1
|
Yan J, Zhang Y, Wang L, Li Z, Tang S, Wang Y, Gu N, Sun X, Li L. TREM2 activation alleviates neural damage via Akt/CREB/BDNF signalling after traumatic brain injury in mice. J Neuroinflammation 2022; 19:289. [PMID: 36463233 PMCID: PMC9719652 DOI: 10.1186/s12974-022-02651-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/21/2022] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Neuroinflammation is one of the most important processes in secondary injury after traumatic brain injury (TBI). Triggering receptor expressed on myeloid cells 2 (TREM2) has been proven to exert neuroprotective effects in neurodegenerative diseases and stroke by modulating neuroinflammation, and promoting phagocytosis and cell survival. However, the role of TREM2 in TBI has not yet been elucidated. In this study, we are the first to use COG1410, an agonist of TREM2, to assess the effects of TREM2 activation in a murine TBI model. METHODS Adult male wild-type (WT) C57BL/6 mice and adult male TREM2 KO mice were subjected to different treatments. TBI was established by the controlled cortical impact (CCI) method. COG1410 was delivered 1 h after CCI via tail vein injection. Western blot analysis, immunofluorescence, laser speckle contrast imaging (LSCI), neurological behaviour tests, brain electrophysiological monitoring, Evans blue assays, magnetic resonance imaging (MRI), and brain water content measurement were performed in this study. RESULTS The expression of endogenous TREM2 peaked at 3 d after CCI, and it was mainly expressed on microglia and neurons. We found that COG1410 improved neurological functions within 3 d, as well as neurological functions and brain electrophysiological activity at 2 weeks after CCI. COG1410 exerted neuroprotective effects by inhibiting neutrophil infiltration and microglial activation, and suppressing neuroinflammation after CCI. In addition, COG1410 treatment alleviated blood brain barrier (BBB) disruption and brain oedema; furthermore, COG1410 promoted cerebral blood flow (CBF) recovery at traumatic injury sites after CCI. In addition, COG1410 suppressed neural apoptosis at 3 d after CCI. TREM2 activation upregulated p-Akt, p-CREB, BDNF, and Bcl-2 and suppressed TNF-α, IL-1β, Bax, and cleaved caspase-3 at 3 d after CCI. Moreover, TREM2 knockout abolished the effects of COG1410 on vascular phenotypes and microglial states. Finally, the neuroprotective effects of COG1410 were suppressed by TREM2 depletion. CONCLUSIONS Altogether, we are the first to demonstrate that TREM2 activation by COG1410 alleviated neural damage through activation of Akt/CREB/BDNF signalling axis in microglia after CCI. Finally, COG1410 treatment improved neurological behaviour and brain electrophysiological activity after CCI.
Collapse
Affiliation(s)
- Jin Yan
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Rd, Chongqing, 400016, China
| | - Yuan Zhang
- Department of Neurosurgery, Nanchong Central Hospital, The Second Clinical Medical College of North Sichuan Medical College, Nanchong, China
| | - Lin Wang
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Rd, Chongqing, 400016, China
- Department of Neurosurgery, Nanchong Central Hospital, The Second Clinical Medical College of North Sichuan Medical College, Nanchong, China
| | - Zhao Li
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Rd, Chongqing, 400016, China
- Department of Neurosurgery, Chengdu Integrated TCM & Western Medicine Hospital, Chengdu, China
| | - Shuang Tang
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Rd, Chongqing, 400016, China
- Department of Neurosurgery, Suining Central Hospital, Suining, China
| | - Yingwen Wang
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Rd, Chongqing, 400016, China
| | - Nina Gu
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Rd, Chongqing, 400016, China
| | - Xiaochuan Sun
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Rd, Chongqing, 400016, China.
| | - Lin Li
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Rd, Chongqing, 400016, China.
- Department of Neuro-oncology, Chongqing University Cancer Hospital, Chongqing, China.
- Department of Neurosurgery, The Affiliated Hospital of North Sichuan Medical College, Nanchong, China.
| |
Collapse
|
2
|
Pischiutta F, Caruso E, Lugo A, Cavaleiro H, Stocchetti N, Citerio G, Salgado A, Gallus S, Zanier ER. Systematic review and meta-analysis of preclinical studies testing mesenchymal stromal cells for traumatic brain injury. NPJ Regen Med 2021; 6:71. [PMID: 34716332 PMCID: PMC8556393 DOI: 10.1038/s41536-021-00182-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 09/30/2021] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) are widely used in preclinical models of traumatic brain injury (TBI). Results are promising in terms of neurological improvement but are hampered by wide variability in treatment responses. We made a systematic review and meta-analysis: (1) to assess the quality of evidence for MSC treatment in TBI rodent models; (2) to determine the effect size of MSCs on sensorimotor function, cognitive function, and anatomical damage; (3) to identify MSC-related and protocol-related variables associated with greater efficacy; (4) to understand whether MSC manipulations boost therapeutic efficacy. The meta-analysis included 80 studies. After TBI, MSCs improved sensorimotor and cognitive deficits and reduced anatomical damage. Stratified meta-analysis on sensorimotor outcome showed similar efficacy for different MSC sources and for syngeneic or xenogenic transplants. Efficacy was greater when MSCs were delivered in the first-week post-injury, and when implanted directly into the lesion cavity. The greatest effect size was for cells embedded in matrices or for MSC-derivatives. MSC therapy is effective in preclinical TBI models, improving sensorimotor, cognitive, and anatomical outcomes, with large effect sizes. These findings support clinical studies in TBI.
Collapse
Affiliation(s)
- Francesca Pischiutta
- Laboratory of Acute Brain Injury and Therapeutic Strategies, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Enrico Caruso
- Laboratory of Acute Brain Injury and Therapeutic Strategies, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy.,Neuroscience Intensive Care Unit, Department of Anesthesia and Critical Care, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Alessandra Lugo
- Laboratory of Lifestyle Epidemiology, Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Helena Cavaleiro
- Laboratory of Acute Brain Injury and Therapeutic Strategies, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy.,Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.,Stemmatters, Biotechnology and Regenerative Medicine, Guimarães, Portugal
| | - Nino Stocchetti
- Neuroscience Intensive Care Unit, Department of Anesthesia and Critical Care, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Pathophysiology and Transplants, University of Milan, Milan, Italy
| | - Giuseppe Citerio
- School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - António Salgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Silvano Gallus
- Laboratory of Lifestyle Epidemiology, Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Elisa R Zanier
- Laboratory of Acute Brain Injury and Therapeutic Strategies, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy.
| |
Collapse
|
3
|
Sinke MRT, Otte WM, Meerwaldt AE, Franx BAA, Ali MHM, Rakib F, van der Toorn A, van Heijningen CL, Smeele C, Ahmed T, Blezer ELA, Dijkhuizen RM. Imaging Markers for the Characterization of Gray and White Matter Changes from Acute to Chronic Stages after Experimental Traumatic Brain Injury. J Neurotrauma 2021; 38:1642-1653. [PMID: 33198560 DOI: 10.1089/neu.2020.7151] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Despite clinical symptoms, a large majority of people with mild traumatic brain injury (TBI) have normal computed tomography (CT) and magnetic resonance imaging (MRI) scans. Therefore, present-day neuroimaging tools are insufficient to diagnose or classify low grades of TBI. Advanced neuroimaging techniques, such as diffusion-weighted and functional MRI, may yield novel biomarkers that may aid in the diagnosis of TBI. Therefore, the present study had two aims: first, to characterize the development of MRI-based measures of structural and functional changes in gray and white matter regions from acute to chronic stages after mild and moderate TBI; and second, to identify the imaging markers that can most accurately predict outcome after TBI. To these aims, 52 rats underwent serial functional (resting-state) and structural (T1-, T2-, and diffusion-weighted) MRI before and 1 h, 1 day, 1 week, 1 month and 3-4 months after mild or moderate experimental TBI. All rats underwent behavioral testing. Histology was performed in subgroups of rats at different time points. Early after moderate TBI, axial and radial diffusivities were increased, and fractional anisotropy was reduced in the corpus callosum and bilateral hippocampi, which normalized over time and was paralleled by recovery of sensorimotor function. Correspondingly, histology revealed decreased myelin staining early after TBI, which was not detected at chronic stages. No significant changes in individual outcome measures were detected after mild TBI. However, multivariate analysis showed a significant additive contribution of diffusion parameters in the distinction between control and different grades of TBI-affected brains. Therefore, combining multiple imaging markers may increase the sensitivity for TBI-related pathology.
Collapse
Affiliation(s)
- Michel R T Sinke
- Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands. ORCID ID: 0000-0002-8185-9209; 0000-0002-4623-4078
| | - Willem M Otte
- Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands. ORCID ID: 0000-0002-8185-9209; 0000-0002-4623-4078.,UMC Utrecht Brain Center, Department of Child Neurology, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands. ORCID ID: 0000-0002-8185-9209; 0000-0002-4623-4078
| | - Anu E Meerwaldt
- Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands. ORCID ID: 0000-0002-8185-9209; 0000-0002-4623-4078
| | - Bart A A Franx
- Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands. ORCID ID: 0000-0002-8185-9209; 0000-0002-4623-4078
| | - Mohamed H M Ali
- Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Doha, Qatar
| | - Fazle Rakib
- Department of Chemistry and Earth Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar
| | - Annette van der Toorn
- Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands. ORCID ID: 0000-0002-8185-9209; 0000-0002-4623-4078
| | - Caroline L van Heijningen
- Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands. ORCID ID: 0000-0002-8185-9209; 0000-0002-4623-4078
| | - Christel Smeele
- Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands. ORCID ID: 0000-0002-8185-9209; 0000-0002-4623-4078
| | - Tariq Ahmed
- Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Doha, Qatar
| | - Erwin L A Blezer
- Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands. ORCID ID: 0000-0002-8185-9209; 0000-0002-4623-4078
| | - Rick M Dijkhuizen
- Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands. ORCID ID: 0000-0002-8185-9209; 0000-0002-4623-4078
| |
Collapse
|
4
|
Li L, Chopp M, Ding G, Davoodi-Bojd E, Li Q, Mahmood A, Xiong Y, Jiang Q. Diffuse white matter response in trauma-injured brain to bone marrow stromal cell treatment detected by diffusional kurtosis imaging. Brain Res 2019; 1717:127-135. [PMID: 31009610 PMCID: PMC6571170 DOI: 10.1016/j.brainres.2019.04.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 03/25/2019] [Accepted: 04/18/2019] [Indexed: 12/14/2022]
Abstract
Diffuse white matter (WM) response to traumatic brain injury (TBI) and transplantation of human bone marrow stromal cells (hMSCs) after the injury were non-invasively and dynamically investigated. Male Wistar rats (300-350 g) subjected to TBI were intravenously injected with 1 ml of saline (n = 10) or with hMSCs in suspension (∼3 × 106 hMSCs, n = 10) 1-week post-TBI. MRI measurements of T2-weighted imaging and diffusional kurtosis imaging (DKI) were acquired on all animals at multiple time points up to 3-months post-injury. Functional outcome was assessed using the Morris water maze test. DKI-derived metrics of fractional anisotropy (FA), axonal water fraction (AWF) and radial kurtosis (RK) longitudinally reveal an evolving pattern of structural alteration post-TBI occurring in the brain region remote from primary impact site. The progressive structural change is characterized by gradual disruption of WM integrity at an early stage (weeks post-TBI), followed by spontaneous recovery at a later stage (months post-TBI). Transplantation of hMSCs post-TBI promotes this structural plasticity as indicated by significantly increased FA and AWF in conjunction with substantially elevated RK at the later stage. Our long-term imaging data demonstrate that hMSC therapy leads to modified temporal profiles of these metrics, inducing an earlier presence of enhanced structural remodeling, which may contribute to improved functional recovery.
Collapse
Affiliation(s)
- Lian Li
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, USA.
| | - Michael Chopp
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, USA; Department of Physics, Oakland University, Rochester, MI 48309, USA.
| | - Guangliang Ding
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, USA.
| | | | - Qingjiang Li
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, USA.
| | - Asim Mahmood
- Department of Neurosurgery, Henry Ford Health System, Detroit, MI 48208, USA.
| | - Ye Xiong
- Department of Neurosurgery, Henry Ford Health System, Detroit, MI 48208, USA.
| | - Quan Jiang
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, USA.
| |
Collapse
|