1
|
Xie L, He M, Ying C, Chu H. Mechanisms of inflammation after ischemic stroke in brain-peripheral crosstalk. Front Mol Neurosci 2024; 17:1400808. [PMID: 38932932 PMCID: PMC11199882 DOI: 10.3389/fnmol.2024.1400808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
Stroke is a devastating disease with high morbidity, disability, and mortality, among which ischemic stroke is more common. However, there is still a lack of effective methods to improve the prognosis and reduce the incidence of its complications. At present, there is evidence that peripheral organs are involved in the inflammatory response after stroke. Moreover, the interaction between central and peripheral inflammation includes the activation of resident and peripheral immune cells, as well as the activation of inflammation-related signaling pathways, which all play an important role in the pathophysiology of stroke. In this review, we discuss the mechanisms of inflammatory response after ischemic stroke, as well as the interactions through circulatory pathways between peripheral organs (such as the gut, heart, lung and spleen) and the brain to mediate and regulate inflammation after ischemic stroke. We also propose the potential role of meningeal lymphatic vessels (MLVs)-cervical lymph nodes (CLNs) as a brain-peripheral crosstalk lymphatic pathway in ischemic stroke. In addition, we also summarize the mechanisms of anti-inflammatory drugs in the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Ling Xie
- Department of Critical Medicine, First People's Hospital of Linping District, Hangzhou, China
| | - Ming He
- Department of Critical Medicine, First People's Hospital of Linping District, Hangzhou, China
| | - Caidi Ying
- Department of Hepatobiliary and Pancreatic Surgery, The Traditional Chinese Medicine Hospital of Ningbo, Ningbo, China
| | - Haifeng Chu
- Department of Neurosurgery, The Traditional Chinese Medicine Hospital of Linping District, Hangzhou, China
| |
Collapse
|
2
|
Wang Y, Liu W, Geng P, Du W, Guo C, Wang Q, Zheng GQ, Jin X. Role of Crosstalk between Glial Cells and Immune Cells in Blood-Brain Barrier Damage and Protection after Acute Ischemic Stroke. Aging Dis 2023; 15:2507-2525. [PMID: 37962453 PMCID: PMC11567273 DOI: 10.14336/ad.2023.1010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/10/2023] [Indexed: 11/15/2023] Open
Abstract
Blood-brain barrier (BBB) damage is the main pathological basis for acute ischemic stroke (AIS)-induced cerebral vasogenic edema and hemorrhagic transformation (HT). Glial cells, including microglia, astrocytes, and oligodendrocyte precursor cells (OPCs)/oligodendrocytes (OLs) play critical roles in BBB damage and protection. Recent evidence indicates that immune cells also have an important role in BBB damage, vasogenic edema and HT. Therefore, regulating the crosstalk between glial cells and immune cells would hold the promise to alleviate AIS-induced BBB damage. In this review, we first introduce the roles of glia cells, pericytes, and crosstalk between glial cells in the damage and protection of BBB after AIS, emphasizing the polarization, inflammatory response and crosstalk between microglia, astrocytes, and other glia cells. We then describe the role of glial cell-derived exosomes in the damage and protection of BBB after AIS. Next, we specifically discuss the crosstalk between glial cells and immune cells after AIS. Finally, we propose that glial cells could be a potential target for alleviating BBB damage after AIS and we discuss some molecular targets and potential strategies to alleviate BBB damage by regulating glial cells after AIS.
Collapse
Affiliation(s)
- Yihui Wang
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Histology and Embryology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China.
| | - Wencao Liu
- Shanxi Provincial People's Hospital, Taiyuan 030001, China.
| | - Panpan Geng
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Histology and Embryology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China.
| | - Weihong Du
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Histology and Embryology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China.
| | - Chun Guo
- School of Biosciences, University of Sheffield, Firth Court, Western Bank, Sheffield, UK.
| | - Qian Wang
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Histology and Embryology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China.
| | - Guo-qing Zheng
- Department of Neurology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Xinchun Jin
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Histology and Embryology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
3
|
Wei YH, Bi RT, Qiu YM, Zhang CL, Li JZ, Li YN, Hu B. The gastrointestinal-brain-microbiota axis: a promising therapeutic target for ischemic stroke. Front Immunol 2023; 14:1141387. [PMID: 37342335 PMCID: PMC10277866 DOI: 10.3389/fimmu.2023.1141387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 05/22/2023] [Indexed: 06/22/2023] Open
Abstract
Ischemic stroke is a highly complex systemic disease characterized by intricate interactions between the brain and gastrointestinal tract. While our current understanding of these interactions primarily stems from experimental models, their relevance to human stroke outcomes is of considerable interest. After stroke, bidirectional communication between the brain and gastrointestinal tract initiates changes in the gastrointestinal microenvironment. These changes involve the activation of gastrointestinal immunity, disruption of the gastrointestinal barrier, and alterations in gastrointestinal microbiota. Importantly, experimental evidence suggests that these alterations facilitate the migration of gastrointestinal immune cells and cytokines across the damaged blood-brain barrier, ultimately infiltrating the ischemic brain. Although the characterization of these phenomena in humans is still limited, recognizing the significance of the brain-gastrointestinal crosstalk after stroke offers potential avenues for therapeutic intervention. By targeting the mutually reinforcing processes between the brain and gastrointestinal tract, it may be possible to improve the prognosis of ischemic stroke. Further investigation is warranted to elucidate the clinical relevance and translational potential of these findings.
Collapse
Affiliation(s)
| | | | | | | | | | - Ya-nan Li
- *Correspondence: Ya-nan Li, ; Bo Hu,
| | - Bo Hu
- *Correspondence: Ya-nan Li, ; Bo Hu,
| |
Collapse
|
4
|
Tran THM, Mi XJ, Huh JE, Aditi Mitra P, Kim YJ. Cirsium japonicum var. maackii fermented with Pediococcus pentosaceus induces immunostimulatory activity in RAW 264.7 cells, splenocytes and CTX-immunosuppressed mice. J Funct Foods 2023. [DOI: 10.1016/j.jff.2023.105449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023] Open
|
5
|
Yu H, Cai Y, Zhong A, Zhang Y, Zhang J, Xu S. The "Dialogue" Between Central and Peripheral Immunity After Ischemic Stroke: Focus on Spleen. Front Immunol 2022; 12:792522. [PMID: 34975893 PMCID: PMC8717871 DOI: 10.3389/fimmu.2021.792522] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 11/17/2021] [Indexed: 12/24/2022] Open
Abstract
The immune response generated by the body after the incidence of ischemic stroke, runs through the comprehensive process of aftermath. During this process of ischemic stroke, the central neuroinflammation and peripheral immune response seriously affect the prognosis of patients, which has been the focus of research in recent years. As this research scenario progressed, the "dialogue" between central nervous inflammation and peripheral immune response after ischemic stroke has become more closely related. It's worth noting that the spleen, as an important peripheral immune organ, plays a pivotal role in this dialogue. Multiple mechanisms have previously been reported for brain-spleen crosstalk after ischemic stroke. Further, neuroinflammation in the brain can affect the peripheral immune state by activating/inhibiting spleen function. However, the activation of the peripheral immune inflammatory response can work reversibly in the spleen. It further affects intracerebral neuroinflammation through the injured blood-brain barrier. Therefore, paying close attention to the role of spleen as the pivot between central and peripheral immunity in ischemic stroke may help to provide a new target for immune intervention in the treatment of ischemic stroke. In the present review, we reviewed the important role of spleen in central neuroinflammation and peripheral immune response after ischemic stroke. We summarized the relevant studies and reports on spleen as the target of immune intervention which can provide new ideas for the clinical treatment of ischemic stroke.
Collapse
Affiliation(s)
- Hongchen Yu
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China.,Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yichen Cai
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China.,Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Aiqin Zhong
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China
| | - Yunsha Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese, Tianjin, China
| | - Junping Zhang
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China
| | - Shixin Xu
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China
| |
Collapse
|
6
|
Rocha-Gomes A, Teixeira AE, Santiago CMO, Oliveira DGD, Silva AAD, Lacerda ACR, Riul TR, Mendonça VA, Rocha-Vieira E, Leite HR. Prenatal LPS exposure increases hippocampus IL-10 and prevents short-term memory loss in the male adolescent offspring of high-fat diet fed dams. Physiol Behav 2022; 243:113628. [PMID: 34695488 DOI: 10.1016/j.physbeh.2021.113628] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 10/18/2021] [Accepted: 10/20/2021] [Indexed: 11/25/2022]
Abstract
Lipopolysaccharide (LPS) tolerance can reduce the neuroinflammation caused by high fat maternal diets; however, there are no reports that have evaluated the effects of prenatal LPS exposure on the memories of the offspring of high-fat diet fed dams. This study evaluated the effects of prenatal LPS exposure on the inflammatory parameters and redox status in the brain, as well as the object recognition memory of adolescent offspring of Wistar rat dams that were treated with a high-fat diet during gestation and lactation. Female pregnant Wistar rats randomly received a standard diet (17.5% fat) or a high-fat diet (45.0% fat) during gestation and lactation. On gestation days 8, 10, and 12, half of the females in each group were intraperitoneally treated with LPS (0.1 mg.kg-1). After weaning, the male offspring were placed in cages in standard conditions, and at 6 weeks old, animals underwent the novel object recognition test (for short- and long-term memory). The offspring of the high-fat diet fed dams showed increased hippocampus IL-6 levels (21-days-old) and impaired short-term memories. These effects were avoided in the offspring of high-fat diet fed dams submitted to prenatal LPS exposure, which showed greater hippocampus IL-10 levels (at 21- and 50-days-old), increased antioxidant activity (50-days-old) in the hippocampus and prefrontal cortex, without memory impairments (short- and long-term memory). IL-6 has been consistently implicated in memory deficits and as an endogenous mechanism for limiting plasticity, while IL-10 regulates glial activation and has a strong association with improvements in cognitive function. Prenatal LPS exposure preventing the increase of IL-6 in the hippocampus and the impairment to short-term object recognition memory caused by the high-fat maternal diet.
Collapse
Affiliation(s)
- Arthur Rocha-Gomes
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Sociedade Brasileira de Fisiologia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, 39100-000 Brasil; Laboratório de Nutrição Experimental - LabNutrex - Departamento de Nutrição. Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brasil.
| | - Amanda Escobar Teixeira
- Laboratório de Nutrição Experimental - LabNutrex - Departamento de Nutrição. Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brasil
| | - Camilla Mainy Oliveira Santiago
- Laboratório de Nutrição Experimental - LabNutrex - Departamento de Nutrição. Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brasil; Programa de Pós-Graduação em Ciências da Nutrição, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brasil
| | - Dalila Gomes de Oliveira
- Laboratório de Nutrição Experimental - LabNutrex - Departamento de Nutrição. Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brasil
| | - Alexandre Alves da Silva
- Laboratório de Nutrição Experimental - LabNutrex - Departamento de Nutrição. Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brasil
| | - Ana Cristina Rodrigues Lacerda
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Sociedade Brasileira de Fisiologia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, 39100-000 Brasil
| | - Tania Regina Riul
- Laboratório de Nutrição Experimental - LabNutrex - Departamento de Nutrição. Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brasil; Programa de Pós-Graduação em Ciências da Nutrição, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brasil
| | - Vanessa Amaral Mendonça
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Sociedade Brasileira de Fisiologia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, 39100-000 Brasil
| | - Etel Rocha-Vieira
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Sociedade Brasileira de Fisiologia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, 39100-000 Brasil
| | - Hércules Ribeiro Leite
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Sociedade Brasileira de Fisiologia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, 39100-000 Brasil; Departamento de Fisioterapia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901 Brasil.
| |
Collapse
|
7
|
Rocha-Gomes A, Teixeira AE, de Oliveira DG, Santiago CMO, da Silva AA, Riul TR, Lacerda ACR, Mendonça VA, Rocha-Vieira E, Leite HR. LPS tolerance prevents anxiety-like behavior and amygdala inflammation of high-fat-fed dams' adolescent offspring. Behav Brain Res 2021; 411:113371. [PMID: 34019914 DOI: 10.1016/j.bbr.2021.113371] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 05/15/2021] [Accepted: 05/15/2021] [Indexed: 02/04/2023]
Abstract
Maternal high-fat diets (HFD) can generate inflammation in the offspring's amygdala, which can lead to anxiety-like behaviors. Conversely, lipopolysaccharide (LPS) tolerance can reduce neuroinflammation in the offspring caused by maternal high-fat diets. This study evaluated the combination of LPS tolerance and high-fat maternal diet on amygdala's inflammatory parameters and the anxiety-like behavior in adolescent offspring. Female pregnant Wistar rats received randomly a standard diet or a high-fat diet during gestation and lactation. On gestation days 8, 10, and 12, half of the females in each group were intraperitonially injected with LPS (0.1 mg.kg-1). After weaning, the male offspring (n = 96) were placed in individual boxes in standard conditions, and when 6 weeks-old, the animals underwent: Open-Field, Light/Dark Box, Elevated Plus-Maze, and Rotarod tests. When 50 days-old the offspring were euthanized and the amygdala removed for cytokine and redox status analysis. The offspring in the HFD group showed lower amygdala IL-10 levels, high IL-6/IL-10 ratio, and anxiety-like behaviors. These effects were attenuated in the HFD offspring submitted to LPS tolerance, which showed an anti-inflammatory compensatory response in the amygdala. Also, this group showed a higher activity of the enzyme catalase in the amygdala. In addition, receiving the combination of LPS tolerance and maternal HFD did not lead to anxiety-like behavior in the offspring. The results suggest that LPS tolerance attenuated amygdala inflammation through an anti-inflammatory compensatory response besides preventing anxiety-like behavior caused by the high-fat maternal diet.
Collapse
Affiliation(s)
- Arthur Rocha-Gomes
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Sociedade Brasileira de Fisiologia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brazil; Laboratório de Nutrição Experimental - LabNutrex - Departamento de Nutrição, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brazil
| | - Amanda Escobar Teixeira
- Laboratório de Nutrição Experimental - LabNutrex - Departamento de Nutrição, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brazil
| | - Dalila Gomes de Oliveira
- Laboratório de Nutrição Experimental - LabNutrex - Departamento de Nutrição, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brazil
| | - Camilla Mainy Oliveira Santiago
- Laboratório de Nutrição Experimental - LabNutrex - Departamento de Nutrição, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brazil; Programa de Pós-Graduação em Ciências da Nutrição, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brazil
| | - Alexandre Alves da Silva
- Laboratório de Nutrição Experimental - LabNutrex - Departamento de Nutrição, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brazil
| | - Tania Regina Riul
- Laboratório de Nutrição Experimental - LabNutrex - Departamento de Nutrição, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brazil; Programa de Pós-Graduação em Ciências da Nutrição, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brazil
| | - Ana Cristina Rodrigues Lacerda
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Sociedade Brasileira de Fisiologia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brazil
| | - Vanessa Amaral Mendonça
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Sociedade Brasileira de Fisiologia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brazil
| | - Etel Rocha-Vieira
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Sociedade Brasileira de Fisiologia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brazil; Faculdade de Medicina do Campus JK, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brazil
| | - Hércules Ribeiro Leite
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Sociedade Brasileira de Fisiologia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brazil; Programa de Pós Graduação em Ciências da Reabilitação, Universidade Federal de Minas Gerais, Diamantina, MG, Brazil.
| |
Collapse
|
8
|
Catalán D, Mansilla MA, Ferrier A, Soto L, Oleinika K, Aguillón JC, Aravena O. Immunosuppressive Mechanisms of Regulatory B Cells. Front Immunol 2021; 12:611795. [PMID: 33995344 PMCID: PMC8118522 DOI: 10.3389/fimmu.2021.611795] [Citation(s) in RCA: 168] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 02/19/2021] [Indexed: 12/12/2022] Open
Abstract
Regulatory B cells (Bregs) is a term that encompasses all B cells that act to suppress immune responses. Bregs contribute to the maintenance of tolerance, limiting ongoing immune responses and reestablishing immune homeostasis. The important role of Bregs in restraining the pathology associated with exacerbated inflammatory responses in autoimmunity and graft rejection has been consistently demonstrated, while more recent studies have suggested a role for this population in other immune-related conditions, such as infections, allergy, cancer, and chronic metabolic diseases. Initial studies identified IL-10 as the hallmark of Breg function; nevertheless, the past decade has seen the discovery of other molecules utilized by human and murine B cells to regulate immune responses. This new arsenal includes other anti-inflammatory cytokines such IL-35 and TGF-β, as well as cell surface proteins like CD1d and PD-L1. In this review, we examine the main suppressive mechanisms employed by these novel Breg populations. We also discuss recent evidence that helps to unravel previously unknown aspects of the phenotype, development, activation, and function of IL-10-producing Bregs, incorporating an overview on those questions that remain obscure.
Collapse
Affiliation(s)
- Diego Catalán
- Programa Disciplinario de Inmunología, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile.,Instituto Milenio en Inmunología e Inmunoterapia, Santiago, Chile
| | - Miguel Andrés Mansilla
- Programa Disciplinario de Inmunología, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile
| | - Ashley Ferrier
- Programa Disciplinario de Inmunología, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile.,Instituto Milenio en Inmunología e Inmunoterapia, Santiago, Chile
| | - Lilian Soto
- Programa Disciplinario de Inmunología, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile.,Unidad de Dolor, Hospital Clínico, Universidad de Chile (HCUCH), Santiago, Chile
| | | | - Juan Carlos Aguillón
- Programa Disciplinario de Inmunología, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile
| | - Octavio Aravena
- Programa Disciplinario de Inmunología, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile
| |
Collapse
|
9
|
Gao P, Tang S, Chen H, Zhou X, Ou Y, Shen R, He Y. Preconditioning increases brain resistance against acute brain injury via neuroinflammation modulation. Exp Neurol 2021; 341:113712. [PMID: 33819449 DOI: 10.1016/j.expneurol.2021.113712] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/16/2021] [Accepted: 03/26/2021] [Indexed: 01/10/2023]
Abstract
Acute brain injury (ABI) is a broad concept mainly comprised of sudden parenchymal brain injury. Acute brain injury outcomes are dependent not only on the severity of the primary injury, but the delayed secondary injury that subsequently follows as well. These are both taken into consideration when determining the patient's prognosis. Growing clinical and experimental evidence demonstrates that "preconditioning," a prophylactic approach in which the brain is exposed to various pre-injury stressors, can induce varying degrees of "tolerance" against the impact of the ABI by modulating neuroinflammation. In this review, we will summarize the pathophysiology of ABI, and discuss the involved mechanisms of neuroinflammation in ABI, as well as existing experimental and clinical studies demonstrating the efficacy of preconditioning methods in various types of ABI by modulating neuroinflammation.
Collapse
Affiliation(s)
- Pan Gao
- Department of Translational Neurodegeneration, German Centre for Neurodegenerative Diseases (DZNE), Munich 81377, Germany.
| | - Sicheng Tang
- Medical Clinic and Polyclinic IV, Ludwig-Maximilians University Munich (LMU), Munich 80336, Germany
| | - Hanmin Chen
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Xiangyue Zhou
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Yibo Ou
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Ronghua Shen
- Department of Psychological Rehabilitation, Hankou Hospital, Wuhan, Hubei 430010, PR China.
| | - Yue He
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China.
| |
Collapse
|
10
|
Manouchehri N, Khodagholi F, Dargahi L, Ahmadiani A. Mitochondrial Complex I Is an Essential Player in LPS-Induced Preconditioning in Differentiated PC12 Cells. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2020; 18:1445-1455. [PMID: 32641953 PMCID: PMC6934967 DOI: 10.22037/ijpr.2019.1100711] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Preconditioning (PC) as a protective strategy against noxious insults can decline cell death and apoptosis. It has been approved that mitochondria play a key role in PC mechanism. The critical role of complex I (CI) in oxidative phosphorylation machinery and intracellular ROS production, particularly in the brain, accentuates its possible role in PC-induced neuroprotection. Here, differentiated PC12 cells were preconditioned with ultra-low dose LPS (ULD, 3 μg/mL) prior to exposure to high concentration of LPS (HD, 750 μg/mL). Our results showed that HD LPS treatment reduces cell viability and CI activity, and intensifies expression of cleaved caspase 3 compared to the control group. Intriguingly, PC induction resulted in enhancement of cell viability and CI activity and reduction of caspase3 cleavage compared to HD LPS group. In order to explore the role of CI in PC, we combined the ULD LPS with rotenone, a CI inhibitor. Following rotenone administration, cell viability significantly reduced while caspase3 cleavage increased compared to PC induction group. Taken together, cell survival and reduction of apoptosis followed by PC can be at least partially attributed to the preservation of mitochondrial CI function.
Collapse
Affiliation(s)
- Nasim Manouchehri
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fariba Khodagholi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Leila Dargahi
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abolhassan Ahmadiani
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Florentino D, Della Giustina A, de Souza Goldim MP, Danielski LG, de Oliveira Junior AN, Joaquim L, Bonfante S, Biehl E, da Rosa N, Fernandes D, Gava FF, Michels M, Fortunato JJ, Réus GZ, S Valvassori S, Quevedo J, Dal-Pizzol F, Barichello T, Petronilho F. Early life neuroimmune challenge protects the brain after sepsis in adult rats. Neurochem Int 2020; 135:104712. [DOI: 10.1016/j.neuint.2020.104712] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 01/24/2020] [Accepted: 02/27/2020] [Indexed: 12/20/2022]
|
12
|
Regulatory B cells in infection, inflammation, and autoimmunity. Cell Immunol 2020; 352:104076. [PMID: 32143836 DOI: 10.1016/j.cellimm.2020.104076] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 02/18/2020] [Accepted: 02/20/2020] [Indexed: 12/14/2022]
Abstract
Regulatory B (Breg) cells are characterized by differential expression of CD5 and CD1d in mouse and CD24 and CD38 in human immune systems. The Breg family also includes LAG-3+CD138hi plasma cells, CD1d CD5 CD21 CD23 cells, Tim1, PD-L1, PD-L2, CD200- expressing B cells, and CD39hiKi67+ cells originating from the transitional, marginal zone or germinal centre of the spleen. Breg cells produce IL10 and IL35 and to cause immunosuppression. These cells respond to TLR2, TLR4, and TLR9 agonists, CD40 ligands, IL12p35 and heat shock proteins. Emerging evidence suggests that TLR signalling component Myd88 impacts the modulation of Breg cell responses and the host's susceptibility to infection. Breg cells are found to reduce relapsing-remitting experimental autoimmune encephalomyelitis. However, the Breg-mediated mechanism used to control T cell-mediated immune responses is still unclear. Here, we review the existing literature to find gaps in the current knowledge and to build a pathway to further research.
Collapse
|
13
|
Immunomodulatory Effects of the Meretrix Meretrix Oligopeptide (QLNWD) on Immune-Deficient Mice. Molecules 2019; 24:molecules24244452. [PMID: 31817348 PMCID: PMC6943722 DOI: 10.3390/molecules24244452] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 11/28/2019] [Accepted: 12/03/2019] [Indexed: 01/15/2023] Open
Abstract
The aim of this study was to explore the immunomodulatory effects of the Meretrix meretrix oligopeptide (MMO, QLNWD) in cyclophosphamide (CTX)-induced immune-deficient mice. Compared to untreated, CTX-induced immune-deficient mice, the spleen and thymus indexes of mice given moderate (100 mg/kg) and high (200 mg/kg) doses of MMO were significantly higher (p < 0.05), and body weight loss was alleviated. Hematoxylin-eosin (H&E) staining revealed that MMO reduced spleen injury, thymus injury, and liver injury induced by CTX in mice. Furthermore, MMO boosted the production of immunoglobulin G (IgG) and hemolysin in the serum and promoted the proliferation and differentiation of spleen T-lymphocytes. Taken together, our findings suggest that MMO plays a vital role in protection against immunosuppression in CTX-induced immune-deficient mice and could be a potential immunomodulatory candidate for use in functional foods or immunologic adjuvants.
Collapse
|
14
|
Zhang X, Cao X, Dang M, Wang H, Chen B, Du F, Li H, Zeng X, Guo C. Soluble receptor for advanced glycation end-products enhanced the production of IFN-γ through the NF-κB pathway in macrophages recruited by ischemia/reperfusion. Int J Mol Med 2019; 43:2507-2515. [PMID: 30942429 DOI: 10.3892/ijmm.2019.4152] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 03/21/2019] [Indexed: 11/06/2022] Open
Abstract
The current study investigated the role of sRAGE in the production of IFN‑γ in macrophages with I/R treatment. The number of macrophages in myocardial tissues treated with I/R with or without sRAGE was determined via immunohistochemical staining. Proliferative activity of macrophages was analyzed by a 5‑BrdU incorporation assay. Differentiation of macrophages was detected via immunofluorescence staining of iNOS (M1 macrophage marker). IFN‑γ production, due to sRAGE stimulation, in Raw 264.7 macrophages and the NF‑κB signaling pathway were measured using western blotting. A ChIP assay was used to examine the interactions between NF‑κB and the promoter of IFN‑γ. The results showed that the number of macrophages in I/R‑treated myocardial tissues was increased following sRAGE infusion. Proliferation of macrophages was increased significantly in the presence of sRAGE; after I/R treatment, the cells preferred to differentiate into M1 macrophages. IFN‑γ expression in Raw 264.7 macrophages was suppressed by an NF‑κB inhibitor (Bay117082) but enhanced by sRAGE, with or without I/R treatment. Furthermore, sRAGE increased the phosphorylation of IκB, IKK and NF‑κB, as well as the translocation of NF‑κB into the nucleus of Raw 264.7 macrophages, with or without I/R treatment. ChIP results showed that sRAGE promoted NF‑κB binding to the promoter of IFN‑γ in Raw 264.7 macrophages. Therefore, the findings of the present study indicated that sRAGE protected the heart from I/R injuries, which might be mediated by promoting infiltration and the differentiation of macrophages into M1, which would then synthesize and secrete IFN‑γ through activating the NF‑κB signaling pathway.
Collapse
Affiliation(s)
- Xiuling Zhang
- Department of Cardiology, Beijing Tian Tan Hospital, Capital Medical University, Beijing 100070, P.R. China
| | - Xianxian Cao
- Department of Cardiology, Beijing Tian Tan Hospital, Capital Medical University, Beijing 100070, P.R. China
| | - Mengqiu Dang
- Department of Cardiology, Beijing Tian Tan Hospital, Capital Medical University, Beijing 100070, P.R. China
| | - Hongxia Wang
- Department of Physiology and Pathophysiology, Capital Medical University, Beijing 100069, P.R. China
| | - Buxing Chen
- Department of Cardiology, Beijing Tian Tan Hospital, Capital Medical University, Beijing 100070, P.R. China
| | - Fenghe Du
- Department of Cardiology, Beijing Tian Tan Hospital, Capital Medical University, Beijing 100070, P.R. China
| | - Huihua Li
- Department of Cardiology, Institute of Cardiovascular Disease, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Xiangjun Zeng
- Department of Physiology and Pathophysiology, Capital Medical University, Beijing 100069, P.R. China
| | - Caixia Guo
- Department of Cardiology, Beijing Tian Tan Hospital, Capital Medical University, Beijing 100070, P.R. China
| |
Collapse
|
15
|
Wang Z, He D, Zeng YY, Zhu L, Yang C, Lu YJ, Huang JQ, Cheng XY, Huang XH, Tan XJ. The spleen may be an important target of stem cell therapy for stroke. J Neuroinflammation 2019; 16:20. [PMID: 30700305 PMCID: PMC6352449 DOI: 10.1186/s12974-019-1400-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 01/07/2019] [Indexed: 12/21/2022] Open
Abstract
Stroke is the most common cerebrovascular disease, the second leading cause of death behind heart disease and is a major cause of long-term disability worldwide. Currently, systemic immunomodulatory therapy based on intravenous cells is attracting attention. The immune response to acute stroke is a major factor in cerebral ischaemia (CI) pathobiology and outcomes. Over the past decade, the significant contribution of the spleen to ischaemic stroke has gained considerable attention in stroke research. The changes in the spleen after stroke are mainly reflected in morphology, immune cells and cytokines, and these changes are closely related to the stroke outcomes. Autonomic nervous system (ANS) activation, release of central nervous system (CNS) antigens and chemokine/chemokine receptor interactions have been documented to be essential for efficient brain-spleen cross-talk after stroke. In various experimental models, human umbilical cord blood cells (hUCBs), haematopoietic stem cells (HSCs), bone marrow stem cells (BMSCs), human amnion epithelial cells (hAECs), neural stem cells (NSCs) and multipotent adult progenitor cells (MAPCs) have been shown to reduce the neurological damage caused by stroke. The different effects of these cell types on the interleukin (IL)-10, interferon (IFN), and cholinergic anti-inflammatory pathways in the spleen after stroke may promote the development of new cell therapy targets and strategies. The spleen will become a potential target of various stem cell therapies for stroke represented by MAPC treatment.
Collapse
Affiliation(s)
- Zhe Wang
- Xiangtan Central Hospital, Clinical Practice Base of Central South University, Xiangtan, 411100, China.,Institute of Reproductive and Stem Cell Research, School of Basic Medical Science, Central South University, Changsha, 410000, China
| | - Da He
- Xiangtan Central Hospital, Clinical Practice Base of Central South University, Xiangtan, 411100, China
| | - Ya-Yue Zeng
- Xiangtan Central Hospital, Clinical Practice Base of Central South University, Xiangtan, 411100, China
| | - Li Zhu
- Xiangtan Central Hospital, Clinical Practice Base of Central South University, Xiangtan, 411100, China
| | - Chao Yang
- Xiangtan Central Hospital, Clinical Practice Base of Central South University, Xiangtan, 411100, China
| | - Yong-Juan Lu
- Xiangtan Central Hospital, Clinical Practice Base of Central South University, Xiangtan, 411100, China
| | - Jie-Qiong Huang
- Xiangtan Central Hospital, Clinical Practice Base of Central South University, Xiangtan, 411100, China
| | - Xiao-Yan Cheng
- Xiangtan Central Hospital, Clinical Practice Base of Central South University, Xiangtan, 411100, China
| | - Xiang-Hong Huang
- Xiangtan Central Hospital, Clinical Practice Base of Central South University, Xiangtan, 411100, China
| | - Xiao-Jun Tan
- Xiangtan Central Hospital, Clinical Practice Base of Central South University, Xiangtan, 411100, China.
| |
Collapse
|