the expression of Bax and caspase-3. CONCLUSIONS This study reported the neuroprotective effect of LTKL against TBI is accompanied with anti-apoptosis mechanism, which provides a scientific explanation for the clinical application of LTKL in the treatment of TBI.
Collapse
Affiliation(s)
- Qiu-Xia Xiao
- MD. Kunming Medical University – Institute of Neuroscience – Animal Zoology Department – Kunming, China
| | - Lu-Lu Xue
- PhD. Sichuan University – State Key Laboratory of Biotherapy – Chengdu, China
| | - Zhang-Yu Su
- BS. Southwest Medical University – Department of Anesthesiology – Luzhou, China
| | - Jin Huang
- PhD. Kunming Medical University – Affiliated Hospital – Department of Neurosurgery – Kunming, China
| | - Ji-Lin Chen
- BS. Kunming Medical University – Institute of Neuroscience – Animal Zoology Department – Kunming, China
| | - Liu-Lin Xiong
- PhD, Professor. Kunming Medical University – Institute of Neuroscience – Animal Zoology Department – Kunming, China
| | - Ting-Hua Wang
- PhD, Professor. Kunming Medical University – Institute of Neuroscience – Animal Zoology Department – Kunming, China
| |
Collapse
|
3
|
Targeting Nrf2-Mediated Oxidative Stress Response in Traumatic Brain Injury: Therapeutic Perspectives of Phytochemicals. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1015791. [PMID: 35419162 PMCID: PMC9001080 DOI: 10.1155/2022/1015791] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/22/2021] [Accepted: 03/19/2022] [Indexed: 02/07/2023]
Abstract
Traumatic brain injury (TBI), known as mechanical damage to the brain, impairs the normal function of the brain seriously. Its clinical symptoms manifest as behavioral impairment, cognitive decline, communication difficulties, etc. The pathophysiological mechanisms of TBI are complex and involve inflammatory response, oxidative stress, mitochondrial dysfunction, blood-brain barrier (BBB) disruption, and so on. Among them, oxidative stress, one of the important mechanisms, occurs at the beginning and accompanies the whole process of TBI. Most importantly, excessive oxidative stress causes BBB disruption and brings injury to lipids, proteins, and DNA, leading to the generation of lipid peroxidation, damage of nuclear and mitochondrial DNA, neuronal apoptosis, and neuroinflammatory response. Transcription factor NF-E2 related factor 2 (Nrf2), a basic leucine zipper protein, plays an important role in the regulation of antioxidant proteins, such as oxygenase-1(HO-1), NAD(P)H Quinone Dehydrogenase 1 (NQO1), and glutathione peroxidase (GPx), to protect against oxidative stress, neuroinflammation, and neuronal apoptosis. Recently, emerging evidence indicated the knockout (KO) of Nrf2 aggravates the pathology of TBI, while the treatment of Nrf2 activators inhibits neuronal apoptosis and neuroinflammatory responses via reducing oxidative damage. Phytochemicals from fruits, vegetables, grains, and other medical herbs have been demonstrated to activate the Nrf2 signaling pathway and exert neuroprotective effects in TBI. In this review, we emphasized the contributive role of oxidative stress in the pathology of TBI and the protective mechanism of the Nrf2-mediated oxidative stress response for the treatment of TBI. In addition, we summarized the research advances of phytochemicals, including polyphenols, terpenoids, natural pigments, and otherwise, in the activation of Nrf2 signaling and their potential therapies for TBI. Although there is still limited clinical application evidence for these natural Nrf2 activators, we believe that the combinational use of phytochemicals such as Nrf2 activators with gene and stem cell therapy will be a promising therapeutic strategy for TBI in the future.
Collapse
|
4
|
Chen J, Li T, Chen T, Niu R, Chen J, Chen Y, Huang J. Lu Tong Ke Li protects neurons from injury by regulating inflammation in rats with brain trauma. IBRAIN 2022; 8:100-108. [PMID: 37786414 PMCID: PMC10528765 DOI: 10.1002/ibra.12029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/14/2022] [Accepted: 02/17/2022] [Indexed: 02/05/2023]
Abstract
Currently, there is no effective therapy for traumatic brain injury (TBI). Therefore, this study was conducted to determine the protective effect of Lu Tong Ke Li (LTKL), a Chinese medicine, for TBI in experimental animals. The TBI rat model was induced using the modified Feeney's protocol. The rats were divided into four groups: Sham group, Control group, LTKL lower-dose group (LTL, 2 g/kg/day, p.o.), and LTKL higher-dose group (LTH, 4 g/kg/day, p.o.). The Neurological Severity Score (NSS) was used to examine neurological function. Magnetic resonance imaging was performed to check the brain tissue lesions in rats. Cell apoptosis in the damaged area was evaluated using the Terminal deoxynucleotidyl transferase deoxy-UTP-nick end labeling assay. Reverse-transcription polymerase chain reaction was used to investigate the expression of inflammatory cytokines, including tumor necrosis factor-α (TNF-α), interleukin 1β (IL-1β), and interleukin 10 (IL-10). The TBI rat model was successfully constructed. Neurological function was enhanced at 14, 21, and 28 days post TBI in the LTH groups, indicated by gradually decreased NSS scores. Administration of LTH led to fewer brain defects in the damaged area, and the number of apoptosis cells in the brain injury area markedly decreased. LTKL treatment led to upregulation of IL-10 expression and downregulation of TNF-α and IL-1β expressions at the molecular level. LTKL can improve the neurobehavior of TBI. The neuroprotective effect was probably related to regulation of inflammation cytokines. Our results provide crucial evidence of the potentially useful application of LTKL in the therapy of TBI in clinic practice in the future.
Collapse
Affiliation(s)
- Jie Chen
- Animal Zoology Department, Institute of NeuroscienceKunming Medical UniversityKunmingChina
- Department of AnesthesiologySouthwest Medical UniversityLuzhouSichuanChina
| | - Ting‐Ting Li
- Department of Anesthesiology, Institute of Neurological Disease, West China HospitalSichuan UniversityChengduChina
| | - Ting‐Bao Chen
- Animal Zoology Department, Institute of NeuroscienceKunming Medical UniversityKunmingChina
| | - Rui‐Ze Niu
- Animal Zoology Department, Institute of NeuroscienceKunming Medical UniversityKunmingChina
| | - Ji‐Lin Chen
- Animal Zoology Department, Institute of NeuroscienceKunming Medical UniversityKunmingChina
| | - Yong Chen
- Animal Zoology Department, Institute of NeuroscienceKunming Medical UniversityKunmingChina
| | - Jin Huang
- Animal Zoology Department, Institute of NeuroscienceKunming Medical UniversityKunmingChina
| |
Collapse
|
5
|
Traumatic Brain Injury: Mechanistic Insight on Pathophysiology and Potential Therapeutic Targets. J Mol Neurosci 2021; 71:1725-1742. [PMID: 33956297 DOI: 10.1007/s12031-021-01841-7] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 04/09/2021] [Indexed: 12/20/2022]
Abstract
Traumatic brain injury (TBI) causes brain damage, which involves primary and secondary injury mechanisms. Primary injury causes local brain damage, while secondary damage begins with inflammatory activity followed by disruption of the blood-brain barrier (BBB), peripheral blood cells infiltration, brain edema, and the discharge of numerous immune mediators including chemotactic factors and interleukins. TBI alters molecular signaling, cell structures, and functions. Besides tissue damage such as axonal damage, contusions, and hemorrhage, TBI in general interrupts brain physiology including cognition, decision-making, memory, attention, and speech capability. Regardless of the deep understanding of the pathophysiology of TBI, the underlying mechanisms still need to be assessed with a desired therapeutic agent to control the consequences of TBI. The current review gives a brief outline of the pathophysiological mechanism of TBI and various biochemical pathways involved in brain injury, pharmacological treatment approaches, and novel targets for therapy.
Collapse
|
6
|
Chen ZQ, Zhou Y, Chen F, Huang JW, Zheng J, Li HL, Li T, Li L. Breviscapine Pretreatment Inhibits Myocardial Inflammation and Apoptosis in Rats After Coronary Microembolization by Activating the PI3K/Akt/GSK-3β Signaling Pathway. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:843-855. [PMID: 33658766 PMCID: PMC7920514 DOI: 10.2147/dddt.s293382] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 02/05/2021] [Indexed: 01/28/2023]
Abstract
Purpose Coronary microembolization (CME) can cause myocardial inflammation, apoptosis and progressive cardiac dysfunction. On the other hand, breviscapine exerts a significant cardioprotective effect in many cardiac diseases although its role and the potential mechanisms in CME remain unclear. Therefore, the present study aimed to ascertain whether pretreatment with breviscapine could improve CME-induced myocardial injury by alleviating myocardial inflammation and apoptosis. The possible underlying mechanisms were also explored. Methods In this study, 48 Sprague-Dawley (SD) rats were randomly assigned to the CME, CME + breviscapine (CME + BE), CME + breviscapine + LY294002 (CME + BE + LY) and sham groups (12 rats per group). In addition, the CME model was successfully established by injecting 42 μm inert plastic microspheres into the left ventricle of rats. Rats in the CME + BE and CME + BE + LY groups received 40 mg/kg/d of breviscapine for 7 days before inducing CME. Moreover, rats in the CME + BE + LY group were intraperitoneally injected with the phosphoinositide 3-kinase (PI3K) specific inhibitor, LY294002 (10 mg/kg) 30 minutes before CME modeling. 12 h after surgery, the study measured cardiac function, the serum levels of markers of myocardial injury, myocardial inflammation-associated mRNAs and proteins, myocardial apoptosis-associated mRNAs and proteins and conducted myocardial histopathology. Results The findings demonstrated that pretreatment with breviscapine alleviated myocardial injury following CME by improving cardiac dysfunction, decreasing the serum levels of markers of myocardial injury, reducing the size of myocardial microinfarct and lowering the cardiomyocyte apoptotic index. More importantly, pretreatment with breviscapine resulted to a decrease in the levels of inflammatory and pro-apoptotic mRNAs and proteins in myocardial tissues and there was an increase in the levels of anti-apoptotic mRNAs and proteins. However, these protective effects were eliminated when breviscapine was combined with LY294002. Conclusion The findings from this study indicated that breviscapine may inhibit myocardial inflammation and apoptosis by regulating the PI3K/protein kinase B (Akt)/glycogen synthase kinase-3β (GSK-3β) pathway, thereby ameliorating CME-induced cardiac dysfunction and reducing myocardial injury.
Collapse
Affiliation(s)
- Zhi-Qing Chen
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University & Guangxi Key Laboratory Base of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention & Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning, People's Republic of China
| | - You Zhou
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University & Guangxi Key Laboratory Base of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention & Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning, People's Republic of China
| | - Feng Chen
- Department of Emergency, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Jun-Wen Huang
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University & Guangxi Key Laboratory Base of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention & Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning, People's Republic of China
| | - Jing Zheng
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University & Guangxi Key Laboratory Base of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention & Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning, People's Republic of China
| | - Hao-Liang Li
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University & Guangxi Key Laboratory Base of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention & Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning, People's Republic of China
| | - Tao Li
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University & Guangxi Key Laboratory Base of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention & Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning, People's Republic of China
| | - Lang Li
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University & Guangxi Key Laboratory Base of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention & Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning, People's Republic of China
| |
Collapse
|
7
|
Song Z, Yin J, Xiao P, Chen J, Gou J, Wang Y, Zhang Y, Yin T, Tang X, He H. Improving Breviscapine Oral Bioavailability by Preparing Nanosuspensions, Liposomes and Phospholipid Complexes. Pharmaceutics 2021; 13:pharmaceutics13020132. [PMID: 33498470 PMCID: PMC7909566 DOI: 10.3390/pharmaceutics13020132] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/14/2021] [Accepted: 01/16/2021] [Indexed: 11/19/2022] Open
Abstract
Breviscapine (BVP), a flavonoid compound, is widely used in the treatment of cardiovascular and cerebrovascular diseases; however, the low oral bioavailability and short half-life properties limit its application. The aim of this study was to investigate the three preparations for improving its oral bioavailability: nanosuspensions (BVP-NS), liposomes (BVP-LP) and phospholipid complexes (BVP-PLC). In vitro and in vivo results suggested that these three could all significantly improved the cumulative released amount and oral bioavailability compared with physical mixture, in which BVP-PLC was the most optimal preparation with the relative bioavailability and mean retention time of 10.79 ± 0.25 (p < 0.01) and 471.32% (p < 0.01), respectively. Furthermore, the influence of drug-lipid ratios on the in vitro release and pharmacokinetic behavior of BVP-PLC was also studied and the results showed that 1:2 drug-lipid ratio was the most satisfactory one attributed to the moderate-intensity interaction between drug and phospholipid which could balance the drug loading and drug release very well.
Collapse
Affiliation(s)
- Zilin Song
- Department of Pharmaceutics, College of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China; (Z.S.); (J.Y.); (P.X.); (J.C.); (J.G.); (Y.W.); (Y.Z.); (X.T.)
| | - Jiaojiao Yin
- Department of Pharmaceutics, College of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China; (Z.S.); (J.Y.); (P.X.); (J.C.); (J.G.); (Y.W.); (Y.Z.); (X.T.)
| | - Peifu Xiao
- Department of Pharmaceutics, College of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China; (Z.S.); (J.Y.); (P.X.); (J.C.); (J.G.); (Y.W.); (Y.Z.); (X.T.)
| | - Jin Chen
- Department of Pharmaceutics, College of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China; (Z.S.); (J.Y.); (P.X.); (J.C.); (J.G.); (Y.W.); (Y.Z.); (X.T.)
| | - Jingxin Gou
- Department of Pharmaceutics, College of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China; (Z.S.); (J.Y.); (P.X.); (J.C.); (J.G.); (Y.W.); (Y.Z.); (X.T.)
| | - Yanjiao Wang
- Department of Pharmaceutics, College of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China; (Z.S.); (J.Y.); (P.X.); (J.C.); (J.G.); (Y.W.); (Y.Z.); (X.T.)
| | - Yu Zhang
- Department of Pharmaceutics, College of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China; (Z.S.); (J.Y.); (P.X.); (J.C.); (J.G.); (Y.W.); (Y.Z.); (X.T.)
| | - Tian Yin
- School of Food and Wine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China;
| | - Xing Tang
- Department of Pharmaceutics, College of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China; (Z.S.); (J.Y.); (P.X.); (J.C.); (J.G.); (Y.W.); (Y.Z.); (X.T.)
| | - Haibing He
- Department of Pharmaceutics, College of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China; (Z.S.); (J.Y.); (P.X.); (J.C.); (J.G.); (Y.W.); (Y.Z.); (X.T.)
- Correspondence:
| |
Collapse
|
8
|
Ding Y, Zhu W, Kong W, Li T, Zou P, Chen H. Edaravone attenuates neuronal apoptosis in hippocampus of rat traumatic brain injury model via activation of BDNF/TrkB signaling pathway. Arch Med Sci 2021; 17:514-522. [PMID: 33747286 PMCID: PMC7959085 DOI: 10.5114/aoms.2019.89849] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Accepted: 12/04/2017] [Indexed: 11/29/2022] Open
Abstract
INTRODUCTION The purpose of our study was to explore the effects of edaravone on rats with traumatic brain injury (TBI) and investigate the underlying mechanism. MATERIAL AND METHODS All rats were separated randomly into 3 groups as follows: sham group (n = 25), TBI group (n = 25), TBI + edaravone group (n = 25). Edaravone was administered intraperitoneally (i.p.) at a dose of 3 mg/kg at 30 min, 12 h, and 24 h after TBI. The neurological impairment and spatial cognitive function were assessed by the neurologic severity score (NSS) and Morris water maze (MWM), respectively. Western blot and reverse transcription polymerase chain reaction (RT-PCR) were used to determine the expression levels of caspase-3, B-cell lymphoma-2 (Bcl-2), Bcl-2 associated X protein (Bax), brain-derived neurotrophic factor (BDNF) and tyrosine kinase receptor B (TrkB). Transferase-mediated dUTP-biotin nick end labeling (TUNEL) assay as well as flow cytometry assay was used to determine the apoptosis rate of cells. RESULTS Edaravone administration significantly attenuated neurological impairment induced by TBI and promoted cognitive function outcome. The expression of BDNF and TrkB was elevated with treatment of edaravone, which was increased after TBI. The expression of apoptosis related proteins such as caspase-3 and Bax-2 was decreased while that of Bcl-2 was enhanced with edaravone administration following TBI. In addition, edaravone treatment reduced TBI-induced cell apoptosis in the hippocampus. CONCLUSIONS Our study showed that administration with edaravone was able to inhibit neuronal apoptosis in the hippocampus in a rat TBI model. The neuroprotective function of edaravone may relate to modulation of the BDNF/TrkB signaling pathway.
Collapse
Affiliation(s)
- Yuexia Ding
- Department of Pharmacy, the Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Wei Zhu
- Department of Neurosurgery, the Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Wei Kong
- Department of Neurosurgery, the Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Tuo Li
- Department of Neurosurgery, the Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Peng Zou
- Department of Neurosurgery, the Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Hongguang Chen
- Department of Neurosurgery, the Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| |
Collapse
|
9
|
Xue J, Zhang L, Xie X, Gao Y, Jiang L, Wang J, Wang Y, Gao R, Yu J, Xiao H. Prenatal bisphenol A exposure contributes to Tau pathology: Potential roles of CDK5/GSK3β/PP2A axis in BPA-induced neurotoxicity. Toxicology 2020; 438:152442. [PMID: 32278051 DOI: 10.1016/j.tox.2020.152442] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 03/08/2020] [Accepted: 03/22/2020] [Indexed: 01/20/2023]
Abstract
Bisphenol A (BPA) is a well-known endocrine disruptor used to manufacture polycarbonate plastics and epoxy resins. BPA exposure especially occupational perinatal exposure to has been linked to numerous adverse effects for the offspring. Available data have shown that perinatal exposure to BPA contributes to neurodegenerative pathological changes; however, the potential mechanisms remain unclear. This study attempted to investigate the long-term consequences of perinatal exposure to BPA on the offspring mouse brain. The pregnant mice were given either a vehicle control or BPA (2, 10, 100 μg/kg/d) from day 6 of gestation until weaning (P6-PND21, foetal and neonatal exposure). At 3, 6 and 9 months of age, the neurotoxic effects in the offspring in each group were investigated. We found that the spine density but not the dendritic branches in the hippocampus were noticeably reduced at 6 and 9 months of age. Meanwhile, p-Tau, the characteristic protein for tauopathy, was dramatically increased in both the hippocampus and cortex at 3-9 months of age. Mechanically, the balance of kinase and protein phosphatase, which plays critical roles in p-Tau regulation, was disturbed. It indicated that GSK3β and CDK5, two critical kinases, were activated in most of the BPA perinatal exposure group, while protein phosphatase 2A (PP2A), one of the important phosphatases, regulated p-Tau expression through its demethylation, methylation and phosphorylation. Taken together, the present study may be translatable to the human occupational BPA exposure due to a similar exposure level. BPA perinatal exposure causes long-term adverse effects on the mouse brain and may be a risk factor for tauopathies, and the CDK5/GSK3β/PP2A axis might be a promising therapeutic target for BPA-induced neurodegenerative pathological changes.
Collapse
Affiliation(s)
- Jing Xue
- Key Lab of Modern Toxicology (NJMU), Ministry of Education, Department of Toxicology, School of Public Health, Nanjing Medical University, 818 Tianyuan East Road, Nanjing, Jiangsu, 211166, China
| | - Li Zhang
- Department of Anesthesiology, Children's Hospital of Nanjing Medical University, China
| | - Xuexue Xie
- Key Lab of Modern Toxicology (NJMU), Ministry of Education, Department of Toxicology, School of Public Health, Nanjing Medical University, 818 Tianyuan East Road, Nanjing, Jiangsu, 211166, China
| | - Yue Gao
- Key Lab of Modern Toxicology (NJMU), Ministry of Education, Department of Toxicology, School of Public Health, Nanjing Medical University, 818 Tianyuan East Road, Nanjing, Jiangsu, 211166, China
| | - Lei Jiang
- Department of Emergency Medicine, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, 210029, China
| | - Jun Wang
- Key Lab of Modern Toxicology (NJMU), Ministry of Education, Department of Toxicology, School of Public Health, Nanjing Medical University, 818 Tianyuan East Road, Nanjing, Jiangsu, 211166, China; China International Cooperation Center for Environment and Human Health, Nanjing Medical University, 818 Tianyuan East Road, Nanjing, Jiangsu, 211166, China
| | - Yu Wang
- Key Lab of Modern Toxicology (NJMU), Ministry of Education, Department of Toxicology, School of Public Health, Nanjing Medical University, 818 Tianyuan East Road, Nanjing, Jiangsu, 211166, China
| | - Rong Gao
- Department of Hygienic Analysis and Detection, Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Jing Yu
- Department of Hygienic Analysis and Detection, Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Hang Xiao
- Key Lab of Modern Toxicology (NJMU), Ministry of Education, Department of Toxicology, School of Public Health, Nanjing Medical University, 818 Tianyuan East Road, Nanjing, Jiangsu, 211166, China.
| |
Collapse
|
10
|
Di Pietro V, Yakoub KM, Caruso G, Lazzarino G, Signoretti S, Barbey AK, Tavazzi B, Lazzarino G, Belli A, Amorini AM. Antioxidant Therapies in Traumatic Brain Injury. Antioxidants (Basel) 2020; 9:antiox9030260. [PMID: 32235799 PMCID: PMC7139349 DOI: 10.3390/antiox9030260] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/14/2020] [Accepted: 03/20/2020] [Indexed: 02/08/2023] Open
Abstract
Due to a multiplicity of causes provoking traumatic brain injury (TBI), TBI is a highly heterogeneous pathology, characterized by high mortality and disability rates. TBI is an acute neurodegenerative event, potentially and unpredictably evolving into sub-chronic and chronic neurodegenerative events, with transient or permanent neurologic, cognitive, and motor deficits, for which no valid standardized therapies are available. A vast body of literature demonstrates that TBI-induced oxidative/nitrosative stress is involved in the development of both acute and chronic neurodegenerative disorders. Cellular defenses against this phenomenon are largely dependent on low molecular weight antioxidants, most of which are consumed with diet or as nutraceutical supplements. A large number of studies have evaluated the efficacy of antioxidant administration to decrease TBI-associated damage in various animal TBI models and in a limited number of clinical trials. Points of weakness of preclinical studies are represented by the large variability in the TBI model adopted, in the antioxidant tested, in the timing, dosages, and routes of administration used, and in the variety of molecular and/or neurocognitive parameters evaluated. The analysis of the very few clinical studies does not allow strong conclusions to be drawn on the real effectiveness of antioxidant administration to TBI patients. Standardizing TBI models and different experimental conditions, as well as testing the efficacy of administration of a cocktail of antioxidants rather than only one, should be mandatory. According to some promising clinical results, it appears that sports-related concussion is probably the best type of TBI to test the benefits of antioxidant administration.
Collapse
Affiliation(s)
- Valentina Di Pietro
- Neurotrauma and Ophthalmology Research Group, Institute of Inflammation and Aging, University of Birmingham, Birmingham B15 2TT, UK; (V.D.P.); (K.M.Y.)
- NIHR Surgical Reconstruction and Microbiology Research Centre, University Hospitals Birmingham NHS Foundation Trust, Birmingham B15 2TT, UK
- The Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana Champaign, Champaign, IL 61801, USA;
| | - Kamal M. Yakoub
- Neurotrauma and Ophthalmology Research Group, Institute of Inflammation and Aging, University of Birmingham, Birmingham B15 2TT, UK; (V.D.P.); (K.M.Y.)
- NIHR Surgical Reconstruction and Microbiology Research Centre, University Hospitals Birmingham NHS Foundation Trust, Birmingham B15 2TT, UK
| | - Giuseppe Caruso
- Department of Laboratories, Oasi Research Institute – IRCCS, Via Conte Ruggero 73, 94018 Troina (EN), Italy;
| | - Giacomo Lazzarino
- UniCamillus, Saint Camillus International University of Health Sciences, Via di Sant’Alessandro 8, 00131 Rome, Italy;
| | - Stefano Signoretti
- UOC Neurochirurgia, ASL Roma2, S. Eugenio Hospital, Piazzale dell’Umanesimo 10, 00144 Rome, Italy;
| | - Aron K. Barbey
- The Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana Champaign, Champaign, IL 61801, USA;
| | - Barbara Tavazzi
- Institute of Biochemistry and Clinical Biochemistry, Catholic University of Rome, Largo F.Vito 1, 00168 Rome, Italy
- Department of Scienze di laboratorio e infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli 8, 00168 Rome, Italy
- Correspondence: (B.T.); (G.L.); (A.B.)
| | - Giuseppe Lazzarino
- Department of Biomedical and Biotechnological Sciences, Division of Medical Biochemistry, University of Catania, Via S.Sofia 97, 95123 Catania, Italy;
- Correspondence: (B.T.); (G.L.); (A.B.)
| | - Antonio Belli
- Neurotrauma and Ophthalmology Research Group, Institute of Inflammation and Aging, University of Birmingham, Birmingham B15 2TT, UK; (V.D.P.); (K.M.Y.)
- NIHR Surgical Reconstruction and Microbiology Research Centre, University Hospitals Birmingham NHS Foundation Trust, Birmingham B15 2TT, UK
- Correspondence: (B.T.); (G.L.); (A.B.)
| | - Angela Maria Amorini
- Department of Biomedical and Biotechnological Sciences, Division of Medical Biochemistry, University of Catania, Via S.Sofia 97, 95123 Catania, Italy;
| |
Collapse
|
11
|
Bhat SA, Henry RJ, Blanchard AC, Stoica BA, Loane DJ, Faden AI. Enhanced Akt/GSK-3β/CREB signaling mediates the anti-inflammatory actions of mGluR5 positive allosteric modulators in microglia and following traumatic brain injury in male mice. J Neurochem 2020; 156:225-248. [PMID: 31926033 DOI: 10.1111/jnc.14954] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 12/16/2019] [Accepted: 01/02/2020] [Indexed: 12/20/2022]
Abstract
We have previously shown that treatment with a mGluR5 positive allosteric modulator (PAM) is neuroprotective after experimental traumatic brain injury (TBI), limiting post-traumatic neuroinflammation by reducing pro-inflammatory microglial activation and promoting anti-inflammatory and neuroprotective responses. However, the specific molecular mechanisms governing this anti-inflammatory shift in microglia remain unknown. Here we show that the mGluR5 PAM, VU0360172 (VuPAM), regulates microglial inflammatory responses through activation of Akt, resulting in the inhibition of GSK-3β. GSK-3β regulates the phosphorylation of CREB, thereby controlling the expression of inflammation-related genes and microglial plasticity. The anti-inflammatory action of VuPAM in microglia is reversed by inhibiting Akt/GSK-3β/CREB signaling. Using a well-characterized TBI model and CX3CR1gfp/+ mice to visualize microglia in vivo, we demonstrate that VuPAM enhances Akt/GSK-3β/CREB signaling in the injured cortex, as well as anti-inflammatory microglial markers. Furthermore, in situ analysis revealed that GFP + microglia in the cortex of VuPAM-treated TBI mice co-express pCREB and the anti-inflammatory microglial phenotype marker YM1. Taken together, our data show that VuPAM decreases pro-inflammatory microglial activation by modulating Akt/GSK-3β/CREB signaling. These findings serve to clarify the potential neuroprotective mechanisms of mGluR5 PAM treatment after TBI, and suggest novel therapeutic targets for post-traumatic neuroinflammation. Cover Image for this issue: https://doi.org/10.1111/jnc.15048.
Collapse
Affiliation(s)
- Shahnawaz A Bhat
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Rebecca J Henry
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Alexa C Blanchard
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Bogdan A Stoica
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - David J Loane
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD, USA.,School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College, Dublin, Ireland
| | - Alan I Faden
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
12
|
Lele AV, Alunpipatthanachai B, Qiu Q, Clark-Bell C, Watanitanon A, Moore A, Chesnut RM, Armstead W, Vavilala MS. Plasma Levels, Temporal Trends and Clinical Associations between Biomarkers of Inflammation and Vascular Homeostasis after Pediatric Traumatic Brain Injury. Dev Neurosci 2019; 41:177-192. [PMID: 31553988 DOI: 10.1159/000502276] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 07/22/2019] [Indexed: 01/22/2023] Open
Abstract
Expression of inflammatory (interleukin-6 [IL-6]) and vascular homeostatic (angiopoietin-2 [AP-2], endothelin-1 [ET-1], endocan-2 [EC-2]) biomarkers in pediatric traumatic brain injury (TBI) was examined in this prospective, observational cohort study of 28 children hospitalized with mild, moderate, and severe TBI by clinical measures (age, sex, Glasgow Coma Scale score [GCS], Injury Severity Score [ISS], and cerebral autoregulation status). Biomarker patterns suggest an inverse relationship between GCS and AP-2, GCS and IL-6, ISS and ET-1, but a direct relationship between GCS and ET-1 and ISS and AP-2. Biomarker patterns suggest an inverse relationship between AP-2 and ET-1, AP-2 and EC-2, but a direct relationship between AP-2 and IL-6, IL-6 and EC-2, and IL-6 and ET-1. Plasma concentrations of inflammatory and vascular homeostatic biomarkers suggest a role for inflammation and disruption of vascular homeostasis during the first 10 days across the severity spectrum of pediatric TBI. Although not statistically significant, without impact on cerebral autoregulation, biomarker patterns suggest a relationship between inflammation and alterations in vascular homeostasis. The large variation in biomarker levels within TBI severity and age groups, and by sex suggests other contributory factors to biomarker expression.
Collapse
Affiliation(s)
- Abhijit V Lele
- Department of Anesthesiology and Pain Medicine, Harborview Injury Prevention and Research Center, Harborview Medical Center, Seattle, Washington, USA, .,Harborview Injury Prevention and Research Center, University of Washington, Seattle, Washington, USA,
| | | | - Qian Qiu
- Department of Anesthesiology and Pain Medicine, Harborview Injury Prevention and Research Center, Harborview Medical Center, Seattle, Washington, USA
| | - Crystalyn Clark-Bell
- Harborview Injury Prevention and Research Center, University of Washington, Seattle, Washington, USA
| | - Arraya Watanitanon
- Harborview Injury Prevention and Research Center, University of Washington, Seattle, Washington, USA
| | - Anne Moore
- Department of Neurological Surgery and Orthopedics, Harborview Medical Center, Seattle, Washington, USA
| | - Randall M Chesnut
- Department of Neurological Surgery and Orthopedics, Harborview Medical Center, Seattle, Washington, USA
| | - William Armstead
- Department of Anethesiology and Critical Care, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Monica S Vavilala
- Department of Anesthesiology and Pain Medicine, Harborview Injury Prevention and Research Center, Harborview Medical Center, Seattle, Washington, USA.,Harborview Injury Prevention and Research Center, University of Washington, Seattle, Washington, USA
| |
Collapse
|
13
|
Zhang W, Zhu D, Tian Y, Tang M, Liu X. Therapeutic Efficacy of Combined Therapy with Breviscapine and Methylcobalamin in Diabetic Peripheral Nephropathy Management. INT J PHARMACOL 2019. [DOI: 10.3923/ijp.2019.857.862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
14
|
Li F, Wang X, Zhang Z, Zhang X, Gao P. Dexmedetomidine Attenuates Neuroinflammatory-Induced Apoptosis after Traumatic Brain Injury via Nrf2 signaling pathway. Ann Clin Transl Neurol 2019; 6:1825-1835. [PMID: 31478596 PMCID: PMC6764501 DOI: 10.1002/acn3.50878] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/21/2019] [Accepted: 08/06/2019] [Indexed: 12/13/2022] Open
Abstract
Objective Dexmedetomidine (DEX) exhibits neuroprotective effects as a multifunctional neuroprotective agent in numerous neurological disorders. However, in traumatic brain injury (TBI), the molecular mechanisms of these neuroprotective effects remain unclear. The present study investigated whether DEX, which has been reported to exert protective effects against TBI, could attenuate neuroinflammatory‐induced apoptosis and clarified the underlying mechanisms. Methods A weight‐drop model was established, and DEX was intraperitoneally injected 30 min after inducing TBI in rats. The water content in the brain tissue was measured. Terminal deoxynucleotidyl transferase‐mediated dUTP nick‐end labeling (TUNEL) assays were performed on histopathological tissue sections to evaluate neuronal apoptosis. Enzyme‐linked immunosorbent assay and PCR were applied to detect the levels of the inflammatory factors, TNF‐α, IL‐1β, IL‐6, and NF‐κB. Results TBI–challenged rats exhibited significant neuronal apoptosis, which was characterized via the wet‐to‐dry weight ratio, neurobehavioral functions, TUNEL assay results and the levels of cleaved caspase‐3, Bax upregulation and Bcl‐2, which were attenuated by DEX. Western blot, immunohistochemistry, and PCR results revealed that DEX promoted Nrf2 expression and upregulated expression of the Nrf2 downstream factors, HO‐1 and NQO‐1. Furthermore, DEX treatment markedly prevented the downregulation of inflammatory response factors, TNF‐α, IL‐1β and NF‐κB, and IL‐6. Interpretation Administering DEX attenuated inflammation‐induced brain injury in a TBI model, potentially via the Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Fayin Li
- Department of Anesthesiology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, 6 Beijing Road West, Huaian, 223002, Jiangsu, China
| | - Xiaodong Wang
- Department of Neurosurgery, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, 6 Beijing Road West, Huaian, 223002, Jiangsu, China
| | - Zhijie Zhang
- Department of Anesthesiology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, 6 Beijing Road West, Huaian, 223002, Jiangsu, China
| | - Xianlong Zhang
- Department of Anesthesiology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, 6 Beijing Road West, Huaian, 223002, Jiangsu, China
| | - Pengfei Gao
- Department of Anesthesiology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, 6 Beijing Road West, Huaian, 223002, Jiangsu, China
| |
Collapse
|
15
|
Li F, Wang X, Zhang Z, Gao P, Zhang X. Breviscapine provides a neuroprotective effect after traumatic brain injury by modulating the Nrf2 signaling pathway. J Cell Biochem 2019; 120:14899-14907. [PMID: 31042302 DOI: 10.1002/jcb.28751] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 12/29/2018] [Accepted: 01/09/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Fayin Li
- Department of Anesthesiology The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University Huai'an Jiangsu China
| | - Xiaodong Wang
- Department of Neurosurgery The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University Huai'an Jiangsu China
| | - Zhijie Zhang
- Department of Anesthesiology The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University Huai'an Jiangsu China
| | - Pengfei Gao
- Department of Anesthesiology The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University Huai'an Jiangsu China
| | - Xianlong Zhang
- Department of Anesthesiology The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University Huai'an Jiangsu China
| |
Collapse
|
16
|
Farr SA, Niehoff ML, Kumar VB, Roby DA, Morley JE. Inhibition of Glycogen Synthase Kinase 3β as a Treatment for the Prevention of Cognitive Deficits after a Traumatic Brain Injury. J Neurotrauma 2019; 36:1869-1875. [PMID: 30704365 DOI: 10.1089/neu.2018.5999] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Traumatic brain injury (TBI) has many long-term consequences, including impairment in memory and changes in mood. Glycogen synthase kinase 3β (GSK-3β) in its phosphorylated form (p-GSK-3β) is considered to be a major contributor to memory problems that occur post-TBI. We have developed an antisense that targets the GSK-3β (GAO) gene. Using a model of closed-head concussive TBI, we subjected mice to TBI and injected GAO or a random antisense (RAO) 15 min post-injury. One week post-injury, mice were tested in object recognition with 24 h delay. At 4 weeks post- injury, mice were tested with a T-maze foot shock avoidance memory test and a second object recognition test with 24 h delay using different objects. Mice that received GAO show improved memory in both object recognition and T-maze compared with RAO- treated mice that were subjected to TBI. Next, we verified that GAO blocked the surge in phosphorylated GSK-3β post-TBI. Mice were subjected to TBI and injected with antisense 15 min post-TBI with GAO or RAO. Mice were euthanized at 4 and 72 h post-TBI. Analysis of p-ser9GSK-3β, p-tyr216GSK-3β, and phospho-tau (p-tau)404 showed that mice that received a TBI+RAO had significantly higher p-ser9GSK-3β, p-tyr216GSK-3β, and p-tau404 levels than the mice that received TBI+GAO and the Sham+RAO mice. The current finding suggests that inhibiting GSK-3β increase after TBI with an antisense directed at GSK-3β prevents learning and memory impairments.
Collapse
Affiliation(s)
- Susan A Farr
- 1 Research & Development Service, VA Medical Center /Division of Geriatric Medicine, Saint Louis University School of Medicine, St. Louis, Missouri
| | - Michael L Niehoff
- 1 Research & Development Service, VA Medical Center /Division of Geriatric Medicine, Saint Louis University School of Medicine, St. Louis, Missouri
| | - Vijaya B Kumar
- 1 Research & Development Service, VA Medical Center /Division of Geriatric Medicine, Saint Louis University School of Medicine, St. Louis, Missouri
| | - Deborah A Roby
- 2 Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, Missouri
| | - John E Morley
- 1 Research & Development Service, VA Medical Center /Division of Geriatric Medicine, Saint Louis University School of Medicine, St. Louis, Missouri
| |
Collapse
|
17
|
Wu L, Gao Y, Zhang S, Fang Z. The Effects of Breviscapine Injection on Hypertension in Hypertension-Induced Renal Damage Patients: A Systematic Review and a Meta-Analysis. Front Pharmacol 2019; 10:118. [PMID: 30846938 PMCID: PMC6394135 DOI: 10.3389/fphar.2019.00118] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/31/2019] [Indexed: 01/03/2023] Open
Abstract
Background: Breviscapine (Dengzhanhua) injection has been wildly used in clinical treatment for cerebral infarction, cardiovascular disease, diabetic nephropathy, renal impairment of essential hypertension and stroke in China. Breviscapine injection and antihypertensive drugs combination therapy is supposed to be beneficial for hypertension-induced renal damage patients. Objectives: To evaluate the beneficial and adverse effects of breviscapine injection on hypertension in hypertension-induced renal damage patients, an extensive meta-analysis was performed. Methods: We searched PubMed, the Cochrane Library, Embase, CNKI, Sino Med, VIP, and Wanfang Data for relevant literature. The timeframe of retrieval was set from the founding date of each database to September 28, 2018. Results: Fourteen papers were included in this study. The quality of all the studies included was determined to be low. All studies were conducted with Chinese populations. Meta-analysis showed that, compared with single-use antihypertensive drugs, using breviscapine injection in combination with antihypertensive drugs to treat hypertension in hypertension-induced renal damage patients can reduce 24-h urinary total protein (24 h UTP) [WMD = −0.04, 95% CI (−0.05, −0.02), P ≤ 0.001], but does not lower systolic blood pressure (SBP) [WMD = −1.02, 95% CI (−2.88, 0.84), P = 0.281] or diastolic blood pressure (DBP) [WMD = −0.21, 95% CI (−1.71, 1.29), P = 0.786] more effectively. There was also no statistically significant difference in adverse events between experimental groups and control groups. Conclusion: Breviscapine injection, in combination with antihypertensive drugs, appears to be more effective in improving the 24 h UTP, but overall have no effect on improving the blood pressure in hypertension-induced renal damage patients. Moderate dose of breviscapine injection (10 ml) may have effects on reducing blood pressure in hypertension-induced renal damage patients but high doses of breviscapine injection (20 ml) may increase blood pressure by subgroup analysis. However, the evidence of methodological quality and sample sizes is weak, and thus, further standardized research is required.
Collapse
Affiliation(s)
- Lihua Wu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Yanhua Gao
- Department of Pediatrics, Pizhou City Hospital of Traditional Chinese Medicine, Pi Zhou, China
| | - Shufei Zhang
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhuyuan Fang
- Institute of Hypertension, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
18
|
Combined Therapy of Hypertensive Nephropathy with Breviscapine Injection and Antihypertensive Drugs: A Systematic Review and a Meta-Analysis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:2958717. [PMID: 30671127 PMCID: PMC6317107 DOI: 10.1155/2018/2958717] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 12/03/2018] [Indexed: 11/24/2022]
Abstract
Objective To evaluate the beneficial and adverse effects of breviscapine injection in combination with antihypertensive drugs for treating hypertensive nephropathy in clinical practice. Methods We searched PubMed, the Cochrane Library, Embase, CNKI, Sino Med, VIP, and Wanfang Data for relevant literature. The timeframe of retrieval was set from the founding date of each database to September 28, 2018. Results Fourteen papers were included in this study. The quality of all the studies included was determined to be low. All studies were conducted with Chinese populations. Meta-analysis showed that, compared with single-use antihypertensive drugs, using breviscapine injection in combination with antihypertensive drugs to treat hypertensive nephropathy can reduce serum creatinine (Scr) [WMD = –35.16, 95% CI(–50.01, –20.31), P ≤ 0.001], blood urea nitrogen (BUN) [WMD = –2.00, 95% CI(–3.07, –0.94), P ≤ 0.001], 24-hour urinary total protein (24 h UTP) [WMD = –0.04, 95% CI(–0.05, –0.02), P ≤ 0.001], and the beta-2-microglobulin (B2M) [WMD = –0.09, 95% CI(–0.11, –0.07), P ≤ 0.001], improve creatinine clearance rate (Ccr) [WMD = 7.84, 95% CI(5.20, 10.49), P ≤ 0.001], and increase the clinical efficacy [RR = 1.27, 95% CI(1.05, 1.53), P = 0.014], but does not lower systolic blood pressure (SBP) [WMD = –1.02, 95% CI(–2.88, 0.84), P = 0.281]. There was no significant difference in adverse events between experimental groups and control groups. Conclusion Breviscapine injection in combination with antihypertensive drugs can improve clinical efficacy and Ccr and reduce Scr, BUN, 24 h UTP, and B2M in patients with hypertensive nephropathy. The present meta-analysis indicated that breviscapine injection can serve as a renal protective effect to patients with hypertensive nephropathy. However, the evidence of methodological quality and sample sizes is weak, and thus, further standardized research is required.
Collapse
|
19
|
Liu Y, Wen PH, Zhang XX, Dai Y, He Q. Breviscapine ameliorates CCl4‑induced liver injury in mice through inhibiting inflammatory apoptotic response and ROS generation. Int J Mol Med 2018; 42:755-768. [PMID: 29717768 PMCID: PMC6034936 DOI: 10.3892/ijmm.2018.3651] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Accepted: 04/05/2018] [Indexed: 01/06/2023] Open
Abstract
Acute liver injury is characterized by fibrosis, inflammation and apoptosis, leading to liver failure, cirrhosis or cancer and affecting the clinical outcome in the long term. However, no effective therapeutic strategy is currently available. Breviscapine, a mixture of flavonoid glycosides, has been reported to have multiple biological functions. The present study aimed to investigate the effects of breviscapine on acute liver injury induced by CCl4 in mice. C57BL/6 mice were subjected to intraperitoneal injection with CCl4 for 8 weeks with or without breviscapine (15 or 30 mg/kg). Mice treated with CCl4 developed acute liver injury, as evidenced by histological analysis, Masson trichrome and Sirius Red staining, accompanied with elevated levels of alanine aminotransferase and aspartate aminotransferase. Furthermore, increases in pro‑inflammatory cytokines, chemokines and apoptotic factors, including caspase‑3 and poly(ADP ribose) polymerase‑2 (PARP‑2), were observed. Breviscapine treatment significantly and dose‑dependently reduced collagen deposition and the fibrotic area. Inflammatory cytokines were downregulated by breviscapine through inactivating Toll‑like receptor 4/nuclear factor-κB signaling pathways. In addition, co‑administration of breviscapine with CCl4 decreased the apoptotic response by enhancing B‑cell lymphoma-2 (Bcl‑2) levels, while reducing Bcl‑2‑associated X protein, apoptotic protease activating factor 1, caspase‑3 and PARP activity. Furthermore, CCl4‑induced oxidative stress was blocked by breviscapine through improving anti‑oxidants and impeding mitogen‑activated protein kinase pathways. The present study highlighted that breviscapine exhibited liver‑protective effects against acute hepatic injury induced by CCl4 via suppressing inflammation and apoptosis.
Collapse
Affiliation(s)
- Yu Liu
- Department of Hepatobiliary Surgery, Beijing Chao-Yang Hospital Affiliated to Capital University of Medical Science, Beijing 100000, P.R. China
| | - Pei-Hao Wen
- Department of Hepatobiliary Surgery, Beijing Chao-Yang Hospital Affiliated to Capital University of Medical Science, Beijing 100000, P.R. China
| | - Xin-Xue Zhang
- Department of Hepatobiliary Surgery, Beijing Chao-Yang Hospital Affiliated to Capital University of Medical Science, Beijing 100000, P.R. China
| | - Yang Dai
- Department of Hepatobiliary Surgery, Beijing Chao-Yang Hospital Affiliated to Capital University of Medical Science, Beijing 100000, P.R. China
| | - Qiang He
- Department of Hepatobiliary Surgery, Beijing Chao-Yang Hospital Affiliated to Capital University of Medical Science, Beijing 100000, P.R. China
| |
Collapse
|
20
|
Zhang W, Cui Y, Gao J, Li R, Jiang X, Tian Y, Wang K, Cui J. Recombinant Osteopontin Improves Neurological Functional Recovery and Protects Against Apoptosis via PI3K/Akt/GSK-3β Pathway Following Intracerebral Hemorrhage. Med Sci Monit 2018; 24:1588-1596. [PMID: 29550832 PMCID: PMC5870133 DOI: 10.12659/msm.905700] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND This study aimed to investigate the potential neuroprotective effect of recombinant osteopontin (r-OPN) on apoptotic changes via modulating phosphoinositide-3-kinase/Akt/glycogen synthase kinase 3 beta (PI3K/Akt/GSK-3β) signaling in a rat model of intracerebral hemorrhage (ICH). MATERIAL AND METHODS We subjected 10-12-week-old Sprague-Dawley male rats (n=120) to injection of autologous blood into the right basal ganglia to induce ICH or sham surgery. ICH animals received vehicle administration, r-OPN (4 μL/pup), or r-OPN combined with phosphatidylinositol 3-kinase (PI3K) inhibitor wortmannin (86 ng/pup) at 30 min after injury. Neurological scores and rotarod latencies were evaluated on days 1-5 post-ICH. Brain water content was evaluated on days 1-3 post-ICH. The number of apoptotic cells changes were evaluated by terminal deoxynucleotidyl transferase-mediated 2-deoxyuridine 5-triphosphate-biotin nick-end labeling (TUNEL) and hematoxylin staining. Apoptosis-related proteins Bcl-2, Bax, and cleaved caspase-3 (CC3), and the phosphorylation levels of Akt and GSK-3b were assayed by Western blot. RESULTS Neurological deficits, rotarod latencies, and brain water content following ICH were reduced in the r-OPN group compared to the vehicle group. r-OPN also attenuated cell death in ICH. Furthermore, treatment with r-OPN significantly increased p-Akt expression and decreased p-GSK-3β. These effects were associated with a decrease in the Bax/Bcl-2 ratio and the suppression of CC3 at 24 h after ICH. Importantly, all the beneficial effects of r-OPN in ICH were abrogated by the PI3K inhibitor wortmannin. CONCLUSIONS r-OPN may provide a wide range of neuroprotection by suppressing apoptosis through the PI3K/Akt/GSK-3β signaling pathway after ICH.
Collapse
Affiliation(s)
- Wenqian Zhang
- Department of Surgery, Hebei Medical University, Shijiazhuang, Hebei, China (mainland)
| | - Ying Cui
- Department of Neurosurgery, Tangshan Gongren Hospital, Tangshan, Hebei, China (mainland)
| | - Junling Gao
- School of Basic Medical Science, North China University of Science and Technology, Tangshan, Hebei, China (mainland).,Hebei Key Laboratory for Chronic Diseases, Tangshan Key Laboratory for Preclinical and Basic Research on Chronic Diseases, Tangshan, Hebei, China (mainland)
| | - Ran Li
- School of Basic Medical Science, North China University of Science and Technology, Tangshan, Hebei, China (mainland).,Hebei Key Laboratory for Chronic Diseases, Tangshan Key Laboratory for Preclinical and Basic Research on Chronic Diseases, Tangshan, Hebei, China (mainland)
| | - Xiaohua Jiang
- School of Basic Medical Science, North China University of Science and Technology, Tangshan, Hebei, China (mainland).,Hebei Key Laboratory for Chronic Diseases, Tangshan Key Laboratory for Preclinical and Basic Research on Chronic Diseases, Tangshan, Hebei, China (mainland)
| | - Yanxia Tian
- School of Basic Medical Science, North China University of Science and Technology, Tangshan, Hebei, China (mainland).,Hebei Key Laboratory for Chronic Diseases, Tangshan Key Laboratory for Preclinical and Basic Research on Chronic Diseases, Tangshan, Hebei, China (mainland)
| | - Kaijie Wang
- Department of Neurosurgery, Tangshan Gongren Hospital, Tangshan, Hebei, China (mainland)
| | - Jianzhong Cui
- Department of Surgery, Hebei Medical University, Shijiazhuang, Hebei, China (mainland).,Department of Neurosurgery, Tangshan Gongren Hospital, Tangshan, Hebei, China (mainland)
| |
Collapse
|