1
|
Periferakis A, Tsigas G, Periferakis AT, Tone CM, Hemes DA, Periferakis K, Troumpata L, Badarau IA, Scheau C, Caruntu A, Savulescu-Fiedler I, Caruntu C, Scheau AE. Agonists, Antagonists and Receptors of Somatostatin: Pathophysiological and Therapeutical Implications in Neoplasias. Curr Issues Mol Biol 2024; 46:9721-9759. [PMID: 39329930 PMCID: PMC11430067 DOI: 10.3390/cimb46090578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/29/2024] [Accepted: 08/31/2024] [Indexed: 09/28/2024] Open
Abstract
Somatostatin is a peptide that plays a variety of roles such as neurotransmitter and endocrine regulator; its actions as a cell regulator in various tissues of the human body are represented mainly by inhibitory effects, and it shows potent activity despite its physiological low concentrations. Somatostatin binds to specific receptors, called somatostatin receptors (SSTRs), which have different tissue distributions and associated signaling pathways. The expression of SSTRs can be altered in various conditions, including tumors; therefore, they can be used as biomarkers for cancer cell susceptibility to certain pharmacological agents and can provide prognostic information regarding disease evolution. Moreover, based on the affinity of somatostatin analogs for the different types of SSTRs, the therapeutic range includes conditions such as tumors, acromegaly, post-prandial hypotension, hyperinsulinism, and many more. On the other hand, a number of somatostatin antagonists may prove useful in certain medical settings, based on their differential affinity for SSTRs. The aim of this review is to present in detail the principal characteristics of all five SSTRs and to provide an overview of the associated therapeutic potential in neoplasias.
Collapse
Affiliation(s)
- Argyrios Periferakis
- Department of Physiology, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Elkyda, Research & Education Centre of Charismatheia, 17675 Athens, Greece
- Akadimia of Ancient Greek and Traditional Chinese Medicine, 16675 Athens, Greece
| | - Georgios Tsigas
- Department of Physiology, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Aristodemos-Theodoros Periferakis
- Department of Physiology, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Elkyda, Research & Education Centre of Charismatheia, 17675 Athens, Greece
| | - Carla Mihaela Tone
- Department of Physiology, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Daria Alexandra Hemes
- Department of Physiology, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Konstantinos Periferakis
- Akadimia of Ancient Greek and Traditional Chinese Medicine, 16675 Athens, Greece
- Pan-Hellenic Organization of Educational Programs, 17236 Athens, Greece
| | - Lamprini Troumpata
- Department of Physiology, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Ioana Anca Badarau
- Department of Physiology, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Cristian Scheau
- Department of Physiology, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Radiology and Medical Imaging, "Foisor" Clinical Hospital of Orthopaedics, Traumatology and Osteoarticular TB, 030167 Bucharest, Romania
| | - Ana Caruntu
- Department of Oral and Maxillofacial Surgery, The "Carol Davila" Central Military Emergency Hospital, 010825 Bucharest, Romania
- Department of Oral and Maxillofacial Surgery, Faculty of Dental Medicine, "Titu Maiorescu" University, 031593 Bucharest, Romania
| | - Ilinca Savulescu-Fiedler
- Department of Internal Medicine, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Internal Medicine and Cardiology, Coltea Clinical Hospital, 030167 Bucharest, Romania
| | - Constantin Caruntu
- Department of Physiology, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Dermatology, "Prof. N.C. Paulescu" National Institute of Diabetes, Nutrition and Metabolic Diseases, 011233 Bucharest, Romania
| | - Andreea-Elena Scheau
- Department of Radiology and Medical Imaging, Fundeni Clinical Institute, 022328 Bucharest, Romania
| |
Collapse
|
2
|
The Cataleptic, Asymmetric, Analgesic, and Brain Biochemical Effects of Parkinson's Disease Can Be Affected by Toxoplasma gondii Infection. BIOMED RESEARCH INTERNATIONAL 2020; 2020:2546365. [PMID: 32461971 PMCID: PMC7222602 DOI: 10.1155/2020/2546365] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 03/18/2020] [Indexed: 02/07/2023]
Abstract
Purpose Parkinson's disease (PD) is a neurodegenerative disorder with progressive motor defects. Therefore, the aim of the present investigation was to examine whether catalepsy, asymmetry, and nociceptive behaviors; the Nissl-body and neuron distribution; brain-derived neurotrophic factor (BDNF); malondialdehyde (MDA); total antioxidant capacity (TAC) levels; and the percentage of dopamine depletion of striatal neurons in the rat model of Parkinson's disease (PD) can be affected by Toxoplasma gondii (TG) infection. Methods Fifty rats were divided into five groups: control (intact rats), sham (rats which received an intrastriatal injection of artificial cerebrospinal fluid (ACSF)), PD control (induction of PD without TG infection), TG control (rats infected by TG without PD induction), and PD infected (third week after PD induction, infection by TG was done). PD was induced by the unilateral intrastriatal microinjection of 6-hydroxydopamine (6-OHDA) and ELISA quantified dopamine, BDNF, MDA, and TAC in the striatum tissue. Cataleptic, asymmetrical, nociceptive, and histological alterations were determined by bar test, elevated body swing test, formalin test, and Nissl-body and neuron counting in the striatal neurons. Results The results demonstrated that PD could significantly increase the number of biased swings, descent latency time, and nociceptive behavior and decrease the distribution of Nissl-stained neurons compared to the control and sham groups. TG infection significantly improved biased swing, descent latency time, nociceptive behavior, and the Nissl-body distribution in striatal neurons in comparison to the PD control group. The striatal level of BDNF in the PD-infected and TG control groups significantly increased relative to the PD control group. The striatal MDA was significantly higher in the PD control than other groups, while striatal TAC was significantly lower in the PD control than other groups. Conclusions The current study indicates that TG infection could improve the cataleptic, asymmetric, nociceptive and behaviors; the level of striatal dopamine release; BDNF levels; TAC; and MDA in PD rats.
Collapse
|
3
|
Ionov ID, Pushinskaya II, Gorev NP, Frenkel DD. Cyclosomatostatin- and haloperidol-induced catalepsy in Wistar rats: Differential responsiveness to sleep deprivation. Neurosci Lett 2018; 684:72-77. [PMID: 29990558 DOI: 10.1016/j.neulet.2018.07.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 06/29/2018] [Accepted: 07/06/2018] [Indexed: 10/28/2022]
Abstract
Total sleep deprivation (SD) has been found to mitigate motor dysfunctions in Parkinson's disease. Apparently, the similar sensitivity of an animal model for parkinsonism would support the model's validity. Recently, we described catalepsy induced in Wistar rats by somatostatin antagonist, cyclosomatostatin (cSST); this model simulates such a disease-associated abnormality as a fall in brain somatostatin levels. To evaluate the similarity between the cSST model and Parkinson's disease, we assessed here the responsiveness of cSST-induced catalepsy to 1-h and 3-h SD. In parallel, the influence of SD on catalepsy induced by a dopamine receptor antagonist, haloperidol, was examined. It was found that the short-term SD failed to influence cataleptic responses of both types (sleep deprived rats and undisturbed ones displayed a similar duration of immobility, p > 0.05). By contrast, 3-h SD suppressed (p < 0.01) cSST-induced catalepsy, however, enhanced (p < 0.01) cataleptic response to haloperidol. Thus, the anti-cataleptic effect of SD appears to be cSST-specific. These findings support the validity of the cSST-induced catalepsy in Wistar rats as a model for parkinsonian motor dysfunctions.
Collapse
Affiliation(s)
- Ilya D Ionov
- Centre on Theoretical Problems in Physical and Chemical Pharmacology, Russian Academy of Sciences, Moscow, Russia.
| | | | | | | |
Collapse
|