1
|
Tang YB, Tang L, Chen B, Fan MJ, Chen GJ, Ou YN, Yang F, Wu XZ. Intranasal oxytocin alleviates postsurgical pain and comorbid anxiety in mice: Participation of BK(Ca) channels in the hippocampus. Neuropharmacology 2025; 265:110243. [PMID: 39631680 DOI: 10.1016/j.neuropharm.2024.110243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/10/2024] [Accepted: 11/30/2024] [Indexed: 12/07/2024]
Abstract
The affective dimension in postsurgical pain is still poorly understood. Since neuropeptide oxytocin (OXT) has been implicated in a broad spectrum of pain and negative emotion, we investigated the potential therapeutic effect of intranasal OXT on postsurgical pain and associated anxiety in a mice model of plantar incision. The role of large conductance Ca(2+)-activated K(+) (BK(Ca)) channels was explored by using behavioral pharmacology experiments. We reported that plantar incision in mice induced anxiety-like behaviors and mechanical pain hypersensitivity, with a concurrent decrease of the oxytocin receptor (OTR) in the hippocampus. The immunofluorescence staining showed that the OTR were enriched in pyramidal neurons in CA3 subregion of hippocampus and which were highly co-expressed with the BK(Ca) channels in CA3 subregion. Intranasal OXT significantly ameliorated this postsurgical pain and associated anxiety in a dose-dependent manner, while Intra-CA3 microinjection of OTR antagonist atosiban or the BK(Ca) channel blocker paxilline reduced the effect of OXT in incisional mice. Moreover, intra-CA3 microinjection of BK(Ca) channel opener NS1619 produced a similar effect on postsurgical pain and associated anxiety-like behaviors as those observed following intranasal OXT administration. Conversely, intra-CA3 microinjection of BK(Ca) channel blocker paxilline in normal mice was sufficient to evoke mechanical pain hypersensitivity. Taken together, our data suggested that intranasal OXT administration exerted analgesic and anxiolytic effects in incisional mice by opening BK(Ca) channels in the CA3 subregion of hippocampus.
Collapse
Affiliation(s)
- Yan-Bin Tang
- Department of Anesthesiology and Perioperative Medicine, Fuzong Clinical Medical College (900th Hospital of the Joint Logistic Support Force), Fujian Medical University, Fuzhou, Fujian, PR China; Department of Anesthesiology, Zhongshan Hospital, Xiamen University, Xiamen, Fujian, PR China
| | - Li Tang
- Department of Orthodontics, The Affiliated Hospital of Qingdao University, School of Stomatology, Qingdao University, Qingdao, Shandong, PR China
| | - Bin Chen
- Department of Anesthesiology and Perioperative Medicine, Fuzong Clinical Medical College (900th Hospital of the Joint Logistic Support Force), Fujian Medical University, Fuzhou, Fujian, PR China
| | - Miao-Jie Fan
- Department of Anesthesiology and Perioperative Medicine, Fuzong Clinical Medical College (900th Hospital of the Joint Logistic Support Force), Fujian Medical University, Fuzhou, Fujian, PR China
| | - Gao-Jie Chen
- Department of Anesthesiology and Perioperative Medicine, Fuzong Clinical Medical College (900th Hospital of the Joint Logistic Support Force), Fujian Medical University, Fuzhou, Fujian, PR China
| | - Yu-Ning Ou
- Department of Anesthesiology and Perioperative Medicine, Fuzong Clinical Medical College (900th Hospital of the Joint Logistic Support Force), Fujian Medical University, Fuzhou, Fujian, PR China
| | - Fei Yang
- Department of Anesthesiology and Perioperative Medicine, Fuzong Clinical Medical College (900th Hospital of the Joint Logistic Support Force), Fujian Medical University, Fuzhou, Fujian, PR China.
| | - Xiao-Zhi Wu
- Department of Anesthesiology and Perioperative Medicine, Fuzong Clinical Medical College (900th Hospital of the Joint Logistic Support Force), Fujian Medical University, Fuzhou, Fujian, PR China
| |
Collapse
|
2
|
Echeverría F, Gonzalez-Sanabria N, Alvarado-Sanchez R, Fernández M, Castillo K, Latorre R. Large conductance voltage-and calcium-activated K + (BK) channel in health and disease. Front Pharmacol 2024; 15:1373507. [PMID: 38584598 PMCID: PMC10995336 DOI: 10.3389/fphar.2024.1373507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 03/12/2024] [Indexed: 04/09/2024] Open
Abstract
Large Conductance Voltage- and Calcium-activated K+ (BK) channels are transmembrane pore-forming proteins that regulate cell excitability and are also expressed in non-excitable cells. They play a role in regulating vascular tone, neuronal excitability, neurotransmitter release, and muscle contraction. Dysfunction of the BK channel can lead to arterial hypertension, hearing disorders, epilepsy, and ataxia. Here, we provide an overview of BK channel functioning and the implications of its abnormal functioning in various diseases. Understanding the function of BK channels is crucial for comprehending the mechanisms involved in regulating vital physiological processes, both in normal and pathological conditions, controlled by BK. This understanding may lead to the development of therapeutic interventions to address BK channelopathies.
Collapse
Affiliation(s)
- Felipe Echeverría
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Naileth Gonzalez-Sanabria
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Rosangelina Alvarado-Sanchez
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Miguel Fernández
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Karen Castillo
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
- Centro de Investigación de Estudios Avanzados del Maule, Vicerrectoría de Investigación y Postgrado, Universidad Católica del Maule, Talca, Chile
| | - Ramon Latorre
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| |
Collapse
|
3
|
Smith PA. Neuropathic pain; what we know and what we should do about it. FRONTIERS IN PAIN RESEARCH 2023; 4:1220034. [PMID: 37810432 PMCID: PMC10559888 DOI: 10.3389/fpain.2023.1220034] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 09/05/2023] [Indexed: 10/10/2023] Open
Abstract
Neuropathic pain can result from injury to, or disease of the nervous system. It is notoriously difficult to treat. Peripheral nerve injury promotes Schwann cell activation and invasion of immunocompetent cells into the site of injury, spinal cord and higher sensory structures such as thalamus and cingulate and sensory cortices. Various cytokines, chemokines, growth factors, monoamines and neuropeptides effect two-way signalling between neurons, glia and immune cells. This promotes sustained hyperexcitability and spontaneous activity in primary afferents that is crucial for onset and persistence of pain as well as misprocessing of sensory information in the spinal cord and supraspinal structures. Much of the current understanding of pain aetiology and identification of drug targets derives from studies of the consequences of peripheral nerve injury in rodent models. Although a vast amount of information has been forthcoming, the translation of this information into the clinical arena has been minimal. Few, if any, major therapeutic approaches have appeared since the mid 1990's. This may reflect failure to recognise differences in pain processing in males vs. females, differences in cellular responses to different types of injury and differences in pain processing in humans vs. animals. Basic science and clinical approaches which seek to bridge this knowledge gap include better assessment of pain in animal models, use of pain models which better emulate human disease, and stratification of human pain phenotypes according to quantitative assessment of signs and symptoms of disease. This can lead to more personalized and effective treatments for individual patients. Significance statement: There is an urgent need to find new treatments for neuropathic pain. Although classical animal models have revealed essential features of pain aetiology such as peripheral and central sensitization and some of the molecular and cellular mechanisms involved, they do not adequately model the multiplicity of disease states or injuries that may bring forth neuropathic pain in the clinic. This review seeks to integrate information from the multiplicity of disciplines that seek to understand neuropathic pain; including immunology, cell biology, electrophysiology and biophysics, anatomy, cell biology, neurology, molecular biology, pharmacology and behavioral science. Beyond this, it underlines ongoing refinements in basic science and clinical practice that will engender improved approaches to pain management.
Collapse
Affiliation(s)
- Peter A. Smith
- Neuroscience and Mental Health Institute and Department of Pharmacology, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
4
|
Ancatén-González C, Segura I, Alvarado-Sánchez R, Chávez AE, Latorre R. Ca 2+- and Voltage-Activated K + (BK) Channels in the Nervous System: One Gene, a Myriad of Physiological Functions. Int J Mol Sci 2023; 24:3407. [PMID: 36834817 PMCID: PMC9967218 DOI: 10.3390/ijms24043407] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/18/2023] [Accepted: 01/21/2023] [Indexed: 02/11/2023] Open
Abstract
BK channels are large conductance potassium channels characterized by four pore-forming α subunits, often co-assembled with auxiliary β and γ subunits to regulate Ca2+ sensitivity, voltage dependence and gating properties. BK channels are abundantly expressed throughout the brain and in different compartments within a single neuron, including axons, synaptic terminals, dendritic arbors, and spines. Their activation produces a massive efflux of K+ ions that hyperpolarizes the cellular membrane. Together with their ability to detect changes in intracellular Ca2+ concentration, BK channels control neuronal excitability and synaptic communication through diverse mechanisms. Moreover, increasing evidence indicates that dysfunction of BK channel-mediated effects on neuronal excitability and synaptic function has been implicated in several neurological disorders, including epilepsy, fragile X syndrome, mental retardation, and autism, as well as in motor and cognitive behavior. Here, we discuss current evidence highlighting the physiological importance of this ubiquitous channel in regulating brain function and its role in the pathophysiology of different neurological disorders.
Collapse
Affiliation(s)
- Carlos Ancatén-González
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Instituto de Neurociencias, Universidad de Valparaíso, Valparaíso 2340000, Chile
- Programa de Doctorado en Ciencias, Mención Neurociencia, Universidad de Valparaíso, Valparaíso 2340000, Chile
| | - Ignacio Segura
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Instituto de Neurociencias, Universidad de Valparaíso, Valparaíso 2340000, Chile
| | - Rosangelina Alvarado-Sánchez
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Instituto de Neurociencias, Universidad de Valparaíso, Valparaíso 2340000, Chile
- Doctorado en Ciencias Mención Biofísica y Biología Computacional, Universidad de Valparaíso, Valparaíso 2340000, Chile
| | - Andrés E. Chávez
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Instituto de Neurociencias, Universidad de Valparaíso, Valparaíso 2340000, Chile
| | - Ramon Latorre
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Instituto de Neurociencias, Universidad de Valparaíso, Valparaíso 2340000, Chile
| |
Collapse
|
5
|
Linde LD, Ogryzlo CM, Choles CM, Cairns BE, Kramer JLK. Efficacy of topical cannabinoids in the management of pain: a systematic review and meta-analysis of animal studies. Reg Anesth Pain Med 2022; 47:183-191. [PMID: 35012994 DOI: 10.1136/rapm-2021-102719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 12/12/2021] [Indexed: 02/01/2023]
Abstract
BACKGROUND/IMPORTANCE Cannabinoids are emerging as an alternative pain management option, preliminarily supported by preclinical and clinical studies. Unwanted side effects from oral or inhaled cannabinoids remain, however, a major barrier to widespread use. Peripherally acting cannabinoids (eg, topically applied) may circumvent these side effects while providing localized pain management. OBJECTIVE Our purpose was to systematically review the literature on the effectiveness of peripherally acting cannabinoids for pain management. EVIDENCE REVIEW We searched MEDLINE, EMBASE, CENTRAL, CINAHL, and PubMed databases. Included studies examined the effect of topical/peripherally administered cannabinoids on pain ratings in humans, as well as pain-related outcomes in animals (eg, paw withdrawal). Due to a lack of trials, human studies were summarized in a narrative synthesis. Separate meta-analyses were performed for animal studies using radiant tail flick or paw withdrawal outcomes. FINDINGS Our search yielded 1182 studies following removal of duplicates, with 46 studies (6 human, 40 animal) included. Human studies (one randomized controlled trial and five case studies/series) reported no adverse events to topical cannabinoids and preliminary evidence of decreased pain ratings. Animal studies reporting tail flick (5) (2.81, 95% CI 1.93 to 3.69, p<0.001) and mechanical withdrawal (11) (2.74, 95% CI 1.82 to 3.67, p<0.001) reported prolonged responses (analgesia) in peripheral cannabinoid groups compared with controls. CONCLUSIONS Preclinical animal studies provided low-quality evidence for peripherally administered cannabinoids to provide regional, antinociceptive effects. The scarcity of high-quality human studies underscores the need to translate preclinical evidence into well-controlled human trials.
Collapse
Affiliation(s)
- Lukas D Linde
- International Collaboration on Repair Discoveries (ICORD), Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada .,Department of Anesthesiology, Pharmacology & Therapeutics, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Carey M Ogryzlo
- International Collaboration on Repair Discoveries (ICORD), Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Cassandra M Choles
- International Collaboration on Repair Discoveries (ICORD), Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Brian E Cairns
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | - John L K Kramer
- International Collaboration on Repair Discoveries (ICORD), Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada.,Department of Anesthesiology, Pharmacology & Therapeutics, The University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
6
|
Alles SRA, Smith PA. Peripheral Voltage-Gated Cation Channels in Neuropathic Pain and Their Potential as Therapeutic Targets. FRONTIERS IN PAIN RESEARCH 2021; 2:750583. [PMID: 35295464 PMCID: PMC8915663 DOI: 10.3389/fpain.2021.750583] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 11/10/2021] [Indexed: 11/25/2022] Open
Abstract
The persistence of increased excitability and spontaneous activity in injured peripheral neurons is imperative for the development and persistence of many forms of neuropathic pain. This aberrant activity involves increased activity and/or expression of voltage-gated Na+ and Ca2+ channels and hyperpolarization activated cyclic nucleotide gated (HCN) channels as well as decreased function of K+ channels. Because they display limited central side effects, peripherally restricted Na+ and Ca2+ channel blockers and K+ channel activators offer potential therapeutic approaches to pain management. This review outlines the current status and future therapeutic promise of peripherally acting channel modulators. Selective blockers of Nav1.3, Nav1.7, Nav1.8, Cav3.2, and HCN2 and activators of Kv7.2 abrogate signs of neuropathic pain in animal models. Unfortunately, their performance in the clinic has been disappointing; some substances fail to meet therapeutic end points whereas others produce dose-limiting side effects. Despite this, peripheral voltage-gated cation channels retain their promise as therapeutic targets. The way forward may include (i) further structural refinement of K+ channel activators such as retigabine and ASP0819 to improve selectivity and limit toxicity; use or modification of Na+ channel blockers such as vixotrigine, PF-05089771, A803467, PF-01247324, VX-150 or arachnid toxins such as Tap1a; the use of Ca2+ channel blockers such as TTA-P2, TTA-A2, Z 944, ACT709478, and CNCB-2; (ii) improving methods for assessing "pain" as opposed to nociception in rodent models; (iii) recognizing sex differences in pain etiology; (iv) tailoring of therapeutic approaches to meet the symptoms and etiology of pain in individual patients via quantitative sensory testing and other personalized medicine approaches; (v) targeting genetic and biochemical mechanisms controlling channel expression using anti-NGF antibodies such as tanezumab or re-purposed drugs such as vorinostat, a histone methyltransferase inhibitor used in the management of T-cell lymphoma, or cercosporamide a MNK 1/2 inhibitor used in treatment of rheumatoid arthritis; (vi) combination therapy using drugs that are selective for different channel types or regulatory processes; (vii) directing preclinical validation work toward the use of human or human-derived tissue samples; and (viii) application of molecular biological approaches such as clustered regularly interspaced short palindromic repeats (CRISPR) technology.
Collapse
Affiliation(s)
- Sascha R A Alles
- Department of Anesthesiology and Critical Care Medicine, University of New Mexico School of Medicine, Albuquerque, NM, United States
| | - Peter A Smith
- Department of Pharmacology, Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
7
|
Lin YF. Potassium channels as molecular targets of endocannabinoids. Channels (Austin) 2021; 15:408-423. [PMID: 34282702 PMCID: PMC8293965 DOI: 10.1080/19336950.2021.1910461] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/24/2021] [Accepted: 03/24/2021] [Indexed: 10/25/2022] Open
Abstract
Endocannabinoids are a group of endogenous mediators derived from membrane lipids, which are implicated in a wide variety of physiological functions such as blood pressure regulation, immunity, pain, memory, reward, perception, reproduction, and sleep. N-Arachidonoylethanolamine (anandamide; AEA) and 2-arachidonoylglycerol (2-AG) represent two major endocannabinoids in the human body and they exert many of their cellular and organ system effects by activating the Gi/o protein-coupled, cannabinoid type 1 (CB1) and type 2 (CB2) receptors. However, not all effects of cannabinoids are ascribable to their interaction with CB1 and CB2 receptors; indeed, macromolecules like other types of receptors, ion channels, transcription factors, enzymes, transporters, and cellular structure have been suggested to mediate the functional effects of cannabinoids. Among the proposed molecular targets of endocannabinoids, potassium channels constitute an intriguing group, because these channels not only are crucial in shaping action potentials and controlling the membrane potential and cell excitability, thereby regulating a wide array of physiological processes, but also serve as potential therapeutic targets for the treatment of cancer and metabolic, neurological and cardiovascular disorders. This review sought to survey evidence pertaining to the CB1 and CB2 receptor-independent actions of endocannabinoids on ion channels, with an emphasis on AEA and potassium channels. To better understand the functional roles as well as potential medicinal uses of cannabinoids in human health and disease, further mechanistic studies to delineate interactions between various types of cannabinoids and ion channels, including members in the potassium channel superfamily, are warranted.
Collapse
Affiliation(s)
- Yu-Fung Lin
- Department of Physiology and Membrane Biology, University of California Davis, Davis, CA, USA
- Department of Anesthesiology and Pain Medicine, University of California Davis, Davis, CA, USA
| |
Collapse
|
8
|
The Endogenous Cannabinoid and the Nitricoxidergic Systems Differently Influence Heat and Cold Stress-Induced Analgesia. ACTA MEDICA BULGARICA 2021. [DOI: 10.2478/amb-2021-0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Abstract
Stress-induced analgesia (SIA) is a well-known phenomenon, in which mechanisms of development opioid and non-opioid components take part. The endogenous cannabinoid system (ECS) takes part in the non-opioid pathways and modulates nociception. Nitric oxide (NO) is also proverbial to interfere with pain perception. The present study was performed to investigate the effects from interaction between the ECS and NO after heat (heat stress) or cold (cold stress) exposure. Male Wistar rats subjected to one hour of heat or cold stress were injected with different combinations of cannabinoid receptor type 1 (CB1) agonist anandamide (AEA) or antagonist (AM251) along with NO-donor, NO-precursor or inhibitor of the NO-synthase (NOS). Nociception was evaluated using Paw pressure (Randall-Selitto) test. The results showed that AEA-administration immediately after the end of stress let to a tendency to increase cold-SIA, but decreased heat-SIA. AEA along with NO-donor increased both cold- and heat-SIA but to a different degree. AM251 and NOS-inhibitor decreased SIA. Our experiments confirmed that the endogenous cannabinoid and the nitricoxidergic systems interact between them in the modulation of SIA. The ECS exerts a more prominent influence on cold rather than heat SIA. Differences in modulation probably depend on the type of stress, due to the different participation of ECS in the mechanisms of SIA development.
Collapse
|
9
|
Smith PA. K + Channels in Primary Afferents and Their Role in Nerve Injury-Induced Pain. Front Cell Neurosci 2020; 14:566418. [PMID: 33093824 PMCID: PMC7528628 DOI: 10.3389/fncel.2020.566418] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 08/21/2020] [Indexed: 12/12/2022] Open
Abstract
Sensory abnormalities generated by nerve injury, peripheral neuropathy or disease are often expressed as neuropathic pain. This type of pain is frequently resistant to therapeutic intervention and may be intractable. Numerous studies have revealed the importance of enduring increases in primary afferent excitability and persistent spontaneous activity in the onset and maintenance of peripherally induced neuropathic pain. Some of this activity results from modulation, increased activity and /or expression of voltage-gated Na+ channels and hyperpolarization-activated cyclic nucleotide-gated (HCN) channels. K+ channels expressed in dorsal root ganglia (DRG) include delayed rectifiers (Kv1.1, 1.2), A-channels (Kv1.4, 3.3, 3.4, 4.1, 4.2, and 4.3), KCNQ or M-channels (Kv7.2, 7.3, 7.4, and 7.5), ATP-sensitive channels (KIR6.2), Ca2+-activated K+ channels (KCa1.1, 2.1, 2.2, 2.3, and 3.1), Na+-activated K+ channels (KCa4.1 and 4.2) and two pore domain leak channels (K2p; TWIK related channels). Function of all K+ channel types is reduced via a multiplicity of processes leading to altered expression and/or post-translational modification. This also increases excitability of DRG cell bodies and nociceptive free nerve endings, alters axonal conduction and increases neurotransmitter release from primary afferent terminals in the spinal dorsal horn. Correlation of these cellular changes with behavioral studies provides almost indisputable evidence for K+ channel dysfunction in the onset and maintenance of neuropathic pain. This idea is underlined by the observation that selective impairment of just one subtype of DRG K+ channel can produce signs of pain in vivo. Whilst it is established that various mediators, including cytokines and growth factors bring about injury-induced changes in DRG function and excitability, evidence presently available points to a seminal role for interleukin 1β (IL-1β) in control of K+ channel function. Despite the current state of knowledge, attempts to target K+ channels for therapeutic pain management have met with limited success. This situation may change with the advent of personalized medicine. Identification of specific sensory abnormalities and genetic profiling of individual patients may predict therapeutic benefit of K+ channel activators.
Collapse
Affiliation(s)
- Peter A. Smith
- Department of Pharmacology and Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
10
|
Alsalem M, Altarifi A, Haddad M, Azab B, Kalbouneh H, Imraish A, Saleh T, El-Salem K. Analgesic Effects and Impairment in Locomotor Activity Induced by Cannabinoid/Opioid Combinations in Rat Models of Chronic Pain. Brain Sci 2020; 10:brainsci10080523. [PMID: 32781705 PMCID: PMC7547378 DOI: 10.3390/brainsci10080523] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/02/2020] [Accepted: 08/03/2020] [Indexed: 11/20/2022] Open
Abstract
Both opioids and cannabinoids have well-known antinociceptive effects in different animal models of chronic pain. However, unwanted side effects limit their use. The aim of this study is to evaluate the antinociceptive effect of combining synthetic cannabinoids with subtherapeutic doses of opioids, and to evaluate the effects of these drugs/combinations on rat’s locomotor activity. Intra-plantar injection of Complete Freund’s Adjuvant (CFA) into the left hindpaw and intraperitoneal injection of streptozotocin (STZ) were used to induce inflammatory and diabetic neuropathic pain in adult male Sprague-Dawley rats, respectively. Von Frey filaments were used to assess the antinociceptive effects of opioids (morphine and tramadol) and the synthetic cannabinoids (HU210 and WIN55212) or their combinations on CFA and STZ-induced mechanical allodynia. Open field test was used to evaluate the effect of these drugs or their combinations on locomotion. HU210 and WIN55212 did not produce significant antinociceptive effect on inflammatory pain while only the maximal dose of HU210 (1 mg/kg) was effective in neuropathic pain. Only the maximal doses of morphine (3.2 mg/kg) and tramadol (10 mg/kg) had significant anti-allodynic effects in both models. Tramadol (1 mg/kg) enhanced the antinociceptive effects of WIN55212 but not HU210 in neuropathic pain with no effect on inflammatory pain. However, in open field test, the aforementioned combination did not change tramadol-induced depression of locomotion. Tramadol and WIN55212 combination produces antinociceptive effects in neuropathic but not inflammatory pain at low doses with no additional risk of locomotor impairment, which may be useful in clinical practice.
Collapse
Affiliation(s)
- Mohammad Alsalem
- Faculty of Medicine, The University of Jordan, Amman 11942, Jordan; (B.A.); (H.K.)
- Correspondence:
| | - Ahmad Altarifi
- Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan; (A.A.); (K.E.-S.)
| | - Mansour Haddad
- Faculty of Pharmacy, Philadelphia University, Amman 19392, Jordan;
| | - Belal Azab
- Faculty of Medicine, The University of Jordan, Amman 11942, Jordan; (B.A.); (H.K.)
| | - Heba Kalbouneh
- Faculty of Medicine, The University of Jordan, Amman 11942, Jordan; (B.A.); (H.K.)
| | - Amer Imraish
- Faculty of Science, The University of Jordan, Amman 11942, Jordan;
| | - Tareq Saleh
- Faculty of Medicine, The Hashemite University, Zarqa 13133, Jordan;
| | - Khalid El-Salem
- Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan; (A.A.); (K.E.-S.)
| |
Collapse
|
11
|
Buisseret B, Alhouayek M, Guillemot-Legris O, Muccioli GG. Endocannabinoid and Prostanoid Crosstalk in Pain. Trends Mol Med 2019; 25:882-896. [PMID: 31160168 DOI: 10.1016/j.molmed.2019.04.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/18/2019] [Accepted: 04/22/2019] [Indexed: 12/31/2022]
Abstract
Interfering with endocannabinoid (eCB) metabolism to increase their levels is a proven anti-nociception strategy. However, because the eCB and prostanoid systems are intertwined, interfering with eCB metabolism will affect the prostanoid system and inversely. Key to this connection is the production of the cyclooxygenase (COX) substrate arachidonic acid upon eCB hydrolysis as well as the ability of COX to metabolize the eCBs anandamide (AEA) and 2-arachidonoylglycerol (2-AG) into prostaglandin-ethanolamides (PG-EA) and prostaglandin-glycerol esters (PG-G), respectively. Recent studies shed light on the role of PG-Gs and PG-EAs in nociception and inflammation. Here, we discuss the role of these complex systems in nociception and new opportunities to alleviate pain by interacting with them.
Collapse
Affiliation(s)
- Baptiste Buisseret
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, Université Catholique de Louvain, 1200 Bruxelles, Belgium
| | - Mireille Alhouayek
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, Université Catholique de Louvain, 1200 Bruxelles, Belgium
| | - Owein Guillemot-Legris
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, Université Catholique de Louvain, 1200 Bruxelles, Belgium
| | - Giulio G Muccioli
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, Université Catholique de Louvain, 1200 Bruxelles, Belgium.
| |
Collapse
|