1
|
Neo PSH, Shadli SM, McNaughton N, Sellbom M. Midfrontal theta reactivity to conflict and error are linked to externalizing and internalizing respectively. PERSONALITY NEUROSCIENCE 2024; 7:e8. [PMID: 38689857 PMCID: PMC11058527 DOI: 10.1017/pen.2023.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 09/02/2023] [Accepted: 09/07/2023] [Indexed: 05/02/2024]
Abstract
Dimensional psychopathology scores measure symptom severity; cutting across disorder categories. Their clinical utility is high given comorbidity, but their neural basis is unclear. We used scalp electroencephalography (EEG) to concurrently assess neural activity across internalizing and externalizing traits. "Theta rhythm" (4-7 Hz) spectral power at the frontal midline site Fz in specific goal conflict and action error phases within a trial of a Stop-Signal Task was extracted using process-specific contrasts. A final sample of 146 community participants (63 males, 83 females; mean age = 36; SD = 9; range = 18 - 56), oversampled for externalizing disorder (49% diagnosed with a DSM-5 externalizing disorder), also supplied psychopathology and personality data. We used the Minnesota Multiphasic Personality Inventory-3 (MMPI-3) to measure symptoms and traits of psychopathology. An MMPI-3 measure of the higher-order internalizing psychopathology spectrum was positively correlated with action error theta. An MMPI-3 measure of the higher-order spectrum of externalizing psychopathology was negatively correlated with goal-conflict theta. We showed that goal-conflict and error theta activity are higher-order processes that index psychopathology severity. The associations extend into the nominally healthy range, and so reflect theta-related factors that apply to the general population as well as patients with sub-threshold diagnoses.
Collapse
Affiliation(s)
- Phoebe S.-H. Neo
- Department of Psychology, University of Otago, Otago, New Zealand
| | - Shabah M. Shadli
- Department of Psychology, University of Otago, Otago, New Zealand
| | - Neil McNaughton
- Department of Psychology, University of Otago, Otago, New Zealand
| | - Martin Sellbom
- Department of Psychology, University of Otago, Otago, New Zealand
| |
Collapse
|
2
|
Fusco G, Scandola M, Lin H, Inzlicht M, Aglioti SM. Modulating preferences during intertemporal choices through exogenous midfrontal transcranial alternating current stimulation: A registered report. Cortex 2024; 171:435-464. [PMID: 38113613 DOI: 10.1016/j.cortex.2023.09.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 08/24/2023] [Accepted: 09/21/2023] [Indexed: 12/21/2023]
Abstract
Decision conflicts may arise when the costs and benefits of choices are evaluated as a function of outcomes predicted along a temporal dimension. Electrophysiology studies suggest that during performance monitoring a typical oscillatory activity in the theta rhythm, named midfrontal theta, may index conflict processing and resolution. In the present within-subject, sham controlled, cross-over preregistered study, we delivered online midfrontal transcranial Alternating Current Stimulation (tACS) to modulate electrocortical activity during intertemporal decisions. Participants were invited to select choice preference between economic offers at three different intermixed levels of conflict (i.e., low, medium, high) while receiving either theta -, gamma-, or sham tACS in separate blocks and sessions. At the end of each stimulation block, a Letter-Flanker task was also administered to measure behavioural aftereffects. We hypothesized that theta-tACS would have acted on the performance monitoring system inducing behavioural changes (i.e., faster decisions and more impulsive choices) in high conflicting trials, rather than gamma- and sham-tACS. Results very partially confirmed our predictions. Unexpectedly, both theta- and gamma-driven neuromodulation speeded-up decisions compared to sham. However, exploratory analyses revealed that such an effect was stronger in the high-conflict decisions during theta-tACS. These findings were independent from the influence of the sensations induced by the electrical stimulation. Moreover, further analyses highlighted a significant association during theta-tACS between the selection of immediate offers in high-conflict trials and attentional impulsiveness, suggesting that individual factors may account for the tACS effects during intertemporal decisions. Finally, we did not capture long-lasting behavioural changes following tACS in the Flanker task. Our findings may inform scholars to improve experimental designs and boost the knowledge toward a more effective application of tACS.
Collapse
Affiliation(s)
- Gabriele Fusco
- Sapienza University of Rome and CLNS@SAPIENZA, Istituto Italiano di Tecnologia, Italy; IRCCS Santa Lucia Foundation, Rome, Italy.
| | - Michele Scandola
- NPSY Lab-Vr, Department of Human Sciences, University of Verona, Verona, Italy
| | - Hause Lin
- Sloan School of Management, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Michael Inzlicht
- Department of Psychology, University of Toronto, Toronto, Canada
| | - Salvatore Maria Aglioti
- Sapienza University of Rome and CLNS@SAPIENZA, Istituto Italiano di Tecnologia, Italy; IRCCS Santa Lucia Foundation, Rome, Italy
| |
Collapse
|
3
|
Smith DE, Wheelock JR, Long NM. Response-locked theta dissociations reveal potential feedback signal following successful retrieval. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.11.575166. [PMID: 38260491 PMCID: PMC10802561 DOI: 10.1101/2024.01.11.575166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Successful memory retrieval relies on memory processes to access an internal representation and decision processes to evaluate and respond to the accessed representation, both of which are supported by fluctuations in theta (4-8Hz) activity. However, the extent to which decision making processes are engaged following a memory response is unclear. Here, we recorded scalp electroencephalography (EEG) while human participants performed a recognition memory task. We focused on response-locked data, allowing us to investigate the processes that occur prior to and following a memory response. We replicate previous work and find that prior to a memory response theta power is greater for identification of previously studied items (hits) relative to rejection of novel lures (correct rejections; CRs). Following the memory response, the theta power dissociation 'flips' whereby theta power is greater for CRs relative to hits. We find that the post-response 'flip' is more robust for hits that are committed quickly, potentially reflecting a positive feedback signal for strongly remembered experiences. Our findings suggest that there are potentially distinct processes occurring before and after a memory response that are modulated by successful memory retrieval.
Collapse
|
4
|
Dantas AM, Sack AT, Bruggen E, Jiao P, Schuhmann T. Modulating risk-taking behavior with theta-band tACS. Neuroimage 2023; 283:120422. [PMID: 37884165 DOI: 10.1016/j.neuroimage.2023.120422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 08/31/2023] [Accepted: 10/23/2023] [Indexed: 10/28/2023] Open
Abstract
Although risk is prevalent in decision-making, the specific neural processes underlying risk-taking behavior remain unclear. Previous studies have suggested that frontal theta-band activity plays a crucial role in modulating risk-taking behavior. The functional relevance of theta in risk-taking behavior is yet to be clearly established and studies using noninvasive brain stimulation have yielded inconsistent findings. We aimed to investigate this relevance using transcranial alternating current stimulation (tACS) over right or left dorsolateral prefrontal cortex (DLPFC). We also studied the influence of stimulation intensity on risk-taking behavior and electrophysiological effects. We applied theta-band (6.5 Hz) tACS over the left (F3) and right (F4) DLPFC with lower (1.5 mA) and higher (3 mA) tACS intensities. We employed a single-blinded, sham-controlled, within-subject design and combined tACS with electroencephalography (EEG) measurements and the Maastricht Gambling Task (MGT) to elicit and evaluate risk-taking behavior. Our results show an increase in risk-taking behavior after left DLPFC stimulation at both intensities and a reduction of risk-taking behavior after 3 mA (and not 1.5 mA) right DLPFC stimulation compared to sham. Further analyses showed a negative correlation between resting-state frontal theta-power and risk-taking behavior. Overall, frontal theta-power was increased after left, but not right, theta-band tACS independent of stimulation intensity. Our findings confirm the functional relevance of frontal theta-band activity in decision-making under risk and the differential role of left and right DLPFC. We also were able to show that stimulation intensity did have an effect on behavioral responses, namely risk-taking behavior. Significant right hemisphere stimulation effects were observed only after high-intensity stimulation. Nevertheless, electrophysiological effects were only significant after left DLPFC stimulation, regardless of tACS intensity. Furthermore, the results indicate the role of the baseline frontal theta-power in the direction of behavioral effects after theta-band tACS.
Collapse
Affiliation(s)
- Aline M Dantas
- Section Brain Stimulation and Cognition, Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University. Oxfordlaan 55, 6229 EV, Maastricht, the Netherlands; Maastricht Brain Imaging Center, Maastricht University. Oxfordlaan 55, 6229 EV, Maastricht, the Netherlands; Department of Psychiatry and Neuropsychology, School for Mental Health, and Neuroscience (MHeNs), Brain+Nerve Center, Maastricht University Medical Center+ (MUMC+). P. Debyelaan 25, 6229 HX, Maastricht, the Netherlands.
| | - Alexander T Sack
- Section Brain Stimulation and Cognition, Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University. Oxfordlaan 55, 6229 EV, Maastricht, the Netherlands; Maastricht Brain Imaging Center, Maastricht University. Oxfordlaan 55, 6229 EV, Maastricht, the Netherlands; Department of Psychiatry and Neuropsychology, School for Mental Health, and Neuroscience (MHeNs), Brain+Nerve Center, Maastricht University Medical Center+ (MUMC+). P. Debyelaan 25, 6229 HX, Maastricht, the Netherlands
| | - Elisabeth Bruggen
- Department of Marketing and Supply Chain Management, School of Business and Economics, Maastricht University. P.O. Box 616, 6200 MD, Maastricht, the Netherlands; BISS - Brightlands Institute for Smart Society, Maastricht University, Heerlen, the Netherlands; Netspar - Network for Studies on Pension, Aging and Retirement
| | - Peiran Jiao
- Department of Finance, School of Business and Economics, Maastricht University. P.O. Box 616, 6200 MD, Maastricht, the Netherlands
| | - Teresa Schuhmann
- Section Brain Stimulation and Cognition, Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University. Oxfordlaan 55, 6229 EV, Maastricht, the Netherlands; Maastricht Brain Imaging Center, Maastricht University. Oxfordlaan 55, 6229 EV, Maastricht, the Netherlands
| |
Collapse
|
5
|
Umemoto A, Lin H, Holroyd CB. Electrophysiological measures of conflict and reward processing are associated with decisions to engage in physical effort. Psychophysiology 2023; 60:e14176. [PMID: 36097887 DOI: 10.1111/psyp.14176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/25/2022] [Accepted: 08/17/2022] [Indexed: 01/04/2023]
Abstract
Anterior cingulate cortex (ACC), a key brain region involved in cognitive control and decision making, is suggested to mediate effort- and value-based decision making, but the specific role of ACC in this process remains debated. Here we used frontal midline theta (FMT) and the reward positivity (RewP) to examine ACC function in a value-based decision making task requiring physical effort. We investigated whether (1) FMT power is sensitive to the difficulty of the decision or to selecting effortful actions, and (2) RewP is sensitive to the subjective value of reward outcomes as a function of effort investment. On each trial, participants chose to execute a low-effort or a high-effort behavior (that required squeezing a hand-dynamometer) to obtain smaller or larger rewards, respectively, while their brainwaves were recorded. We replicated prior findings that tonic FMT increased over the course of the hour-long task, which suggests increased application of control in the face of growing fatigue. RewP amplitude also increased following execution of high-effort compared to low-effort behavior, consistent with increased valuation of reward outcomes by ACC. Although neither phasic nor tonic FMT were associated with decision difficulty or effort selection per se, an exploratory analysis revealed that the interaction of phasic FMT and expected value of choice predicted effort choice. This interaction suggests that phasic FMT increases specifically under situations of decision difficulty when participants ultimately select a high-effort choice. These results point to a unique role for ACC in motivating and persisting at effortful behavior when decision conflict is high.
Collapse
Affiliation(s)
- Akina Umemoto
- Department of Psychology, University of Victoria, Victoria, British Columbia, Canada.,Department of Psychiatry, Columbia University, New York, New York, USA
| | - Hause Lin
- Sloan School of Management, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.,Hill/Levene Schools of Business, University of Regina, Regina, Saskatchewan, Canada
| | - Clay B Holroyd
- Department of Psychology, University of Victoria, Victoria, British Columbia, Canada.,Department of Experimental Psychology, Ghent University, Ghent, Belgium
| |
Collapse
|
6
|
Stolz C, Pickering AD, Mueller EM. Dissociable feedback valence effects on frontal midline theta during reward gain versus threat avoidance learning. Psychophysiology 2022; 60:e14235. [PMID: 36529988 DOI: 10.1111/psyp.14235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 10/17/2022] [Accepted: 11/17/2022] [Indexed: 12/23/2022]
Abstract
While frontal midline theta (FMθ) has been associated with threat processing, with cognitive control in the context of anxiety, and with reinforcement learning, most reinforcement learning studies on FMθ have used reward rather than threat-related stimuli as reinforcer. Accordingly, the role of FMθ in threat-related reinforcement learning is largely unknown. Here, n = 23 human participants underwent one reward-, and one punishment-, based reversal learning task, which differed only with regard to the kind of reinforcers that feedback was tied to (i.e., monetary gain vs. loud noise burst, respectively). In addition to single-trial EEG, we assessed single-trial feedback expectations based on both a reinforcement learning computational model and trial-by-trial subjective feedback expectation ratings. While participants' performance and feedback expectations were comparable between the reward and punishment tasks, FMθ was more reliably amplified to negative vs. positive feedback in the reward vs. punishment task. Regressions with feedback valence, computationally derived, and self-reported expectations as predictors and FMθ as criterion further revealed that trial-by-trial variations in FMθ specifically relate to reward-related feedback-valence and not to threat-related feedback or to violated expectations/prediction errors. These findings suggest that FMθ as measured in reinforcement learning tasks may be less sensitive to the processing of events with direct relevance for fear and anxiety.
Collapse
Affiliation(s)
- Christopher Stolz
- Department of Psychology University of Marburg Marburg Germany
- Leibniz Institute for Neurobiology (LIN) Magdeburg Germany
- Department of Psychology Goldsmiths, University of London London UK
| | | | - Erik M. Mueller
- Department of Psychology University of Marburg Marburg Germany
| |
Collapse
|
7
|
Zhao Y, Wang D, Wang X, Chiu SC. Brain mechanisms underlying the influence of emotions on spatial decision-making: An EEG study. Front Neurosci 2022; 16:989988. [PMID: 36248638 PMCID: PMC9562092 DOI: 10.3389/fnins.2022.989988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 08/31/2022] [Indexed: 11/25/2022] Open
Abstract
It is common for people to make bad decisions because of their emotions in life. When these decisions are important, such as aeronautical decisions and driving decisions, the mistakes of decisions can cause irreversible damage. Therefore, it is important to explore how emotions influence decision-making, so as to avoid the negative influence of emotions on decision-making as much as possible. Although existing researchers have found some mechanisms of emotion's influence on decision-making, only a few studies focused on the influence of emotions on decision-making based on electroencephalography (EEG). In addition, most of them were focused on risky and uncertain decision-making. We designed a novel experimental task to explore the influence of emotion on spatial decision-making and recorded subjective data, decision-making behavioral data, and EEG data. By analyzing these data, we came to three conclusions. Firstly, we observed three similar event-related potentials (ERP) microstates in the decision-making process under different emotions by microstate analysis. Additionally, the prefrontal, parietal and occipital lobes played key roles in decision-making. Secondly, we found that the P2 component of the prefrontal lobe presented the influence of different emotions on decision-making by ERP analysis. Among them, positive emotion evoked the largest P2 amplitude compared to negative emotions and no stimuli. Thirdly, we found some graph metrics that were significantly associated with decision accuracy by effective connectivity analysis combined with graph theoretic analysis. In consequence, the finding of our study may shed more light on the brain mechanisms underlying the influence of emotions on spatial decision-making, thereby providing a basis for avoiding decision-making accidents caused by emotions and realizing better decision-making.
Collapse
Affiliation(s)
- Yanyan Zhao
- State Key Laboratory for Management and Control of Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
| | - Danli Wang
- State Key Laboratory for Management and Control of Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
- *Correspondence: Danli Wang
| | - Xinyuan Wang
- State Key Laboratory for Management and Control of Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
| | - Steve C. Chiu
- ECE Department, Idaho State University, Pocatello, ID, United States
| |
Collapse
|
8
|
Riddle J, Alexander ML, Schiller CE, Rubinow DR, Frohlich F. Reward-Based Decision-Making Engages Distinct Modes of Cross-Frequency Coupling. Cereb Cortex 2022; 32:2079-2094. [PMID: 34622271 PMCID: PMC9113280 DOI: 10.1093/cercor/bhab336] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 08/18/2021] [Accepted: 08/22/2021] [Indexed: 11/13/2022] Open
Abstract
Prefrontal cortex exerts control over sensory and motor systems via cross-frequency coupling. However, it is unknown whether these signals play a role in reward-based decision-making and whether such dynamic network configuration is altered in a major depressive episode. We recruited men and women with and without depression to perform a streamlined version of the Expenditure of Effort for Reward Task during recording of electroencephalography. Goal-directed behavior was quantified as willingness to exert physical effort to obtain reward, and reward-evaluation was the degree to which the decision to exert effort was modulated by incentive level. We found that the amplitude of frontal-midline theta oscillations was greatest in participants with the greatest reward-evaluation. Furthermore, coupling between frontal theta phase and parieto-occipital gamma amplitude was positively correlated with reward-evaluation. In addition, goal-directed behavior was positively correlated with coupling between frontal delta phase to motor beta amplitude. Finally, we performed a factor analysis to derive 2 symptom dimensions and found that mood symptoms positively tracked with reward-evaluation and motivation symptoms negatively tracked with goal-directed behavior. Altogether, these results provide evidence that 2 aspects of reward-based decision-making are instantiated by different modes of prefrontal top-down control and are modulated in different symptom dimensions of depression.
Collapse
Affiliation(s)
- Justin Riddle
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Carolina Center for Neurostimulation, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Morgan L Alexander
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Carolina Center for Neurostimulation, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Crystal Edler Schiller
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - David R Rubinow
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Flavio Frohlich
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Carolina Center for Neurostimulation, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
9
|
Messel MS, Raud L, Hoff PK, Stubberud J, Huster RJ. Frontal-midline theta reflects different mechanisms associated with proactive and reactive control of inhibition. Neuroimage 2021; 241:118400. [PMID: 34311382 DOI: 10.1016/j.neuroimage.2021.118400] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 05/22/2021] [Accepted: 07/14/2021] [Indexed: 10/20/2022] Open
Abstract
Reactive control of response inhibition is associated with a right-lateralised cortical network, as well as frontal-midline theta (FM-theta) activity measured at the scalp. However, response inhibition is also governed by proactive control processes, and how such proactive control is reflected in FM-theta activity and associated neural source activity remains unclear. To investigate this, simultaneous recordings of electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) data was performed while participants performed a cued stop-signal task. The cues (0%, 25% or 66%) indicated the likelihood of an upcoming stop-signal in the following trial. Results indicated that participants adjusted their behaviour proactively, with increasing go-trial reaction times following increasing stop-signal probability, as well as modulations of both go-trial and stop-trial accuracies. Target-locked theta activity was higher in stop-trials than go-trials and modulated by probability. At the single-trial level, cue-locked theta was associated with shorter reaction-times, while target-locked theta was associated with both faster reaction times and higher probability of an unsuccessful stop-trial. This dissociation was also evident at the neural source level, where a joint ICA revealed independent components related to going, stopping and proactive preparation. Overall, the results indicate that FM-theta activity can be dissociated into several mechanisms associated with proactive control, response initiation and response inhibition processes. We propose that FM-theta activity reflects both heightened preparation of the motor control network, as well as stopping-related processes associated with a right lateralized cortical network.
Collapse
Affiliation(s)
- Mari S Messel
- Multimodal Imaging and Cognitive Control Lab, Department of Psychology, University of Oslo, Oslo, Norway; CTNC - Cognitive and Translational Neuroscience Cluster, Department of Psychology, University of Oslo, Oslo, Norway; Sunnaas Rehabilitation Hospital, Nesodden, Norway.
| | - Liisa Raud
- CTNC - Cognitive and Translational Neuroscience Cluster, Department of Psychology, University of Oslo, Oslo, Norway; Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Norway
| | - Per Kristian Hoff
- Multimodal Imaging and Cognitive Control Lab, Department of Psychology, University of Oslo, Oslo, Norway
| | - Jan Stubberud
- Department of Psychology, University of Oslo, Oslo, Norway; Department of Research, Lovisenberg Diaconal Hospital, Oslo, Norway
| | - René J Huster
- Multimodal Imaging and Cognitive Control Lab, Department of Psychology, University of Oslo, Oslo, Norway; CTNC - Cognitive and Translational Neuroscience Cluster, Department of Psychology, University of Oslo, Oslo, Norway
| |
Collapse
|
10
|
Abnormal negative feedback processing in individuals with autistic traits in the Iowa gambling task: Evidence from behavior and event-related potentials. Int J Psychophysiol 2021; 165:36-46. [PMID: 33647381 DOI: 10.1016/j.ijpsycho.2021.02.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 11/23/2022]
Abstract
Value-based decision making plays an important role in social interaction. Previous studies have reported that individuals with autism spectrum disorder (ASD) exhibit deficits in terms of decision making. However, it is still unknown clearly whether individuals with high autistic traits within nonclinical populations employ abnormal neural substrates in value-based decision-making. To explore this issue, we investigated value-based decision making and its neural substrates in individuals with high and low autistic traits within a typically developing population who completed the revised Iowa gambling task (IGT) based on measurements of event-related potentials (ERPs). The IGT net scores were significantly lower in the group with high autistic traits than the group with low autistic traits in the fifth and sixth blocks. The ERP results showed that the feedback-related negativity (FRN) amplitude in individuals with high autistic traits allowed slight discrimination between positive and negative feedback in the low-risk option. The event-related spectral perturbations (ERSPs) and inter-trial coherence (ITC) of the theta-band frequency were also lower in the group with high autistic traits than the group with low autistic traits in the loss low-risk option. The results obtained in this study indicate that individuals with high autistic traits exhibit an unusual negative feedback process and relevant neural substrate. The FRN amplitude and theta-band oscillation may comprise a neural index of abnormal decision-making processes in individuals with high autistic traits. This study of a small sample may be considered an important step toward a more comprehensive understanding of the autism "spectrum" within a nonclinical population based on cognitive neuroscience.
Collapse
|
11
|
Singh AK, Wang YK, King JT, Lin CT. Extended Interaction With a BCI Video Game Changes Resting-State Brain Activity. IEEE Trans Cogn Dev Syst 2020. [DOI: 10.1109/tcds.2020.2985102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
12
|
Rajan A, Siegel SN, Liu Y, Bengson J, Mangun GR, Ding M. Theta Oscillations Index Frontal Decision-Making and Mediate Reciprocal Frontal-Parietal Interactions in Willed Attention. Cereb Cortex 2020; 29:2832-2843. [PMID: 29931088 DOI: 10.1093/cercor/bhy149] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 05/28/2018] [Indexed: 11/12/2022] Open
Abstract
Attention can be attracted reflexively by sensory signals, biased by learning or reward, or focused voluntarily based on momentary goals. When voluntary attention is focused by purely internal decision processes (will), rather than instructions via external cues, we call this "willed attention." In prior work, we reported ERP and fMRI correlates of willed spatial attention in trial-by-trial cuing tasks. Here we further investigated the oscillatory mechanisms of willed attention by contrasting the event-related EEG spectrogram between instructional and choice cues. Two experiments were conducted at 2 different sites using the same visuospatial attention paradigm. Consistent between the 2 experiments, we found increases in frontal theta power (starting at ~500 ms post cue) for willed attention relative to instructed attention. This frontal theta increase was accompanied by increased frontal-parietal theta-band coherence and bidirectional Granger causality. Additionally, the onset of attention-related posterior alpha power lateralization was delayed in willed attention relative to instructed attention, and the amount of delay was related to the timing of frontal theta increase. These results, replicated across 2 experiments, suggest that theta oscillations are the neuronal signals indexing decision-making in the frontal cortex, and mediating reciprocal communications between the frontal executive and parietal attentional control regions during willed attention.
Collapse
Affiliation(s)
- Abhijit Rajan
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Scott N Siegel
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Yuelu Liu
- Center for Mind and Brain, University of California, Davis, CA, USA
| | - Jesse Bengson
- Department of Psychology, Sonoma State University, Rohnert Park, CA, USA
| | - George R Mangun
- Center for Mind and Brain, University of California, Davis, CA, USA.,Departments of Psychology and Neurology, University of California, Davis, CA, USA
| | - Mingzhou Ding
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| |
Collapse
|
13
|
Increases in theta CSD power and coherence during a calibrated stop-signal task: implications for goal-conflict processing and the Behavioural Inhibition System. PERSONALITY NEUROSCIENCE 2020; 2:e10. [PMID: 32435745 PMCID: PMC7219682 DOI: 10.1017/pen.2019.10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 09/03/2019] [Accepted: 09/17/2019] [Indexed: 12/18/2022]
Abstract
Psychologists have identified multiple different forms of conflict, such as information processing conflict and goal conflict. As such, there is a need to examine the similarities and differences in neurology between each form of conflict. To address this, we conducted a comprehensive electroencephalogram (EEG) analysis of Shadli, Glue, McIntosh, and McNaughton’s calibrated stop-signal task (SST) goal-conflict task. Specifically, we examined changes in scalp-wide current source density (CSD) power and coherence across a wide range of frequency bands during the calibrated SST (n = 34). We assessed differences in EEG between the high and low goal-conflict conditions using hierarchical analyses of variance (ANOVAs). We also related goal-conflict EEG to trait anxiety, neuroticism, Behavioural Inhibition System (BIS)-anxiety and revised BIS (rBIS) using regression analyses. We found that changes in CSD power during goal conflict were limited to increased midfrontocentral theta. Conversely, coherence increased across 23 scalp-wide theta region pairs and one frontal delta region pair. Finally, scalp-wide theta significantly predicted trait neuroticism but not trait anxiety, BIS-anxiety or rBIS. We conclude that goal conflict involves increased midfrontocentral CSD theta power and scalp-wide theta-dominated coherence. Therefore, compared with information processing conflict, goal conflict displays a similar EEG power profile of midfrontocentral theta but a much wider coherence profile. Furthermore, the increases in theta during goal conflict are the characteristic of BIS-driven activity. Therefore, future research should confirm whether these goal-conflict effects are driven by the BIS by examining whether the effects are attenuated by anxiolytic drugs. Overall, we have identified a unique network of goal-conflict EEG during the calibrated SST.
Collapse
|
14
|
Chen JCC, Forsyth A, Dubowitz DJ, Muthukumaraswamy SD. On the Quality, Statistical Efficiency, and Safety of Simultaneously Recorded Multiband fMRI/EEG. Brain Topogr 2020; 33:303-316. [PMID: 32144628 DOI: 10.1007/s10548-020-00761-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 02/24/2020] [Indexed: 01/19/2023]
Abstract
The recent development of multiband functional magnetic resonance imaging (MB-fMRI) allows for the reduction of sampling period by simultaneously exciting multiple slices-the number of which is referred to as the multiband factor. Simultaneously recorded electroencephalography (EEG)/MB-fMRI has yet to be validated for data quality against conventional single band (SB)-fMRI. Pilot scans were conducted on phantoms twice and on a healthy volunteer to ensure no heating effects. In the main study, two thermometer probes were attached to 16 healthy individuals (ages 20-39, 9 females) whilst they completed two sets of 16-min resting-state and two sets of 9-min n-back task scans-each set consisting of one MB4 and one SB pulse sequence. No heating effects were reported and thermometer data showed mean increases of < 1.0 °C. Minimal differences between the two scan types were found in EEG channel variance and spectra. Expected decreases in MB4-fMRI tSNR were observed. In n-back task scans, little to no differences were detected in both EEG source analyses and fMRI local analyses for mixed effects. Resting-state posterior cingulate cortex seed-based analyses of the default mode network along with EEG-informed fMRI analysis of the occipital alpha anticorrelation effect showed improved statistical and spatial sensitivity at lower scan durations. Using EEG/MB4-fMRI for n-back tasks provided no statistical advantages nor disadvantages. However, for studying the resting-state, MB4-fMRI potentially allows for reduced scanning durations for equivalent statistical significance to be obtained or alternatively, larger effect sizes for the same scanning duration. As such, simultaneous EEG/MB4-fMRI is a viable alternative to EEG/SB-fMRI.
Collapse
Affiliation(s)
- Joseph C C Chen
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Anna Forsyth
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - David J Dubowitz
- Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.,Centre for Advanced MRI, Auckland UniServices Limited, Auckland, New Zealand
| | - Suresh D Muthukumaraswamy
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
15
|
Effects of Transcutaneous Vagus Nerve Stimulation (tVNS) on Conflict-Related Behavioral Performance and Frontal Midline Theta Activity. JOURNAL OF COGNITIVE ENHANCEMENT 2019. [DOI: 10.1007/s41465-019-00152-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
16
|
Sidarus N, Palminteri S, Chambon V. Cost-benefit trade-offs in decision-making and learning. PLoS Comput Biol 2019; 15:e1007326. [PMID: 31490934 PMCID: PMC6750595 DOI: 10.1371/journal.pcbi.1007326] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 09/18/2019] [Accepted: 08/08/2019] [Indexed: 11/18/2022] Open
Abstract
Value-based decision-making involves trading off the cost associated with an action against its expected reward. Research has shown that both physical and mental effort constitute such subjective costs, biasing choices away from effortful actions, and discounting the value of obtained rewards. Facing conflicts between competing action alternatives is considered aversive, as recruiting cognitive control to overcome conflict is effortful. Moreover, engaging control to proactively suppress irrelevant information that could conflict with task-relevant information would presumably also be cognitively costly. Yet, it remains unclear whether the cognitive control demands involved in preventing and resolving conflict also constitute costs in value-based decisions. The present study investigated this question by embedding irrelevant distractors (flanker arrows) within a reversal-learning task, with intermixed free and instructed trials. Results showed that participants learned to adapt their free choices to maximize rewards, but were nevertheless biased to follow the suggestions of irrelevant distractors. Thus, the perceived cost of investing cognitive control to suppress an external suggestion could sometimes trump internal value representations. By adapting computational models of reinforcement learning, we assessed the influence of conflict at both the decision and learning stages. Modelling the decision showed that free choices were more biased when participants were less sure about which action was more rewarding. This supports the hypothesis that the costs linked to conflict management were traded off against expected rewards. During the learning phase, we found that learning rates were reduced in instructed, relative to free, choices. Learning rates were further reduced by conflict between an instruction and subjective action values, whereas learning was not robustly influenced by conflict between one’s actions and external distractors. Our results show that the subjective cognitive control costs linked to conflict factor into value-based decision-making, and highlight that different types of conflict may have different effects on learning about action outcomes. Value-based decision-making involves trading off the cost associated with an action–such as physical or mental effort–against its expected reward. Although facing conflicts between competing action alternatives is considered aversive and effortful, it remains unclear whether conflict also constitutes a cost in value-based decisions. We tested this hypothesis by combining a classic conflict (flanker) task with a reinforcement-learning task. Results showed that participants learned to maximise their earnings, but were nevertheless biased to follow irrelevant suggestions. Computational model-based analyses showed a greater choice bias with more uncertainty about the best action to make, supporting the hypothesis that the costs linked to conflict management were traded off against expected rewards. We additionally found that learning rates were reduced when following instructions, relative to when choosing freely what to do. Learning was further reduced by conflict between instructions and subjective action values. In short, we found that the subjective cognitive control costs linked to conflict factor into value-based decision-making, and that different types of conflict may have different effects on learning about action outcomes.
Collapse
Affiliation(s)
- Nura Sidarus
- Institut Jean Nicod, Département d’Études Cognitives, École Normale Supérieure, EHESS, CNRS, PSL University, Paris, France
- Laboratoire de Neurosciences Cognitives Computationnelles, Département d’Études Cognitives, École Normale Supérieure, INSERM, PSL University, Paris, France
- Department of Psychology, Royal Holloway University of London, Surrey, United Kingdom
- * E-mail:
| | - Stefano Palminteri
- Laboratoire de Neurosciences Cognitives Computationnelles, Département d’Études Cognitives, École Normale Supérieure, INSERM, PSL University, Paris, France
| | - Valérian Chambon
- Institut Jean Nicod, Département d’Études Cognitives, École Normale Supérieure, EHESS, CNRS, PSL University, Paris, France
| |
Collapse
|
17
|
Spay C, Meyer G, Lio G, Pezzoli G, Ballanger B, Cilia R, Boulinguez P. Resting state oscillations suggest a motor component of Parkinson's Impulse Control Disorders. Clin Neurophysiol 2019; 130:2065-2075. [PMID: 31541984 DOI: 10.1016/j.clinph.2019.08.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 07/02/2019] [Accepted: 08/14/2019] [Indexed: 12/25/2022]
Abstract
OBJECTIVES Impulse control disorders (ICDs) in Parkinson's disease (PD) have been associated with cognitive impulsivity and dopaminergic dysfunction and treatment. The present study tests the neglected hypothesis that the neurofunctional networks involved in motor impulsivity might also be dysfunctional in PD-ICDs. METHODS We performed blind spectral analyses of resting state electroencephalographic (EEG) data in PD patients with and without ICDs to probe the functional integrity of all cortical networks. Analyses were performed directly at the source level after blind source separation. Discrete differences between groups were tested by comparing patients with and without ICDs. Gradual dysfunctions were assessed by means of correlations between power changes and clinical scores reflecting ICD severity (QUIP score). RESULTS Spectral signatures of ICDs were found in the medial prefrontal cortex, the dorsal anterior cingulate and the supplementary motor area, in the beta and gamma bands. Beta power changes in the supplementary motor area were found to predict ICDs severity. CONCLUSION ICDs are associated with abnormal activity within frequency bands and cortical circuits supporting the control of motor response inhibition. SIGNIFICANCE These results bring to the forefront the need to consider, in addition to the classical interpretation based on aberrant mesocorticolimbic reward processing, the issue of motor impulsivity in PD-ICDs and its potential implications for PD therapy.
Collapse
Affiliation(s)
- Charlotte Spay
- Université de Lyon, 92 rue Pasteur, 69007 Lyon, France; Université Lyon 1, 43 boulevard du 11 novembre 1918, 69622 Villeurbanne, France; INSERM, U 1028, Lyon Neuroscience Research Center, 95 boulevard Pinel, 69500 Bron, France; CNRS, UMR 5292, Lyon Neuroscience Research Center, 95 boulevard Pinel, 69500 Bron, France
| | - Garance Meyer
- Université de Lyon, 92 rue Pasteur, 69007 Lyon, France; Université Lyon 1, 43 boulevard du 11 novembre 1918, 69622 Villeurbanne, France; INSERM, U 1028, Lyon Neuroscience Research Center, 95 boulevard Pinel, 69500 Bron, France; CNRS, UMR 5292, Lyon Neuroscience Research Center, 95 boulevard Pinel, 69500 Bron, France
| | - Guillaume Lio
- Centre de Neuroscience Cognitive, UMR 5229, 67 boulevard Pinel, 69675 Bron, France
| | - Gianni Pezzoli
- Parkinson Institute, ASST Gaetano Pini-CTO, Via bignami 1, 20126 Milan, Italy
| | - Bénédicte Ballanger
- Université de Lyon, 92 rue Pasteur, 69007 Lyon, France; Université Lyon 1, 43 boulevard du 11 novembre 1918, 69622 Villeurbanne, France; INSERM, U 1028, Lyon Neuroscience Research Center, 95 boulevard Pinel, 69500 Bron, France; CNRS, UMR 5292, Lyon Neuroscience Research Center, 95 boulevard Pinel, 69500 Bron, France
| | - Roberto Cilia
- Parkinson Institute, ASST Gaetano Pini-CTO, Via bignami 1, 20126 Milan, Italy
| | - Philippe Boulinguez
- Université de Lyon, 92 rue Pasteur, 69007 Lyon, France; Université Lyon 1, 43 boulevard du 11 novembre 1918, 69622 Villeurbanne, France; INSERM, U 1028, Lyon Neuroscience Research Center, 95 boulevard Pinel, 69500 Bron, France; CNRS, UMR 5292, Lyon Neuroscience Research Center, 95 boulevard Pinel, 69500 Bron, France.
| |
Collapse
|