1
|
Portillo E, Zi X, Kim Y, Tucker LB, Fu A, Miller LA, Valenzuela KS, Sullivan GM, Gauff AK, Yu F, Radomski KL, McCabe JT, Armstrong RC. Persistent hypersomnia following repetitive mild experimental traumatic brain injury: Roles of chronic stress and sex differences. J Neurosci Res 2023; 101:843-865. [PMID: 36624699 DOI: 10.1002/jnr.25165] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/15/2022] [Accepted: 12/30/2022] [Indexed: 01/11/2023]
Abstract
Traumatic brain injury (TBI) is often more complicated than a single head injury. An extreme example of this point may be military service members who experience a spectrum of exposures over a prolonged period under stressful conditions. Understanding the effects of complex exposures can inform evaluation and care to prevent persistent symptoms. We designed a longitudinal series of non-invasive procedures in adult mice to evaluate the effects of prolonged mild stress and head injury exposures. We assessed anxiety, depression, and sleep-wake dysfunction as symptoms that impact long-term outcomes after mild TBI. Unpredictable chronic mild stress (UCMS) was generated from a varied sequence of environmental stressors distributed within each of 21 days. Subsequently, mice received a mild blast combined with closed-head mild TBI on 5 days at 24-h intervals. In males and females, UCMS induced anxiety without depressive behavior. A major finding was reproducible sleep-wake dysfunction through 6- to 12-month time points in male mice that received UCMS with repetitive blast plus TBI events, or surprisingly after just UCMS alone. Specifically, male mice exhibited hypersomnia with increased sleep during the active/dark phase and fragmentation of longer wake bouts. Sleep-wake dysfunction was not found with TBI events alone, and hypersomnia was not found in females under any conditions. These results identify prolonged stress and sex differences as important considerations for sleep-wake dysfunction. Furthermore, this reproducible hypersomnia with impaired wakefulness is similar to the excessive daytime sleepiness reported in patients, including patients with TBI, which warrants further clinical screening, care, and treatment development.
Collapse
Affiliation(s)
- Edwin Portillo
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA.,The Henry M Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA.,The Center for Neuroscience and Regenerative Medicine, Bethesda, Maryland, USA
| | - Xiaomei Zi
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA.,The Henry M Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA.,The Center for Neuroscience and Regenerative Medicine, Bethesda, Maryland, USA
| | - Yeonho Kim
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA.,The Henry M Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA.,Preclinical Behavior and Modeling Core, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Laura B Tucker
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA.,The Henry M Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA.,Preclinical Behavior and Modeling Core, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Amanda Fu
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA.,The Henry M Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA.,Preclinical Behavior and Modeling Core, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Lauren A Miller
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA.,The Henry M Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA.,The Center for Neuroscience and Regenerative Medicine, Bethesda, Maryland, USA
| | - Krystal S Valenzuela
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA.,The Henry M Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA.,The Center for Neuroscience and Regenerative Medicine, Bethesda, Maryland, USA
| | - Genevieve M Sullivan
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA.,The Henry M Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA.,The Center for Neuroscience and Regenerative Medicine, Bethesda, Maryland, USA
| | - Amina K Gauff
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA.,The Henry M Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA.,The Center for Neuroscience and Regenerative Medicine, Bethesda, Maryland, USA
| | - Fengshan Yu
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA.,The Henry M Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA.,The Center for Neuroscience and Regenerative Medicine, Bethesda, Maryland, USA
| | - Kryslaine L Radomski
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA.,The Henry M Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA.,The Center for Neuroscience and Regenerative Medicine, Bethesda, Maryland, USA
| | - Joseph T McCabe
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA.,The Center for Neuroscience and Regenerative Medicine, Bethesda, Maryland, USA.,Preclinical Behavior and Modeling Core, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Regina C Armstrong
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA.,The Center for Neuroscience and Regenerative Medicine, Bethesda, Maryland, USA
| |
Collapse
|
2
|
Lin Y, Chen-Lung Chou A, Lin X, Wu Z, Ju Q, Li Y, Ye Z, Zhang B. A case of Kernohan-Woltman notch phenomenon caused by an epidural hematoma: the diagnostic and prognostic value of PET/CT imaging. BMC Neurol 2022; 22:419. [DOI: 10.1186/s12883-022-02965-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 11/02/2022] [Indexed: 11/11/2022] Open
Abstract
Abstract
Background
Kernohan-Woltman notch phenomenon (KWNP) classically occurs when a lesion causes compression of the contralateral cerebral peduncle against the tentorium, resulting in ipsilateral hemiparesis. It has been studied clinically, radiologically and electrophysiologically which all confirmed to cause false localizing motor signs. Here, we demonstrate the potential use of fluorine-18 fluorodeoxyglucose (18 F-FDG) positron emission tomography/computed tomography (PET/CT) to identify KWNP caused by an epidural hematoma.
Case presentation
A 29-year-old male patient post right-sided traumatic brain injury presenting with persistent ipsilateral hemiparesis. Patient underwent decompressive craniotomy and intracranial hematoma evacuation. Brain magnetic resonance imaging in the postoperative period showed a subtle lesion in the left cerebral peduncle. PET/CT was performed to exclude early brain tumor and explain his ipsilateral hemiparesis. PET/CT imaging demonstrated a focal region of intense 18 F-FDG uptake in the left cerebral peduncle. Throughout the treatment in outpatient neurorehabilitation unit, the patient exhibited a gradual recovery of his right hemiparesis.
Conclusion
In our case report, for the first time, PET/CT offered microstructural and functional confirmation of KWNP. Moreover, our case suggests that 18 F-FDG PET/CT may serve as an important reference for the probability of functional recovery.
Collapse
|
3
|
McNamara EH, Tucker LB, Liu J, Fu AH, Kim Y, Vu PA, McCabe JT. Limbic Responses Following Shock Wave Exposure in Male and Female Mice. Front Behav Neurosci 2022; 16:863195. [PMID: 35747840 PMCID: PMC9210954 DOI: 10.3389/fnbeh.2022.863195] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 04/04/2022] [Indexed: 01/26/2023] Open
Abstract
Blast traumatic brain injury (bTBI) presents a serious threat to military personnel and often results in psychiatric conditions related to limbic system dysfunction. In this study, the functional outcomes for anxiety- and depressive-like behaviors and neuronal activation were evaluated in male and female mice after exposure to an Advanced Blast Simulator (ABS) shock wave. Mice were placed in a ventrally exposed orientation inside of the ABS test section and received primary and tertiary shock wave insults of approximately 15 psi peak pressure. Evans blue staining indicated cases of blood-brain barrier breach in the superficial cerebral cortex four, but not 24 h after blast, but the severity was variable. Behavioral testing with the elevated plus maze (EPM) or elevated zero maze (EZM), sucrose preference test (SPT), and tail suspension test (TST) or forced swim test (FST) were conducted 8 days–3.5 weeks after shock wave exposure. There was a sex difference, but no injury effect, for distance travelled in the EZM where female mice travelled significantly farther than males. The SPT and FST did not indicate group differences; however, injured mice were less immobile than sham mice during the TST; possibly indicating more agitated behavior. In a separate cohort of animals, the expression of the immediate early gene, c-Fos, was detected 4 h after undergoing bTBI or sham procedures. No differences in c-Fos expression were found in the cerebral cortex, but female mice in general displayed enhanced c-Fos activation in the paraventricular nucleus of the thalamus (PVT) compared to male mice. In the amygdala, more c-Fos-positive cells were observed in injured animals compared to sham mice. The observed sex differences in the PVT and c-Fos activation in the amygdala may correlate with the reported hyperactivity of females post-injury. This study demonstrates, albeit with mild effects, behavioral and neuronal activation correlates in female rodents after blast injury that could be relevant to the incidence of increased post-traumatic stress disorder in women.
Collapse
Affiliation(s)
- Eileen H. McNamara
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Laura B. Tucker
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
- Pre-Clinical Studies Core, Center for Neuroscience and Regenerative Medicine, Henry M. Jackson Foundation, Bethesda, MD, United States
| | - Jiong Liu
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Amanda H. Fu
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
- Pre-Clinical Studies Core, Center for Neuroscience and Regenerative Medicine, Henry M. Jackson Foundation, Bethesda, MD, United States
| | - Yeonho Kim
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
- Pre-Clinical Studies Core, Center for Neuroscience and Regenerative Medicine, Henry M. Jackson Foundation, Bethesda, MD, United States
| | - Patricia A. Vu
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Joseph T. McCabe
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
- Pre-Clinical Studies Core, Center for Neuroscience and Regenerative Medicine, Henry M. Jackson Foundation, Bethesda, MD, United States
- *Correspondence: Joseph T. McCabe,
| |
Collapse
|
4
|
Huang CX, Li YH, Lu W, Huang SH, Li MJ, Xiao LZ, Liu J. Positron emission tomography imaging for the assessment of mild traumatic brain injury and chronic traumatic encephalopathy: recent advances in radiotracers. Neural Regen Res 2022; 17:74-81. [PMID: 34100430 PMCID: PMC8451552 DOI: 10.4103/1673-5374.314285] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A chronic phase following repetitive mild traumatic brain injury can present as chronic traumatic encephalopathy in some cases, which requires a neuropathological examination to make a definitive diagnosis. Positron emission tomography (PET) is a molecular imaging modality that has high sensitivity for detecting even very small molecular changes, and can be used to quantitatively measure a range of molecular biological processes in the brain using different radioactive tracers. Functional changes have also been reported in patients with different forms of traumatic brain injury, especially mild traumatic brain injury and subsequent chronic traumatic encephalopathy. Thus, PET provides a novel approach for the further evaluation of mild traumatic brain injury at molecular levels. In this review, we discuss the recent advances in PET imaging with different radiotracers, including radioligands for PET imaging of glucose metabolism, tau, amyloid-beta, γ-aminobutyric acid type A receptors, and neuroinflammation, in the identification of altered neurological function. These novel radiolabeled ligands are likely to have widespread clinical application, and may be helpful for the treatment of mild traumatic brain injury. Moreover, PET functional imaging with different ligands can be used in the future to perform large-scale and sequential studies exploring the time-dependent changes that occur in mild traumatic brain injury.
Collapse
Affiliation(s)
- Chu-Xin Huang
- Department of Radiology; Department of Neurology, the Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| | - Yan-Hui Li
- Department of Radiology, the Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| | - Wei Lu
- Department of Neurology, the Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| | - Si-Hong Huang
- Department of Radiology, the Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| | - Meng-Jun Li
- Department of Radiology, the Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| | - Li-Zhi Xiao
- PET-CT Center, the Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| | - Jun Liu
- Department of Radiology, the Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| |
Collapse
|
5
|
Browne CA, Hildegard A Wulf BA, Jacobson ML, Oyola M, Wu TJ, Lucki I. Long-term increase in sensitivity to ketamine's behavioral effects in mice exposed to mild blast induced traumatic brain injury. Exp Neurol 2021; 350:113963. [PMID: 34968423 DOI: 10.1016/j.expneurol.2021.113963] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 11/23/2021] [Accepted: 12/22/2021] [Indexed: 11/04/2022]
Abstract
Neurobehavioral deficits emerge in nearly 50% of patients following a mild traumatic brain injury (TBI) and may persist for months. Ketamine is used frequently as an anesthetic, analgesic and for management of persistent psychiatric complications. Although ketamine may produce beneficial effects in patients with a history of TBI, differential sensitivity to its impairing effects could make the therapeutic use of ketamine in TBI patients unsafe. This series of studies examined male C57BL/6 J mice exposed to a mild single blast overpressure (mbTBI) for indications of altered sensitivity to ketamine at varying times after injury. Dystaxia (altered gait), diminished sensorimotor gating (reduced prepulse inhibition) impaired working memory (step-down inhibitory avoidance) were examined in mbTBI and sham animals 15 min following intraperitoneal injections of saline or R,S-ketamine hydrochloride, from day 7-16 post injury and again from day 35-43 post injury. Behavioral performance in the forced swim test and sucrose preference test were evaluated on day 28 and day 74 post injury respectively, 24 h following drug administration. Dynamic gait stability was compromised in mbTBI mice on day 7 and 35 post injury and further exacerbated following ketamine administration. On day 14 and 42 post injury, prepulse inhibition was robustly decreased by mbTBI, which ketamine further reduced. Ketamine-associated memory impairment was apparent selectively in mbTBI animals 1 h, 24 h and day 28 post shock (tested on day 15/16/43 post injury). Ketamine selectively reduced immobility scores in the FST in mbTBI animals (day 28) and reversed mbTBI induced decreases in sucrose consumption (Day 74). These results demonstrate increased sensitivity to ketamine in mice when tested for extended periods after TBI. The results suggest that ketamine may be effective for treating neuropsychiatric complications that emerge after TBI but urge caution when used in clinical practice for enhanced sensitivity to its side effects in this patient population.
Collapse
Affiliation(s)
- Caroline A Browne
- Department of Pharmacology & Molecular Therapeutics, Uniformed Services University, Bethesda, MD 20814, United States of America.
| | - B A Hildegard A Wulf
- Department of Pharmacology & Molecular Therapeutics, Uniformed Services University, Bethesda, MD 20814, United States of America
| | - Moriah L Jacobson
- Department of Pharmacology & Molecular Therapeutics, Uniformed Services University, Bethesda, MD 20814, United States of America
| | - Mario Oyola
- Department of Gynecologic Surgery & Obstetrics, Uniformed Services University, Bethesda, MD 20814, United States of America
| | - T John Wu
- Department of Gynecologic Surgery & Obstetrics, Uniformed Services University, Bethesda, MD 20814, United States of America
| | - Irwin Lucki
- Department of Pharmacology & Molecular Therapeutics, Uniformed Services University, Bethesda, MD 20814, United States of America
| |
Collapse
|
6
|
Nonaka M, Taylor WW, Bukalo O, Tucker LB, Fu AH, Kim Y, McCabe JT, Holmes A. Behavioral and Myelin-Related Abnormalities after Blast-Induced Mild Traumatic Brain Injury in Mice. J Neurotrauma 2021; 38:1551-1571. [PMID: 33605175 DOI: 10.1089/neu.2020.7254] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In civilian and military settings, mild traumatic brain injury (mTBI) is a common consequence of impacts to the head, sudden blows to the body, and exposure to high-energy atmospheric shockwaves from blast. In some cases, mTBI from blast exposure results in long-term emotional and cognitive deficits and an elevated risk for certain neuropsychiatric diseases. Here, we tested the effects of mTBI on various forms of auditory-cued fear learning and other measures of cognition in male C57BL/6J mice after single or repeated blast exposure (blast TBI; bTBI). bTBI produced an abnormality in the temporal organization of cue-induced freezing behavior in a conditioned trace fear test. Spatial working memory, evaluated by the Y-maze task performance, was also deleteriously affected by bTBI. Reverse-transcription quantitative real-time polymerase chain reaction (RT-qPCR) analysis for glial markers indicated an alteration in the expression of myelin-related genes in the hippocampus and corpus callosum 1-8 weeks after bTBI. Immunohistochemical and ultrastructural analyses detected bTBI-related myelin and axonal damage in the hippocampus and corpus callosum. Together, these data suggest a possible link between blast-induced mTBI, myelin/axonal injury, and cognitive dysfunction.
Collapse
Affiliation(s)
- Mio Nonaka
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health (NIH), Rockville, Maryland, USA
| | - William W Taylor
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health (NIH), Rockville, Maryland, USA
| | - Olena Bukalo
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health (NIH), Rockville, Maryland, USA
| | - Laura B Tucker
- Department of Anatomy, Physiology and Genetics, Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA.,Preclinical Studies Core, Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Amanda H Fu
- Department of Anatomy, Physiology and Genetics, Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA.,Preclinical Studies Core, Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Yeonho Kim
- Department of Anatomy, Physiology and Genetics, Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA.,Preclinical Studies Core, Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Joseph T McCabe
- Department of Anatomy, Physiology and Genetics, Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA.,Preclinical Studies Core, Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Andrew Holmes
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health (NIH), Rockville, Maryland, USA
| |
Collapse
|
7
|
Bradshaw DV, Kim Y, Fu A, Marion CM, Radomski KL, McCabe JT, Armstrong RC. Repetitive Blast Exposure Produces White Matter Axon Damage without Subsequent Myelin Remodeling: In Vivo Analysis of Brain Injury Using Fluorescent Reporter Mice. Neurotrauma Rep 2021; 2:180-192. [PMID: 34013219 PMCID: PMC8127063 DOI: 10.1089/neur.2020.0058] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The potential effects of blast exposure on the brain health of military personnel have raised concerns and led to increased surveillance of blast exposures. Neuroimaging studies have reported white matter abnormalities in brains of service members with a history of blast exposure. However, blast effects on white matter microstructure remain poorly understood. As a novel approach to screen for white matter effects, transgenic mice that express fluorescent reporters to sensitively detect axon damage and myelin remodeling were exposed to simulated repetitive blasts (once/day on 5 consecutive days). Axons were visualized using Thy1-YFP-16 reporter mice that express yellow fluorescent protein (YFP) in a broad spectrum of neurons. Swelling along damaged axons forms varicosities that fill with YFP. The frequency and size of axonal varicosities were significantly increased in the corpus callosum (CC) and cingulum at 3 days after the final blast exposure, versus in sham procedures. CC immunolabeling for reactive astrocyte and microglial markers was also significantly increased. NG2CreER;mTmG mice were given tamoxifen (TMX) on days 2 and 3 after the final blast to induce fluorescent labeling of newly synthesized myelin membranes, indicating plasticity and/or repair. Myelin synthesis was not altered in the CC over the intervening 4 or 8 weeks after repetitive blast exposure. These experiments show the advantages of transgenic reporter mice for analysis of white matter injury that detects subtle, diffuse axon damage and the dynamic nature of myelin sheaths. These results show that repetitive low-level blast exposures produce infrequent but significant axon damage along with neuroinflammation in white matter.
Collapse
Affiliation(s)
- Donald V Bradshaw
- Graduate Program in Neuroscience, Physiology, and Genetics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA.,Department of Anatomy, Physiology, and Genetics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Yeonho Kim
- Center for Neuroscience and Regenerative Medicine, Physiology, and Genetics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA.,Department of Anatomy, Physiology, and Genetics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Amanda Fu
- Center for Neuroscience and Regenerative Medicine, Physiology, and Genetics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA.,Department of Anatomy, Physiology, and Genetics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Christina M Marion
- Graduate Program in Neuroscience, Physiology, and Genetics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA.,Department of Anatomy, Physiology, and Genetics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA.,Department of Neuroscience, Wexner Medical Center, Ohio State University, Columbus, Ohio, USA
| | - Kryslaine L Radomski
- Center for Neuroscience and Regenerative Medicine, Physiology, and Genetics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA.,Department of Anatomy, Physiology, and Genetics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Joseph T McCabe
- Graduate Program in Neuroscience, Physiology, and Genetics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA.,Center for Neuroscience and Regenerative Medicine, Physiology, and Genetics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA.,Department of Anatomy, Physiology, and Genetics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Regina C Armstrong
- Graduate Program in Neuroscience, Physiology, and Genetics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA.,Center for Neuroscience and Regenerative Medicine, Physiology, and Genetics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA.,Department of Anatomy, Physiology, and Genetics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| |
Collapse
|
8
|
Li Y, Liu K, Li C, Guo Y, Fang J, Tong H, Tang Y, Zhang J, Sun J, Jiao F, Zhang Q, Jin R, Xiong K, Chen X. 18F-FDG PET Combined With MR Spectroscopy Elucidates the Progressive Metabolic Cerebral Alterations After Blast-Induced Mild Traumatic Brain Injury in Rats. Front Neurosci 2021; 15:593723. [PMID: 33815036 PMCID: PMC8012735 DOI: 10.3389/fnins.2021.593723] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 02/19/2021] [Indexed: 11/21/2022] Open
Abstract
A majority of blast-induced mild traumatic brain injury (mTBI) patients experience persistent neurological dysfunction with no findings on conventional structural MR imaging. It is urgent to develop advanced imaging modalities to detect and understand the pathophysiology of blast-induced mTBI. Fluorine-18 fluorodeoxyglucose positron emission tomography (18F-FDG PET) could detect neuronal function and activity of the injured brain, while MR spectroscopy provides complementary information and assesses metabolic irregularities following injury. This study aims to investigate the effectiveness of combining 18F-FDG PET with MR spectroscopy to evaluate acute and subacute metabolic cerebral alterations caused by blast-induced mTBI. Thirty-two adult male Sprague–Dawley rats were exposed to a single blast (mTBI group) and 32 rats were not exposed to the blast (sham group), followed by 18F-FDG PET, MRI, and histological evaluation at baseline, 1–3 h, 1 day, and 7 days post-injury in three separate cohorts. 18F-FDG uptake showed a transient increase in the amygdala and somatosensory cortex, followed by a gradual return to baseline from day 1 to 7 days post-injury and a continuous rise in the motor cortex. In contrast, decreased 18F-FDG uptake was seen in the midbrain structures (inferior and superior colliculus). Analysis of MR spectroscopy showed that inflammation marker myo-inositol (Ins), oxidative stress marker glutamine + glutamate (Glx), and hypoxia marker lactate (Lac) levels markedly elevated over time in the somatosensory cortex, while the major osmolyte taurine (Tau) level immediately increased at 1–3 h and 1 day, and then returned to sham level on 7 days post-injury, which could be due to the disruption of the blood–brain barrier. Increased 18F-FDG uptake and elevated Ins and Glx levels over time were confirmed by histology analysis which showed increased microglial activation and gliosis in the frontal cortex. These results suggest that 18F-FDG PET and MR spectroscopy can be used together to reflect more comprehensive neuropathological alterations in vivo, which could improve our understanding of the complex alterations in the brain after blast-induced mTBI.
Collapse
Affiliation(s)
- Yang Li
- Department of Nuclear Medicine, Daping Hospital, Army Medical University, Chongqing, China.,Department of Radiology, Daping Hospital, Army Medical University, Chongqing, China.,Department of Medical Imaging, Air Force Hospital of Western Theater Command, Chengdu, China
| | - Kaijun Liu
- Department of Gastroenterology, Daping Hospital, Army Medical University, Chongqing, China
| | - Chang Li
- Department of Radiology, Daping Hospital, Army Medical University, Chongqing, China
| | - Yu Guo
- Department of Radiology, Daping Hospital, Army Medical University, Chongqing, China
| | - Jingqin Fang
- Department of Radiology, Daping Hospital, Army Medical University, Chongqing, China
| | - Haipeng Tong
- Department of Radiology, Daping Hospital, Army Medical University, Chongqing, China
| | - Yi Tang
- Department of Nuclear Medicine, Daping Hospital, Army Medical University, Chongqing, China
| | - Junfeng Zhang
- Department of Radiology, Daping Hospital, Army Medical University, Chongqing, China
| | - Jinju Sun
- Department of Nuclear Medicine, Daping Hospital, Army Medical University, Chongqing, China
| | - Fangyang Jiao
- Department of Nuclear Medicine, Daping Hospital, Army Medical University, Chongqing, China
| | - Qianhui Zhang
- Department of Foreign Language, Army Medical University, Chongqing, China
| | - Rongbing Jin
- Department of Nuclear Medicine, Daping Hospital, Army Medical University, Chongqing, China.,Chongqing Clinical Research Center for Imaging and Nuclear Medicine, Chongqing, China
| | - Kunlin Xiong
- Department of Radiology, Daping Hospital, Army Medical University, Chongqing, China.,Chongqing Clinical Research Center for Imaging and Nuclear Medicine, Chongqing, China
| | - Xiao Chen
- Department of Nuclear Medicine, Daping Hospital, Army Medical University, Chongqing, China.,Chongqing Clinical Research Center for Imaging and Nuclear Medicine, Chongqing, China
| |
Collapse
|
9
|
Muresanu DF, Sharma A, Sahib S, Tian ZR, Feng L, Castellani RJ, Nozari A, Lafuente JV, Buzoianu AD, Sjöquist PO, Patnaik R, Wiklund L, Sharma HS. Diabetes exacerbates brain pathology following a focal blast brain injury: New role of a multimodal drug cerebrolysin and nanomedicine. PROGRESS IN BRAIN RESEARCH 2020; 258:285-367. [PMID: 33223037 DOI: 10.1016/bs.pbr.2020.09.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Blast brain injury (bBI) is a combination of several forces of pressure, rotation, penetration of sharp objects and chemical exposure causing laceration, perforation and tissue losses in the brain. The bBI is quite prevalent in military personnel during combat operations. However, no suitable therapeutic strategies are available so far to minimize bBI pathology. Combat stress induces profound cardiovascular and endocrine dysfunction leading to psychosomatic disorders including diabetes mellitus (DM). This is still unclear whether brain pathology in bBI could exacerbate in DM. In present review influence of DM on pathophysiology of bBI is discussed based on our own investigations. In addition, treatment with cerebrolysin (a multimodal drug comprising neurotrophic factors and active peptide fragments) or H-290/51 (a chain-breaking antioxidant) using nanowired delivery of for superior neuroprotection on brain pathology in bBI in DM is explored. Our observations are the first to show that pathophysiology of bBI is exacerbated in DM and TiO2-nanowired delivery of cerebrolysin induces profound neuroprotection in bBI in DM, not reported earlier. The clinical significance of our findings with regard to military medicine is discussed.
Collapse
Affiliation(s)
- Dafin F Muresanu
- Department of Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania; "RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| | - Seaab Sahib
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Z Ryan Tian
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Lianyuan Feng
- Department of Neurology, Bethune International Peace Hospital, Shijiazhuang, Hebei Province, China
| | - Rudy J Castellani
- Department of Pathology, University of Maryland, Baltimore, MD, United States
| | - Ala Nozari
- Anesthesiology & Intensive Care, Massachusetts General Hospital, Boston, MA, United States
| | - José Vicente Lafuente
- LaNCE, Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Anca D Buzoianu
- Department of Clinical Pharmacology and Toxicology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Per-Ove Sjöquist
- Division of Cardiology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Ranjana Patnaik
- Department of Biomaterials, School of Biomedical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi, India
| | - Lars Wiklund
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
10
|
Beitchman JA, Griffiths DR, Hur Y, Ogle SB, Bromberg CE, Morrison HW, Lifshitz J, Adelson PD, Thomas TC. Experimental Traumatic Brain Injury Induces Chronic Glutamatergic Dysfunction in Amygdala Circuitry Known to Regulate Anxiety-Like Behavior. Front Neurosci 2020; 13:1434. [PMID: 32038140 PMCID: PMC6985437 DOI: 10.3389/fnins.2019.01434] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 12/18/2019] [Indexed: 01/01/2023] Open
Abstract
Up to 50% of traumatic brain injury (TBI) survivors demonstrate persisting and late-onset anxiety disorders indicative of limbic system dysregulation, yet the pathophysiology underlying the symptoms is unclear. We hypothesize that the development of TBI-induced anxiety-like behavior in an experimental model of TBI is mediated by changes in glutamate neurotransmission within the amygdala. Adult, male Sprague-Dawley rats underwent midline fluid percussion injury or sham surgery. Anxiety-like behavior was assessed at 7 and 28 days post-injury (DPI) followed by assessment of real-time glutamate neurotransmission in the basolateral amygdala (BLA) and central nucleus of the amygdala (CeA) using glutamate-selective microelectrode arrays. The expression of anxiety-like behavior at 28 DPI coincided with decreased evoked glutamate release and slower glutamate clearance in the CeA, not BLA. Numerous factors contribute to the changes in glutamate neurotransmission over time. In two additional animal cohorts, protein levels of glutamatergic transporters (Glt-1 and GLAST) and presynaptic modulators of glutamate release (mGluR2, TrkB, BDNF, and glucocorticoid receptors) were quantified using automated capillary western techniques at 28 DPI. Astrocytosis and microglial activation have been shown to drive maladaptive glutamate signaling and were histologically assessed over 28 DPI. Alterations in glutamate neurotransmission could not be explained by changes in protein levels for glutamate transporters, mGluR2 receptors, astrocytosis, and microglial activation. Presynaptic modulators, BDNF and TrkB, were significantly decreased at 28 DPI in the amygdala. Dysfunction in presynaptic regulation of glutamate neurotransmission may contribute to anxiety-related behavior and serve as a therapeutic target to improve circuit function.
Collapse
Affiliation(s)
- Joshua A Beitchman
- Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, United States.,Department of Child Health, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States.,College of Graduate Studies, Midwestern University, Glendale, AZ, United States
| | - Daniel R Griffiths
- Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, United States.,Department of Child Health, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States
| | - Yerin Hur
- Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, United States.,Department of Child Health, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States
| | - Sarah B Ogle
- Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, United States.,Department of Child Health, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States.,Banner University Medical Center, Phoenix, AZ, United States
| | - Caitlin E Bromberg
- Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, United States.,Department of Child Health, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States
| | - Helena W Morrison
- College of Nursing, University of Arizona, Tucson, AZ, United States
| | - Jonathan Lifshitz
- Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, United States.,Department of Child Health, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States.,Phoenix VA Health Care System, Phoenix, AZ, United States
| | - P David Adelson
- Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, United States.,Department of Child Health, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States
| | - Theresa Currier Thomas
- Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, United States.,Department of Child Health, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States.,Phoenix VA Health Care System, Phoenix, AZ, United States
| |
Collapse
|