1
|
Næsgaard JAR, Gjerstad L, Heuser K, Taubøll E. Biological rhythms and epilepsy treatment. Front Neurol 2023; 14:1153975. [PMID: 37638185 PMCID: PMC10453794 DOI: 10.3389/fneur.2023.1153975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 07/31/2023] [Indexed: 08/29/2023] Open
Abstract
Approximately one-third of patients with epilepsy are drug-refractory, necessitating novel treatment approaches. Chronopharmacology, which adjusts pharmacological treatment to physiological variations in seizure susceptibility and drug responsiveness, offers a promising strategy to enhance efficacy and tolerance. This narrative review provides an overview of the biological foundations for rhythms in seizure activity, clinical implications of seizure patterns through case reports, and the potential of chronopharmacological strategies to improve treatment. Biological rhythms, including circadian and infradian rhythms, play an important role in epilepsy. Understanding seizure patterns may help individualize treatment decisions and optimize therapeutic outcomes. Altering drug concentrations based on seizure risk periods, adjusting administration times, and exploring hormone therapy are potential strategies. Large-scale randomized controlled trials are needed to evaluate the efficacy and safety of differential and intermittent treatment approaches. By tailoring treatment to individual seizure patterns and pharmacological properties, chronopharmacology offers a personalized approach to improve outcomes in patients with epilepsy.
Collapse
Affiliation(s)
| | - Leif Gjerstad
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Neurology, Division of Clinical Neuroscience, ERGO – Epilepsy Research Group of Oslo, Oslo University Hospital, Oslo, Norway
| | - Kjell Heuser
- Department of Neurology, Division of Clinical Neuroscience, ERGO – Epilepsy Research Group of Oslo, Oslo University Hospital, Oslo, Norway
| | - Erik Taubøll
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Neurology, Division of Clinical Neuroscience, ERGO – Epilepsy Research Group of Oslo, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
2
|
Amiri M, Aghaeinia H, Amindavar HR. Automatic epileptic seizure detection in EEG signals using sparse common spatial pattern and adaptive short-time Fourier transform-based synchrosqueezing transform. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2022.104022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
3
|
Kreitlow BL, Li W, Buchanan GF. Chronobiology of epilepsy and sudden unexpected death in epilepsy. Front Neurosci 2022; 16:936104. [PMID: 36161152 PMCID: PMC9490261 DOI: 10.3389/fnins.2022.936104] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/27/2022] [Indexed: 11/24/2022] Open
Abstract
Epilepsy is a neurological disease characterized by spontaneous, unprovoked seizures. Various insults render the brain hyperexcitable and susceptible to seizure. Despite there being dozens of preventative anti-seizure medications available, these drugs fail to control seizures in nearly 1 in 3 patients with epilepsy. Over the last century, a large body of evidence has demonstrated that internal and external rhythms can modify seizure phenotypes. Physiologically relevant rhythms with shorter periodic rhythms, such as endogenous circadian rhythms and sleep-state, as well as rhythms with longer periodicity, including multidien rhythms and menses, influence the timing of seizures through poorly understood mechanisms. The purpose of this review is to discuss the findings from both human and animal studies that consider the effect of such biologically relevant rhythms on epilepsy and seizure-associated death. Patients with medically refractory epilepsy are at increased risk of sudden unexpected death in epilepsy (SUDEP). The role that some of these rhythms play in the nocturnal susceptibility to SUDEP will also be discussed. While the involvement of some of these rhythms in epilepsy has been known for over a century, applying the rhythmic nature of such phenomenon to epilepsy management, particularly in mitigating the risk of SUDEP, has been underutilized. As our understanding of the physiological influence on such rhythmic phenomenon improves, and as technology for chronic intracranial epileptiform monitoring becomes more widespread, smaller and less invasive, novel seizure-prediction technologies and time-dependent chronotherapeutic seizure management strategies can be realized.
Collapse
Affiliation(s)
- Benjamin L. Kreitlow
- Medical Scientist Training Program, University of Iowa, Iowa City, IA, United States
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA, United States
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, United States
- Department of Neurology, University of Iowa, Iowa City, IA, United States
- Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - William Li
- Department of Neurology, University of Iowa, Iowa City, IA, United States
- Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Gordon F. Buchanan
- Medical Scientist Training Program, University of Iowa, Iowa City, IA, United States
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA, United States
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, United States
- Department of Neurology, University of Iowa, Iowa City, IA, United States
- Carver College of Medicine, University of Iowa, Iowa City, IA, United States
- *Correspondence: Gordon F. Buchanan, ; orcid.org/0000-0003-2371-4455
| |
Collapse
|
4
|
Haut SR, Nabbout R. Recognizing seizure clusters in the community: The path to uniformity and individualization in nomenclature and definition. Epilepsia 2022; 63 Suppl 1:S6-S13. [PMID: 35999176 DOI: 10.1111/epi.17346] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/08/2022] [Accepted: 06/08/2022] [Indexed: 11/28/2022]
Abstract
Seizure emergencies experienced by patients with epilepsy include status epilepticus and seizure clusters. Although an accepted definition of status epilepticus exists, no clear consensus definition of seizure clusters has emerged; this is further complicated by the appearance in the literature of various empirically based definitions that have been developed for clinical trial study designs. In general, patients with intractable epilepsy have been shown to have a significant risk for acute episodes of increased seizure activity called seizure clusters (also referred to as acute repetitive seizures, among other terms) that differ from their usual seizure pattern. Duration (e.g., number of hours or days) is often included in the definition of a seizure cluster; however, the duration may vary among patients, with some seizure clusters lasting ≥24 h and requiring long-acting treatment for this period. In addition to seizure cluster duration, the time between seizures and possible acceleration in seizure frequency during the cluster may be important variables. The recognition and treatment of seizure clusters require urgent action because episodes that are not quickly and appropriately treated may lead to injury or progress to status epilepticus or potentially death. Most seizure clusters occur outside a medical facility (in the community) and treatment is usually administered by nonmedical individuals; therefore, health care providers may benefit from a clear description of these potential seizure emergencies that they can then use to educate patients and caregivers on the prompt and appropriate identification of seizure clusters and administration of rescue therapy. Here we explore why greater uniformity is needed in the discussion of seizure clusters. This exploration examines epidemiologic studies of seizure clusters and status epilepticus, inconsistencies in nomenclature and definitions for seizure clusters, practical application of seizure cluster terminology, and the potential use of acute seizure action plans and patient-specific individualized definitions in the clinical setting.
Collapse
Affiliation(s)
- Sheryl R Haut
- Comprehensive Epilepsy Management Center, Einstein-Montefiore, Bronx, New York, USA
| | - Rima Nabbout
- Reference Center for Rare Epilepsies, Department of Pediatric Neurology, Hôpital Necker Enfants Malades, APHP, EPICARE European Reference Network, Université de Paris Cité, Institut Imagine, Inserm U1163, Paris, France
| |
Collapse
|
5
|
Das R, Luczak A. Epileptic seizures and link to memory processes. AIMS Neurosci 2022; 9:114-127. [PMID: 35434278 PMCID: PMC8941196 DOI: 10.3934/neuroscience.2022007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/17/2022] [Accepted: 03/01/2022] [Indexed: 12/02/2022] Open
Abstract
Epileptogenesis is a complex and not well understood phenomenon. Here, we explore the hypothesis that epileptogenesis could be "hijacking" normal memory processes, and how this hypothesis may provide new directions for epilepsy treatment. First, we review similarities between the hypersynchronous circuits observed in epilepsy and memory consolidation processes involved in strengthening neuronal connections. Next, we describe the kindling model of seizures and its relation to long-term potentiation model of synaptic plasticity. We also examine how the strengthening of epileptic circuits is facilitated during the physiological slow wave sleep, similarly as episodic memories. Furthermore, we present studies showing that specific memories can directly trigger reflex seizures. The neuronal hypersynchrony in early stages of Alzheimer's disease, and the use of anti-epileptic drugs to improve the cognitive symptoms in this disease also suggests a connection between memory systems and epilepsy. Given the commonalities between memory processes and epilepsy, we propose that therapies for memory disorders might provide new avenues for treatment of epileptic patients.
Collapse
Affiliation(s)
- Ritwik Das
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Artur Luczak
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| |
Collapse
|
6
|
Salvati KA, Souza GMPR, Lu AC, Ritger ML, Guyenet P, Abbott SB, Beenhakker MP. Respiratory alkalosis provokes spike-wave discharges in seizure-prone rats. eLife 2022; 11:e72898. [PMID: 34982032 PMCID: PMC8860449 DOI: 10.7554/elife.72898] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 01/03/2022] [Indexed: 12/13/2022] Open
Abstract
Hyperventilation reliably provokes seizures in patients diagnosed with absence epilepsy. Despite this predictable patient response, the mechanisms that enable hyperventilation to powerfully activate absence seizure-generating circuits remain entirely unknown. By utilizing gas exchange manipulations and optogenetics in the WAG/Rij rat, an established rodent model of absence epilepsy, we demonstrate that absence seizures are highly sensitive to arterial carbon dioxide, suggesting that seizure-generating circuits are sensitive to pH. Moreover, hyperventilation consistently activated neurons within the intralaminar nuclei of the thalamus, a structure implicated in seizure generation. We show that intralaminar thalamus also contains pH-sensitive neurons. Collectively, these observations suggest that hyperventilation activates pH-sensitive neurons of the intralaminar nuclei to provoke absence seizures.
Collapse
Affiliation(s)
- Kathryn A Salvati
- Department of Pharmacology, University of VirginiaCharlottesvilleUnited States
- Neuroscience Graduate Program, University of VirginiaCharlottesvilleUnited States
| | - George MPR Souza
- Department of Pharmacology, University of VirginiaCharlottesvilleUnited States
| | - Adam C Lu
- Department of Pharmacology, University of VirginiaCharlottesvilleUnited States
- Neuroscience Graduate Program, University of VirginiaCharlottesvilleUnited States
| | - Matthew L Ritger
- Department of Pharmacology, University of VirginiaCharlottesvilleUnited States
- Neuroscience Graduate Program, University of VirginiaCharlottesvilleUnited States
| | - Patrice Guyenet
- Department of Pharmacology, University of VirginiaCharlottesvilleUnited States
| | - Stephen B Abbott
- Department of Pharmacology, University of VirginiaCharlottesvilleUnited States
| | - Mark P Beenhakker
- Department of Pharmacology, University of VirginiaCharlottesvilleUnited States
| |
Collapse
|
7
|
Shawahna R. Using a mixed method to develop consensus-based aims, contents, intended learning outcomes, teaching, and evaluation methods for a course on epilepsy for postgraduate or continuing education in community health nursing programs. BMC MEDICAL EDUCATION 2021; 21:572. [PMID: 34772401 PMCID: PMC8588674 DOI: 10.1186/s12909-021-03001-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 10/27/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Knowledge deficits with regard to epilepsy have been reported among healthcare professionals. This study was conducted to develop consensus-based aims, contents, intended learning outcomes, teaching, and evaluation methods for a course on epilepsy for postgraduate or continuing education in community health nursing programs. METHODS A mixed method which combined a thorough search of literature, the nominal group technique, the Delphi technique, and survey of students' agreement was used. The databases MEDLINE/PUBMED, EMBASE, COCHRANE, CInAHL/EBESCO, SCOPUS, Google Scholar, Google Books, and Amazon were searched to identify potential aims, topics/contents, intended learning outcomes, teaching, and evaluation methods. Discussions and deliberations in serial meetings based on the nominal group technique were attended by educators/academicians (n = 12), neurologists (n = 2), practicing nurses (n = 5), pharmacists (n = 2), patients with epilepsy (n = 2), and students in postgraduate and continuing education programs (n = 7) to supplement and refine the data collected from the literature. The qualitative data were analyzed using RQDA tool for R. The Delphi technique was used among educators/academicians (n = 15), neurologists (n = 2), practicing nurses (n = 5), pharmacists (n = 2), patients with epilepsy (n = 3), and students in postgraduate and continuing education programs (n = 8) to achieve formal consensus. RESULTS Consensus was achieved on 6 aims, 16 intended learning outcomes, and 27 topics in the course. Of the topics, 13 were relevant to nature of epilepsy and seizures, 2 were relevant to the impact of epilepsy and seizures on different life aspects of patients with epilepsy, 4 were relevant to advocating for the patients and supporting their choices, 5 were relevant to educating patients and their caregivers, and 3 were relevant to assessments and services. CONCLUSION Consensus-based aims, topics/contents, intended learning outcomes, teaching, and evaluation methods of a course on epilepsy for postgraduate or continuing education in community health nursing programs were developed. Consensus-based courses could bridge knowledge gaps and improve educating community health nursing programs on epilepsy. Further studies are needed to determine if such consensus-based courses could promote care of patients with epilepsy.
Collapse
Affiliation(s)
- Ramzi Shawahna
- Department of Physiology, Pharmacology and Toxicology, Faculty of Medicine and Health Sciences, An-Najah National University, New Campus, Building: 19, Office: 1340, P.O. Box 7, Nablus, Palestine.
- An-Najah BioSciences Unit, Centre for Poisons Control, Chemical and Biological Analyses, An-Najah National University, Nablus, Palestine.
| |
Collapse
|
8
|
Patient-specific method of sleep electroencephalography using wavelet packet transform and Bi-LSTM for epileptic seizure prediction. Biomed Signal Process Control 2021. [DOI: 10.1016/j.bspc.2021.102963] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
9
|
Automatic detection of epileptic seizure events using the time-frequency features and machine learning. Biomed Signal Process Control 2021. [DOI: 10.1016/j.bspc.2021.102916] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
10
|
Cao Q, Yang F, Wang H. CB2R induces a protective response against epileptic seizures through ERK and p38 signaling pathways. Int J Neurosci 2021; 131:735-744. [PMID: 32715907 DOI: 10.1080/00207454.2020.1796661] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 05/09/2020] [Accepted: 07/01/2020] [Indexed: 01/07/2023]
Abstract
BACKGROUND AND PURPOSE Epilepsy is a pivotal neurological disorder characterized by the synchronous discharging of neurons to induce momentary brain dysfunction. Temporal lobe epilepsy is the most common type of epilepsy, with seizures originating from the mesial temporal lobe. The hippocampus forms part of the mesial temporal lobe and plays a significant role in epileptogenesis; it also has a vital influence on the mental development of children. In this study, we aimed to explore the effects of CB2 receptor (CB2R) activation on ERK and p38 signaling in nerve cells of a rat epilepsy model. MATERIALS AND METHODS We treated Sprague-Dawley rats with pilocarpine to induce an epilepsy model and treated such animals with a CB2R agonist (JWH133) alone or with a CB2R antagonist (AM630). Nissl's stain showed the neuron conditon in different groups. Western blot analyzed the level of p-ERK and p-p38. RESULTS JWH133 can increase the latent period of first seizure attack and decrease the Grades IV-V magnitude ratio after the termination of SE. Nissl's stain showed JWH133 protected neurons in the hippocampus while AM630 inhibited the functioning of CB2R in neurons. Western blot analysis showed that JWH133 decreased levels of p-ERK and p-p38, which is found at increased levels in the hippocampus of our epilepsy model. In contrast, AM630 inhibited the protective function of JWH133 and also enhanced levels of p-ERK and p-p38. CONCLUSIONS CB2R activation can induce neurons proliferation and survival through activation of ERK and p38 signaling pathways.
Collapse
Affiliation(s)
- Qingjun Cao
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Fenghua Yang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Hua Wang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
11
|
Bosl WJ, Leviton A, Loddenkemper T. Prediction of Seizure Recurrence. A Note of Caution. Front Neurol 2021; 12:675728. [PMID: 34054713 PMCID: PMC8155381 DOI: 10.3389/fneur.2021.675728] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 04/20/2021] [Indexed: 12/31/2022] Open
Abstract
Great strides have been made recently in documenting that machine-learning programs can predict seizure occurrence in people who have epilepsy. Along with this progress have come claims that appear to us to be a bit premature. We anticipate that many people will benefit from seizure prediction. We also doubt that all will benefit. Although machine learning is a useful tool for aiding discovery, we believe that the greatest progress will come from deeper understanding of seizures, epilepsy, and the EEG features that enable seizure prediction. In this essay, we lay out reasons for optimism and skepticism.
Collapse
Affiliation(s)
- William J Bosl
- Boston Children's Hospital, Boston, MA, United States.,Harvard Medical School, Boston, MA, United States.,Health Informatics Program, University of San Francisco, San Francisco, CA, United States
| | - Alan Leviton
- Boston Children's Hospital, Boston, MA, United States.,Harvard Medical School, Boston, MA, United States
| | - Tobias Loddenkemper
- Boston Children's Hospital, Boston, MA, United States.,Harvard Medical School, Boston, MA, United States
| |
Collapse
|
12
|
Vieluf S, Amengual-Gual M, Zhang B, El Atrache R, Ufongene C, Jackson MC, Branch S, Reinsberger C, Loddenkemper T. Twenty-four-hour patterns in electrodermal activity recordings of patients with and without epileptic seizures. Epilepsia 2021; 62:960-972. [PMID: 33619751 DOI: 10.1111/epi.16843] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/26/2021] [Accepted: 01/26/2021] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Daytime and nighttime patterns affect the dynamic modulation of brain and body functions and influence the autonomic nervous system response to seizures. Therefore, we aimed to evaluate 24-hour patterns of electrodermal activity (EDA) in patients with and without seizures. METHODS We included pediatric patients with (a) seizures (SZ), including focal impaired awareness seizures (FIAS) or generalized tonic-clonic seizures (GTCS), (b) no seizures and normal electroencephalography (NEEG), or (c) no seizures but epileptiform activity in the EEG (EA) during vEEG monitoring. Patients wore a device that continuously recorded EDA and temperature (TEMP). EDA levels, EDA spectral power, and TEMP levels were analyzed. To investigate 24-hour patterns, we performed a nonlinear mixed-effects model analysis. Relative mean pre-ictal (-30 min to seizure onset) and post-ictal (I: 30 min after seizure offset; II: 30 to 60 min after seizure offset) values were compared for SZ subgroups. RESULTS We included 119 patients (40 SZ, 17 NEEG, 62 EA). EDA level and power group-specific models (SZ, NEEG, EA) (h = 1; P < .01) were superior to the all-patient cohort model. Fifty-nine seizures were analyzed. Pre-ictal EDA values were lower than respective 24-hour modulated SZ group values. Post hoc comparisons following the period-by-seizure type interaction (EDA level: χ 2 = 18.50; P < .001, and power: χ 2 = 6.73; P = .035) revealed that EDA levels were higher in the post-ictal period I for FIAS and GTCS and in post-ictal period II for GTCS only compared to the pre-ictal period. SIGNIFICANCE Continuously monitored EDA shows a pattern of change over 24 hours. Curve amplitudes in patients with recorded seizures were lower as compared to patients who did not exhibit seizures during the recording period. Sympathetic skin responses were greater and more prolonged in GTCS compared to FIAS. EDA recordings from wearable devices offer a noninvasive tool to continuously monitor sympathetic activity with potential applications for seizure detection, prediction, and potentially sudden unexpected death in epilepsy (SUDEP) risk estimation.
Collapse
Affiliation(s)
- Solveig Vieluf
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.,Institute of Sports Medicine, Paderborn University, Paderborn, Germany
| | - Marta Amengual-Gual
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Bo Zhang
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Rima El Atrache
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Claire Ufongene
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Michele C Jackson
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Sarah Branch
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Claus Reinsberger
- Institute of Sports Medicine, Paderborn University, Paderborn, Germany.,Division of Epilepsy, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Tobias Loddenkemper
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
13
|
Sion B, Bégou M. Can chronopharmacology improve the therapeutic management of neurological diseases? Fundam Clin Pharmacol 2021; 35:564-581. [PMID: 33539566 DOI: 10.1111/fcp.12659] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 01/04/2021] [Accepted: 02/01/2021] [Indexed: 12/19/2022]
Abstract
The importance of circadian rhythm dysfunctions in the pathophysiology of neurological diseases has been highlighted recently. Chronopharmacology principles imply that tailoring the timing of treatments to the circadian rhythm of individual patients could optimize therapeutic management. According to these principles, chronopharmacology takes into account the individual differences in patients' clocks, the rhythmic changes in the organism sensitivity to therapeutic and side effects of drugs, and the predictable time variations of disease. This review examines the current literature on chronopharmacology of neurological diseases focusing its scope on epilepsy, Alzheimer and Parkinson diseases, and neuropathic pain, even if other neurological diseases could have been analyzed. While the results of the studies discussed in this review point to a potential therapeutic benefit of chronopharmacology in neurological diseases, the field is still in its infancy. Studies including a sufficiently large number of patients and measuring gold standard markers of the circadian rhythmicity are still needed to evaluate the beneficial effect of administration times over the 24-hour day but also of clock modulating drugs.
Collapse
Affiliation(s)
- Benoit Sion
- Université Clermont Auvergne, INSERM U1107, NEURO-DOL, Clermont-Ferrand, France
| | - Mélina Bégou
- Université Clermont Auvergne, INSERM U1107, NEURO-DOL, Clermont-Ferrand, France
| |
Collapse
|
14
|
Yang C, Liu Z, Luan G, wang Q. The extension of epileptogenicity as the driving force of the epileptogenic network evolution and complex symptoms. Brain Res 2020; 1748:147073. [DOI: 10.1016/j.brainres.2020.147073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 01/04/2023]
|
15
|
Asnis-Alibozek A, Detyniecki K. The unmet need for rapid epileptic seizure termination (REST). Epilepsy Behav Rep 2020; 15:100409. [PMID: 33490947 PMCID: PMC7804985 DOI: 10.1016/j.ebr.2020.100409] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/28/2020] [Accepted: 11/08/2020] [Indexed: 11/15/2022] Open
Abstract
Approximately 40% of epilepsy patients will continue to experience breakthrough seizures despite stable antiepileptic drug regimens. Rescue treatments have demonstrated efficacy and safety for select seizure emergencies. Outpatient administered intranasal and rectally delivered medications are regulatory approved for acute repetitive seizures (ARS), and injectable benzodiazepines are indicated for parenteral treatment of established status epilepticus. Despite these advances, no studies have been shown to abort an ongoing seizure following patient or caregiver home administration of therapy at the first clinical sign of seizure onset. Such treatment would require rapid systemic absorption without intravenous access, and evidence of seizure cessation within minutes of administration that is superior to placebo (eg, seizure self-regulation). Rapid epileptic seizure termination (REST) treatment may apply to multiple seizure emergencies beyond ARS, including focal or generalized seizures preceded by an aura, flurries of absence or myoclonic seizures, or prolonged focal and generalized seizures at high risk of progression to status epilepticus. Novel investigational drug delivery systems have demonstrated feasibility of intraictal delivery and seizure cessation by two minutes. Ongoing randomized trials of REST treatment for diverse seizure emergencies hold the potential to decrease bouts of mental and physical incapacitation in patients with drug-resistant epilepsy.
Collapse
Affiliation(s)
- Aviva Asnis-Alibozek
- University of Lynchburg, School of PA Medicine, Doctor of Medical Science Program (DMSc Candidate), Lynchburg, VA 24501, United States
| | - Kamil Detyniecki
- University of Miami Miller School of Medicine, Department of Neurology, Miami, FL 33136, United States
| |
Collapse
|
16
|
Stirling RE, Cook MJ, Grayden DB, Karoly PJ. Seizure forecasting and cyclic control of seizures. Epilepsia 2020; 62 Suppl 1:S2-S14. [PMID: 32712968 DOI: 10.1111/epi.16541] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/23/2020] [Accepted: 04/27/2020] [Indexed: 02/02/2023]
Abstract
Epilepsy is a unique neurologic condition characterized by recurrent seizures, where causes, underlying biomarkers, triggers, and patterns differ across individuals. The unpredictability of seizures can heighten fear and anxiety in people with epilepsy, making it difficult to take part in day-to-day activities. Epilepsy researchers have prioritized developing seizure prediction algorithms to combat episodic seizures for decades, but the utility and effectiveness of prediction algorithms has not been investigated thoroughly in clinical settings. In contrast, seizure forecasts, which theoretically provide the probability of a seizure at any time (as opposed to predicting the next seizure occurrence), may be more feasible. Many advances have been made over the past decade in the field of seizure forecasting, including improvements in algorithms as a result of machine learning and exploration of non-EEG-based measures of seizure susceptibility, such as physiological biomarkers, behavioral changes, environmental drivers, and cyclic seizure patterns. For example, recent work investigating periodicities in individual seizure patterns has determined that more than 90% of people have circadian rhythms in their seizures, and many also experience multiday, weekly, or longer cycles. Other potential indicators of seizure susceptibility include stress levels, heart rate, and sleep quality, all of which have the potential to be captured noninvasively over long time scales. There are many possible applications of a seizure-forecasting device, including improving quality of life for people with epilepsy, guiding treatment plans and medication titration, optimizing presurgical monitoring, and focusing scientific research. To realize this potential, it is vital to better understand the user requirements of a seizure-forecasting device, continue to advance forecasting algorithms, and design clear guidelines for prospective clinical trials of seizure forecasting.
Collapse
Affiliation(s)
- Rachel E Stirling
- Department of Biomedical Engineering, The University of Melbourne, Melbourne, Vic., Australia
| | - Mark J Cook
- Graeme Clark Institute & St Vincent's Hospital, The University of Melbourne, Melbourne, Vic., Australia
| | - David B Grayden
- Department of Biomedical Engineering, The University of Melbourne, Melbourne, Vic., Australia
| | - Philippa J Karoly
- Department of Biomedical Engineering, The University of Melbourne, Melbourne, Vic., Australia.,Graeme Clark Institute & St Vincent's Hospital, The University of Melbourne, Melbourne, Vic., Australia
| |
Collapse
|
17
|
Re CJ, Batterman AI, Gerstner JR, Buono RJ, Ferraro TN. The Molecular Genetic Interaction Between Circadian Rhythms and Susceptibility to Seizures and Epilepsy. Front Neurol 2020; 11:520. [PMID: 32714261 PMCID: PMC7344275 DOI: 10.3389/fneur.2020.00520] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 05/12/2020] [Indexed: 12/19/2022] Open
Abstract
Seizure patterns observed in patients with epilepsy suggest that circadian rhythms and sleep/wake mechanisms play some role in the disease. This review addresses key topics in the relationship between circadian rhythms and seizures in epilepsy. We present basic information on circadian biology, but focus on research studying the influence of both the time of day and the sleep/wake cycle as independent but related factors on the expression of seizures in epilepsy. We review studies investigating how seizures and epilepsy disrupt expression of core clock genes, and how disruption of clock mechanisms impacts seizures and the development of epilepsy. We focus on the overlap between mechanisms of circadian-associated changes in SCN neuronal excitability and mechanisms of epileptogenesis as a means of identifying key pathways and molecules that could represent new targets or strategies for epilepsy therapy. Finally, we review the concept of chronotherapy and provide a perspective regarding its application to patients with epilepsy based on their individual characteristics (i.e., being a “morning person” or a “night owl”). We conclude that better understanding of the relationship between circadian rhythms, neuronal excitability, and seizures will allow both the identification of new therapeutic targets for treating epilepsy as well as more effective treatment regimens using currently available pharmacological and non-pharmacological strategies.
Collapse
Affiliation(s)
- Christopher J Re
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, United States
| | - Alexander I Batterman
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, United States
| | - Jason R Gerstner
- Department of Biomedical Sciences, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
| | - Russell J Buono
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, United States
| | - Thomas N Ferraro
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, United States
| |
Collapse
|
18
|
Xie W, Xiang L, Song Y, Tian X. The Downregulation of Truncated TrkB Receptors Modulated by MicroRNA-185 Activates Full-Length TrkB Signaling and Suppresses the Epileptiform Discharges in Cultured Hippocampal Neurons. Neurochem Res 2020; 45:1647-1660. [DOI: 10.1007/s11064-020-03013-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/05/2020] [Accepted: 03/11/2020] [Indexed: 11/30/2022]
|
19
|
Usman SM, Khalid S, Akhtar R, Bortolotto Z, Bashir Z, Qiu H. Using scalp EEG and intracranial EEG signals for predicting epileptic seizures: Review of available methodologies. Seizure 2019; 71:258-269. [DOI: 10.1016/j.seizure.2019.08.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 08/09/2019] [Accepted: 08/14/2019] [Indexed: 12/24/2022] Open
|
20
|
Sánchez Fernández I, Loddenkemper T. Chronotherapeutic implications of cyclic seizure patterns. Nat Rev Neurol 2019; 14:696-697. [PMID: 30349013 DOI: 10.1038/s41582-018-0094-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Iván Sánchez Fernández
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.,Department of Child Neurology, Sant Joan de Déu, Universidad de Barcelona, Barcelona, Spain
| | - Tobias Loddenkemper
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
21
|
Leite Góes Gitai D, de Andrade TG, Dos Santos YDR, Attaluri S, Shetty AK. Chronobiology of limbic seizures: Potential mechanisms and prospects of chronotherapy for mesial temporal lobe epilepsy. Neurosci Biobehav Rev 2019; 98:122-134. [PMID: 30629979 PMCID: PMC7023906 DOI: 10.1016/j.neubiorev.2019.01.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 12/20/2018] [Accepted: 01/06/2019] [Indexed: 12/11/2022]
Abstract
Mesial Temporal Lobe Epilepsy (mTLE) characterized by progressive development of complex partial seizures originating from the hippocampus is the most prevalent and refractory type of epilepsy. One of the remarkable features of mTLE is the rhythmic pattern of occurrence of spontaneous seizures, implying a dependence on the endogenous clock system for seizure threshold. Conversely, circadian rhythms are affected by epilepsy too. Comprehending how the circadian system and seizures interact with each other is essential for understanding the pathophysiology of epilepsy as well as for developing innovative therapies that are efficacious for better seizure control. In this review, we confer how the temporal dysregulation of the circadian clock in the hippocampus combined with multiple uncoupled oscillators could lead to periodic seizure occurrences and comorbidities. Unraveling these associations with additional research would help in developing chronotherapy for mTLE, based on the chronobiology of spontaneous seizures. Notably, differential dosing of antiepileptic drugs over the circadian period and/or strategies that resynchronize biological rhythms may substantially improve the management of seizures in mTLE patients.
Collapse
Affiliation(s)
- Daniel Leite Góes Gitai
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University, College Station, Texas, USA; Institute of Biological Sciences and Health, Federal University of Alagoas, Maceio, Alagoas, Brazil
| | | | | | - Sahithi Attaluri
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University, College Station, Texas, USA
| | - Ashok K Shetty
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University, College Station, Texas, USA; Research Service, Olin E. Teague Veterans' Medical Center, Central Texas Veterans Health Care System, Temple, Texas, USA.
| |
Collapse
|
22
|
Khan S, Nobili L, Khatami R, Loddenkemper T, Cajochen C, Dijk DJ, Eriksson SH. Circadian rhythm and epilepsy. Lancet Neurol 2018; 17:1098-1108. [PMID: 30366868 DOI: 10.1016/s1474-4422(18)30335-1] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 08/18/2018] [Accepted: 08/31/2018] [Indexed: 12/11/2022]
Abstract
Advances in diagnostic technology, including chronic intracranial EEG recordings, have confirmed the clinical observation of different temporal patterns of epileptic activity and seizure occurrence over a 24-h period. The rhythmic patterns in epileptic activity and seizure occurrence are probably related to vigilance states and circadian variation in excitatory and inhibitory balance. Core circadian genes BMAL1 and CLOCK, which code for transcription factors, have been shown to influence excitability and seizure threshold. Despite uncertainties about the relative contribution of vigilance states versus circadian rhythmicity, including circadian factors such as seizure timing improves sensitivity of seizure prediction algorithms in individual patients. Improved prediction of seizure occurrence opens the possibility for personalised antiepileptic drug-dosing regimens timed to particular phases of the circadian cycle to improve seizure control and to reduce side-effects and risks associated with seizures. Further studies are needed to clarify the pathways through which rhythmic patterns of epileptic activity are generated, because this might also inform future treatment options.
Collapse
Affiliation(s)
- Sofia Khan
- Department of Clinical and Experimental Epilepsy, National Hospital for Neurology and Neurosurgery and Institute of Neurology, University College London, London, UK; Surrey Sleep Research Centre, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Lino Nobili
- Centre of Sleep Medicine, Centre for Epilepsy Surgery C Munari, Niguarda Hospital, Milan, Italy; Child Neuropsychiatry Unit, IRCCS Giannina Gaslini Pediatric Institute, DINOGMI, University of Genoa, Italy
| | - Ramin Khatami
- Centre for Sleep Research, Sleep Medicine and Epileptology, Klinik Barmelweid AG, Switzerland; Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Tobias Loddenkemper
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Christian Cajochen
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Basel, Switzerland; Transfaculty Research Platform Molecular and Cognitive Neurosciences, University of Basel, Basel, Switzerland
| | - Derk-Jan Dijk
- Surrey Sleep Research Centre, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Sofia H Eriksson
- Department of Clinical and Experimental Epilepsy, National Hospital for Neurology and Neurosurgery and Institute of Neurology, University College London, London, UK.
| |
Collapse
|