1
|
Hutchens SED, Khurram I, Hurley LM. Solitude and serotonin: juvenile isolation alters the covariation between social behavior and cFos expression by serotonergic neurons. Front Neurosci 2024; 18:1446866. [PMID: 39502712 PMCID: PMC11535725 DOI: 10.3389/fnins.2024.1446866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 09/19/2024] [Indexed: 11/08/2024] Open
Abstract
Variation in the mutual responsiveness of social partners to each other can be reflected in behavioral suites that covary with neural activity in ways that track the salience or valence of interactions. Juvenile social isolation alters social behavior and neural activity during social interaction, but whether and how it alters the covariation between behavior and neural activity has not been as well explored. To address this issue, four classes of experimental subjects: isolated males, socially housed males, isolated females, and socially housed females, were paired with an opposite-sex social partner that had been socially housed. Social behaviors and c-Fos expression in the serotonergic dorsal raphe nucleus (DRN) were then measured in subjects following the social interactions. Relative to social housing, postweaning isolation led to a decrease in the density of neurons double-labeled for tryptophan hydroxylase and c-Fos in the dorsomedial subdivision of the DRN, regardless of sex. Vocal and non-vocal behaviors were also affected by isolation. In interactions with isolated males, both ultrasonic vocalization (USVs) and broadband vocalizations (squeaks) increased in conjunction with greater male investigation of females. Neural and behavioral measures also correlated with each other. In the isolated male group, the density of double-labeled neurons in the dorsomedial DRN was negatively correlated with USV production and positively correlated with a principal component of non-vocal behavior corresponding to greater defensive kicking by females and less investigation and mounting behavior. This correlation was reversed in direction for socially housed males, and for isolated males versus isolated females. These findings confirm that the dynamics of social interactions are reflected in c-Fos activation in the dorsomedial DRN, and suggest an altered responsiveness of serotonergic neurons to social interaction following social isolation in males, in parallel with an altered male response to female cues.
Collapse
Affiliation(s)
- Sarah E. D. Hutchens
- Hurley Laboratory, Department of Biology, Indiana University, Bloomington, IN, United States
| | - Izza Khurram
- Hurley Laboratory, Department of Biology, Indiana University, Bloomington, IN, United States
| | - Laura M. Hurley
- Hurley Laboratory, Department of Biology, Indiana University, Bloomington, IN, United States
- Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN, United States
| |
Collapse
|
2
|
Hood KE, Hurley LM. Listening to your partner: serotonin increases male responsiveness to female vocal signals in mice. Front Hum Neurosci 2024; 17:1304653. [PMID: 38328678 PMCID: PMC10847236 DOI: 10.3389/fnhum.2023.1304653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 12/28/2023] [Indexed: 02/09/2024] Open
Abstract
The context surrounding vocal communication can have a strong influence on how vocal signals are perceived. The serotonergic system is well-positioned for modulating the perception of communication signals according to context, because serotonergic neurons are responsive to social context, influence social behavior, and innervate auditory regions. Animals like lab mice can be excellent models for exploring how serotonin affects the primary neural systems involved in vocal perception, including within central auditory regions like the inferior colliculus (IC). Within the IC, serotonergic activity reflects not only the presence of a conspecific, but also the valence of a given social interaction. To assess whether serotonin can influence the perception of vocal signals in male mice, we manipulated serotonin systemically with an injection of its precursor 5-HTP, and locally in the IC with an infusion of fenfluramine, a serotonin reuptake blocker. Mice then participated in a behavioral assay in which males suppress their ultrasonic vocalizations (USVs) in response to the playback of female broadband vocalizations (BBVs), used in defensive aggression by females when interacting with males. Both 5-HTP and fenfluramine increased the suppression of USVs during BBV playback relative to controls. 5-HTP additionally decreased the baseline production of a specific type of USV and male investigation, but neither drug treatment strongly affected male digging or grooming. These findings show that serotonin modifies behavioral responses to vocal signals in mice, in part by acting in auditory brain regions, and suggest that mouse vocal behavior can serve as a useful model for exploring the mechanisms of context in human communication.
Collapse
Affiliation(s)
- Kayleigh E. Hood
- Hurley Lab, Department of Biology, Indiana University, Bloomington, IN, United States
- Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN, United States
| | - Laura M. Hurley
- Hurley Lab, Department of Biology, Indiana University, Bloomington, IN, United States
- Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN, United States
| |
Collapse
|
3
|
Allen A, Heisler E, Kittelberger JM. Dopamine injections to the midbrain periaqueductal gray inhibit vocal-motor production in a teleost fish. Physiol Behav 2023; 263:114131. [PMID: 36796532 DOI: 10.1016/j.physbeh.2023.114131] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/11/2023] [Accepted: 02/13/2023] [Indexed: 02/16/2023]
Abstract
Across vertebrates, the midbrain periaqueductal gray (PAG) plays a critical role in social and vocal behavior. Dopaminergic neurotransmission also modulates these behaviors, and dopaminergic innervation of the PAG has been well documented. Nonetheless, the potential role of dopamine in shaping vocal production at the level of the PAG is not well understood. Here, we tested the hypothesis that dopamine modulates vocal production in the PAG, using a well-characterized vertebrate model system for the study of vocal communication, the plainfin midshipman fish, Porichthys notatus. We found that focal dopamine injections to the midshipman PAG rapidly and reversibly inhibited vocal production triggered by stimulation of known vocal-motor structures in the preoptic area / anterior hypothalamus. While dopamine inhibited vocal-motor output, it did not alter behaviorally-relevant parameters of this output, such as vocalization duration and frequency. Dopamine-induced inhibition of vocal production was prevented by the combined blockade of D1- and D2-like receptors but was unaffected by isolated blockade of either D1-receptors or D2-receptors. Our results suggest dopamine neuromodulation in the midshipman PAG may inhibit natural vocal behavior, in courtship and/or agonistic social contexts.
Collapse
Affiliation(s)
- Alexander Allen
- Department of Biology, Gettysburg College, Gettysburg, PA 17325, United States
| | - Elizabeth Heisler
- Department of Biology, Gettysburg College, Gettysburg, PA 17325, United States
| | | |
Collapse
|
4
|
Almeida MM, Cabrita E, Fatsini E. The Use of Sand Substrate Modulates Dominance Behaviour and Brain Gene Expression in a Flatfish Species. Animals (Basel) 2023; 13:ani13060978. [PMID: 36978519 PMCID: PMC10044175 DOI: 10.3390/ani13060978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/04/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023] Open
Abstract
Physical complexity adds physical enrichment to rearing conditions. This enrichment promotes fish welfare and reduces detrimental characteristics that fish develop in captivity. Senegalese sole (Solea senegalensis) is an important species for European aquaculture, where it is reared in intensive conditions using fibreglass tanks. However, reproductive dysfunctions present in this species do not allow it to complete its life cycle in captivity. Recently, dominance behaviour has been studied to try to solve this problem. The present study aimed to assess the effect of sand as environmental enrichment in the dominance behaviour and brain mRNA abundance of Senegalese sole juveniles. Four tanks of sole (n = 48 fish in total) were established in two different environments (with and without sand). Juveniles were subjected to dominance tests of feeding and territoriality. Behaviours analysed by video recordings related to the distance from the food delivered and harassment behaviour towards other individuals (e.g., resting of the head on another individual). In both environments, dominant sole were the first to feed, displayed more head-resting behaviour and dominated the area close to the feeding point, where the events were reduced in fish maintained in the sand. mRNA expression related to differentiation of dopamine neurons (nr4a2) and regulation of maturation (fshra) were significantly upregulated in dominant fish in the sand environment compared to dominants maintained without sand. The use of an enriched environment may affect Senegalese sole dominance, enhance welfare and possibly advance future maturation.
Collapse
|
5
|
Gentile Polese A, Nigam S, Hurley LM. 5-HT1A Receptors Alter Temporal Responses to Broadband Vocalizations in the Mouse Inferior Colliculus Through Response Suppression. Front Neural Circuits 2021; 15:718348. [PMID: 34512276 PMCID: PMC8430226 DOI: 10.3389/fncir.2021.718348] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/19/2021] [Indexed: 01/21/2023] Open
Abstract
Neuromodulatory systems may provide information on social context to auditory brain regions, but relatively few studies have assessed the effects of neuromodulation on auditory responses to acoustic social signals. To address this issue, we measured the influence of the serotonergic system on the responses of neurons in a mouse auditory midbrain nucleus, the inferior colliculus (IC), to vocal signals. Broadband vocalizations (BBVs) are human-audible signals produced by mice in distress as well as by female mice in opposite-sex interactions. The production of BBVs is context-dependent in that they are produced both at early stages of interactions as females physically reject males and at later stages as males mount females. Serotonin in the IC of males corresponds to these events, and is elevated more in males that experience less female rejection. We measured the responses of single IC neurons to five recorded examples of BBVs in anesthetized mice. We then locally activated the 5-HT1A receptor through iontophoretic application of 8-OH-DPAT. IC neurons showed little selectivity for different BBVs, but spike trains were characterized by local regions of high spike probability, which we called "response features." Response features varied across neurons and also across calls for individual neurons, ranging from 1 to 7 response features for responses of single neurons to single calls. 8-OH-DPAT suppressed spikes and also reduced the numbers of response features. The weakest response features were the most likely to disappear, suggestive of an "iceberg"-like effect in which activation of the 5-HT1A receptor suppressed weakly suprathreshold response features below the spiking threshold. Because serotonin in the IC is more likely to be elevated for mounting-associated BBVs than for rejection-associated BBVs, these effects of the 5-HT1A receptor could contribute to the differential auditory processing of BBVs in different behavioral subcontexts.
Collapse
Affiliation(s)
- Arianna Gentile Polese
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Department of Biology, Program in Neuroscience, Indiana University Bloomington, Bloomington, IN, United States
| | - Sunny Nigam
- Department of Neurobiology and Anatomy, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
- Department of Physics, Indiana University Bloomington, Bloomington, IN, United States
| | - Laura M. Hurley
- Department of Neurobiology and Anatomy, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
6
|
Petersen CL, Davis SED, Patel B, Hurley LM. Social Experience Interacts with Serotonin to Affect Functional Connectivity in the Social Behavior Network following Playback of Social Vocalizations in Mice. eNeuro 2021; 8:ENEURO.0247-20.2021. [PMID: 33658309 PMCID: PMC8114900 DOI: 10.1523/eneuro.0247-20.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 02/02/2021] [Accepted: 02/15/2021] [Indexed: 11/29/2022] Open
Abstract
Past social experience affects the circuitry responsible for producing and interpreting current behaviors. The social behavior network (SBN) is a candidate neural ensemble to investigate the consequences of early-life social isolation. The SBN interprets and produces social behaviors, such as vocalizations, through coordinated patterns of activity (functional connectivity) between its multiple nuclei. However, the SBN is relatively unexplored with respect to murine vocal processing. The serotonergic system is sensitive to past experience and innervates many nodes of the SBN; therefore, we tested whether serotonin signaling interacts with social experience to affect patterns of immediate early gene (IEG; cFos) induction in the male SBN following playback of social vocalizations. Male mice were separated into either social housing of three mice per cage or into isolated housing at 18-24 d postnatal. After 28-30 d in housing treatment, mice were parsed into one of three drug treatment groups: control, fenfluramine (FEN; increases available serotonin), or pCPA (depletes available serotonin) and exposed to a 60-min playback of female broadband vocalizations (BBVs). FEN generally increased the number of cFos-immunoreactive (-ir) neurons within the SBN, but effects were more pronounced in socially isolated mice. Despite a generalized increase in cFos immunoreactivity, isolated mice had reduced functional connectivity, clustering, and modularity compared with socially reared mice. These results are analogous to observations of functional dysconnectivity in persons with psychopathologies and suggests that early-life social isolation modulates serotonergic regulation of social networks.
Collapse
Affiliation(s)
- Christopher L Petersen
- Department of Biology, Indiana University Bloomington, Bloomington, IN 47405
- Center for the Integrative Study of Animal Behavior, Indiana University Bloomington, Bloomington, IN 47405
| | - Sarah E D Davis
- Department of Biology, Indiana University Bloomington, Bloomington, IN 47405
| | - Bhumi Patel
- Department of Biology, Indiana University Bloomington, Bloomington, IN 47405
| | - Laura M Hurley
- Department of Biology, Indiana University Bloomington, Bloomington, IN 47405
- Center for the Integrative Study of Animal Behavior, Indiana University Bloomington, Bloomington, IN 47405
- Department of Neuroscience, Indiana University Bloomington, Bloomington, IN 47406
| |
Collapse
|
7
|
Gallman K, Fortune E, Rivera D, Soares D. Differences in behavior between surface and cave Astyanax mexicanus may be mediated by changes in catecholamine signaling. J Comp Neurol 2020; 528:2639-2653. [PMID: 32291742 DOI: 10.1002/cne.24923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 04/02/2020] [Accepted: 04/04/2020] [Indexed: 11/07/2022]
Abstract
Astyanax mexicanus is a teleost fish that is in the process of allopatric speciation. Ancestral Astyanax are found in surface rivers and derived blind forms are found in cave systems. Adaptation to life in nutrient poor caves without predation includes the evolution of enhanced food seeking behaviors and loss of defensive responses. These behavioral adaptations may be mediated by changes in catecholaminergic control systems in the brain. We examined the distribution of tyrosine hydroxylase, a conserved precursor for the synthesis of the catecholamines dopamine and noradrenaline, in the brains of surface and cave Astyanax using immunohistochemistry. We found differences in tyrosine hydroxylase staining in regions that are associated with nonvisual sensory perception, motor control, endocrine release, and attention. These differences included significant increases in the diameters of tyrosine hydroxylase immunoreactive soma in cave Astyanax in the olfactory bulb, basal telencephalon, preoptic nuclei, ventral thalamus, posterior tuberculum, and locus coeruleus. These increases in modulation by dopamine and noradrenaline likely indicate changes in behavioral control that underlie adaptations to the cave environment.
Collapse
Affiliation(s)
- Kathryn Gallman
- Biological Sciences, New Jersey Institute of Technology, New Jersey, USA
| | - Eric Fortune
- Biological Sciences, New Jersey Institute of Technology, New Jersey, USA
| | - Daihana Rivera
- Biological Sciences, New Jersey Institute of Technology, New Jersey, USA
| | - Daphne Soares
- Biological Sciences, New Jersey Institute of Technology, New Jersey, USA
| |
Collapse
|
8
|
Perelmuter JT, Wilson AB, Sisneros JA, Forlano PM. Forebrain Dopamine System Regulates Inner Ear Auditory Sensitivity to Socially Relevant Acoustic Signals. Curr Biol 2019; 29:2190-2198.e3. [PMID: 31204161 DOI: 10.1016/j.cub.2019.05.055] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 04/13/2019] [Accepted: 05/20/2019] [Indexed: 01/11/2023]
Abstract
Dopamine is integral to attentional and motivational processes, but studies are largely restricted to the central nervous system. In mammals [1, 2] and fishes [3, 4], central dopaminergic neurons project to the inner ear and could modulate acoustic signals at the earliest stages of processing. Studies in rodents show dopamine inhibits cochlear afferent neurons and protects against noise-induced acoustic injury [5-10]. However, other functions for inner ear dopamine have not been investigated, and the effect of dopamine on peripheral auditory processing in non-mammalians remains unknown [11, 12]. Insights could be gained by studies conducted in the context of intraspecific acoustic communication. We present evidence from a vocal fish linking reproductive-state-dependent changes in auditory sensitivity with seasonal changes in the dopaminergic efferent system in the saccule, their primary organ of hearing. Plainfin midshipman (Porichthys notatus) migrate from deep-water winter habitats to the intertidal zone in the summer to breed. Nesting males produce nocturnal vocalizations to attract females [13]. Both sexes undergo seasonal enhancement of hearing sensitivity at the level of the hair cell [14-16], increasing the likelihood of detecting conspecific signals [17, 18]. Importantly, reproductive females concurrently have reduced dopaminergic input to the saccule [19]. Here, we show that dopamine decreases saccule auditory sensitivity via a D2-like receptor. Saccule D2a receptor expression is reduced in the summer and correlates with sensitivity within and across seasons. We propose that reproductive-state-dependent changes to the dopaminergic efferent system provide a release of inhibition in the saccule, enhancing peripheral encoding of social-acoustic signals.
Collapse
Affiliation(s)
- Jonathan T Perelmuter
- Psychology Subprogram in Behavioral & Cognitive Neuroscience, The Graduate Center, City University of New York, 365 5(th) Avenue, New York, NY 10016, USA; Biology Department, Brooklyn College, City University of New York, 2900 Bedford Avenue, Brooklyn, NY 11210, USA.
| | - Anthony B Wilson
- Biology Department, Brooklyn College, City University of New York, 2900 Bedford Avenue, Brooklyn, NY 11210, USA; Biology Subprogram in Ecology, Evolutionary Biology and Behavior, The Graduate Center, City University of New York, 365 5(th) Avenue, New York, NY 10016, USA
| | - Joseph A Sisneros
- Psychology Department, University of Washington, Guthrie Hall, Seattle, WA 98195, USA
| | - Paul M Forlano
- Psychology Subprogram in Behavioral & Cognitive Neuroscience, The Graduate Center, City University of New York, 365 5(th) Avenue, New York, NY 10016, USA; Biology Department, Brooklyn College, City University of New York, 2900 Bedford Avenue, Brooklyn, NY 11210, USA; Biology Subprogram in Neuroscience, The Graduate Center, City University of New York, 365 5(th) Avenue, New York, NY 10016, USA; Biology Subprogram in Ecology, Evolutionary Biology and Behavior, The Graduate Center, City University of New York, 365 5(th) Avenue, New York, NY 10016, USA.
| |
Collapse
|
9
|
Timothy M, Forlano PM. A versatile macro-based neurohistological image analysis suite for ImageJ focused on automated and standardized user interaction and reproducible data output. J Neurosci Methods 2019; 324:108286. [PMID: 31063801 DOI: 10.1016/j.jneumeth.2019.04.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 04/16/2019] [Accepted: 04/18/2019] [Indexed: 10/26/2022]
Abstract
BACKGROUND The development and increasing adoption of advanced microscopy imaging technologies, including high resolution, multi-dimensional digital photography and multiple fluorescence channel acquisition, as well as the availability of inexpensive terabyte-capacity storage, have enabled research laboratories to pursue neurohistological imaging experiments involving multiple neurochemical probes and experimental conditions covering a variety of brain regions. Analyzing and processing the resulting datasets, composed of hundreds of micrographs, presents challenges in ensuring accuracy and reproducibility under demanding time and training constraints. NEW METHOD The 'Custom Macros' plugin suite for ImageJ automates and systematizes user interaction in neurohistological image analysis tasks, including region selection and thresholding, point/object counts, area measurement, batch filter processing, and data review. Written in the accessible ImageJ macro language, the plugin implements a user login-based data storage framework and facilitates inter-laboratory collaboration over cloud file server clients. RESULTS A macro-based interface approach integrates dozens of novel operations, software interactions, algorithm calls, and background tasks into individual shortcut commands. Every completed procedure generates image, region, and calibrated measurement records that are saved in a standardized folder structure. COMPARISONS WITH EXISTING METHODS Plugin installation adds startup access to a persistent interface layer of extensive and streamlined functionality that is generalizable to a variety of neurohistological contexts, thus providing an efficient and reliable alternative to the use of analysis software in an unstructured, provisional manner that necessitates repeated menu and plugin interaction. CONCLUSIONS Our free/open-source software provides researchers a straightforward solution to addressing daunting usability and data oversight issues, ultimately making efficient, accessible, and reproducible image analysis methodology attainable for many laboratories.
Collapse
Affiliation(s)
- Miky Timothy
- Department of Biology, Brooklyn College, City University of New York, Brooklyn, NY, United States.
| | - Paul M Forlano
- Department of Biology, Brooklyn College, City University of New York, Brooklyn, NY, United States; Doctoral Subprogram in Ecology, Evolutionary Biology and Behavior, The Graduate Center, City University of New York, New York, NY, United States; Doctoral Subprogram in Neuroscience, The Graduate Center, City University of New York, New York, NY, United States; Doctoral Subprogram in Behavioral and Cognitive Neuroscience, The Graduate Center, City University of New York, New York, NY, United States; Aquatic Research and Environmental Assessment Center (AREAC), Brooklyn College, Brooklyn, NY, United States
| |
Collapse
|