1
|
Sun J, Xie Y, Li T, Zhao Y, Zhao W, Yu Z, Wang S, Zhang Y, Xue H, Chen Y, Sun Z, Zhang Z, Liu Y, Zhang N, Liu F. Causal relationships of grey matter structures in multiple sclerosis and neuromyelitis optica spectrum disorder: insights from Mendelian randomization. Brain Commun 2024; 6:fcae308. [PMID: 39318784 PMCID: PMC11420985 DOI: 10.1093/braincomms/fcae308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/17/2024] [Accepted: 09/10/2024] [Indexed: 09/26/2024] Open
Abstract
Multiple sclerosis and neuromyelitis optica spectrum disorder are two debilitating inflammatory demyelinating diseases of the CNS. Although grey matter alterations have been linked to both multiple sclerosis and neuromyelitis optica spectrum disorder in observational studies, it is unclear whether these associations indicate causal relationships between these diseases and grey matter changes. Therefore, we conducted a bidirectional two-sample Mendelian randomization analysis to investigate the causal relationships between 202 grey matter imaging-derived phenotypes (33 224 individuals) and multiple sclerosis (47 429 cases and 68 374 controls) as well as neuromyelitis optica spectrum disorder (215 cases and 1244 controls). Our results suggested that genetically predicted multiple sclerosis was positively associated with the surface area of the left parahippocampal gyrus (β = 0.018, P = 2.383 × 10-4) and negatively associated with the volumes of the bilateral caudate (left: β = -0.020, P = 7.203 × 10-5; right: β = -0.021, P = 3.274 × 10-5) and putamen nuclei (left: β = -0.030, P = 2.175 × 10-8; right: β = -0.024, P = 1.047 × 10-5). In addition, increased neuromyelitis optica spectrum disorder risk was associated with an increased surface area of the left paracentral gyrus (β = 0.023, P = 1.025 × 10-4). Conversely, no evidence was found for the causal impact of grey matter imaging-derived phenotypes on disease risk in the opposite direction. We provide suggestive evidence that genetically predicted multiple sclerosis and neuromyelitis optica spectrum disorder are associated with increased cortical surface area and decreased subcortical volume in specific regions. Our findings shed light on the associations of grey matter alterations with the risk of multiple sclerosis and neuromyelitis optica spectrum disorder.
Collapse
Affiliation(s)
- Jie Sun
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yingying Xie
- Department of Radiology, The First Affiliated Hospital of Fujian Medical University, Fujian 350005, China
| | - Tongli Li
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yunfei Zhao
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Wenjin Zhao
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Zeyang Yu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Shaoying Wang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yujie Zhang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Hui Xue
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yayuan Chen
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Zuhao Sun
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Zhang Zhang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yaou Liu
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Ningnannan Zhang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Feng Liu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| |
Collapse
|
2
|
Ma Y, Wang F, Zhao Q, Zhang L, Chen S, Wang S. Identifying Diagnostic Markers and Constructing Predictive Models for Oxidative Stress in Multiple Sclerosis. Int J Mol Sci 2024; 25:7551. [PMID: 39062794 PMCID: PMC11276709 DOI: 10.3390/ijms25147551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 07/04/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
Multiple sclerosis (MS) is a chronic disease characterized by inflammation and neurodegeneration of the central nervous system. Despite the significant role of oxidative stress in the pathogenesis of MS, its precise molecular mechanisms remain unclear. This study utilized microarray datasets from the GEO database to analyze differentially expressed oxidative-stress-related genes (DE-OSRGs), identifying 101 DE-OSRGs. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses indicate that these genes are primarily involved in oxidative stress and immune responses. Through protein-protein interaction (PPI) network, LASSO regression, and logistic regression analyses, four genes (MMP9, NFKBIA, NFKB1, and SRC) were identified as being closely related to MS. A diagnostic prediction model based on logistic regression demonstrated good predictive power, as shown by the nomogram curve index and DAC results. An immune-cell infiltration analysis using CIBERSORT revealed significant correlations between these genes and immune cell subpopulations. Abnormal oxidative stress and upregulated expression of key genes were observed in the blood and brain tissues of EAE mice. A molecular docking analysis suggested strong binding potentials between the proteins of these genes and several drug molecules, including isoquercitrin, decitabine, benztropine, and curcumin. In conclusion, this study identifies and validates potential diagnostic biomarkers for MS, establishes an effective prediction model, and provides new insights for the early diagnosis and personalized treatment of MS.
Collapse
Affiliation(s)
- Yantuanjin Ma
- Institute of Biomedical Engineering, Kunming Medical Univesity, Kunming 650500, China; (Y.M.); (Q.Z.); (L.Z.)
| | - Fang Wang
- Department of Science and Technology, Kunming Medical University, Kunming 650500, China;
| | - Qiting Zhao
- Institute of Biomedical Engineering, Kunming Medical Univesity, Kunming 650500, China; (Y.M.); (Q.Z.); (L.Z.)
| | - Lili Zhang
- Institute of Biomedical Engineering, Kunming Medical Univesity, Kunming 650500, China; (Y.M.); (Q.Z.); (L.Z.)
| | - Shunmei Chen
- Institute of Biomedical Engineering, Kunming Medical Univesity, Kunming 650500, China; (Y.M.); (Q.Z.); (L.Z.)
| | - Shufen Wang
- Institute of Biomedical Engineering, Kunming Medical Univesity, Kunming 650500, China; (Y.M.); (Q.Z.); (L.Z.)
| |
Collapse
|
3
|
Wenker SD, Farias MI, Gradaschi V, Garcia C, Beauquis J, Leal MC, Ferrari C, Zeng X, Pitossi FJ. Microglia-secreted TNF-α affects differentiation efficiency and viability of pluripotent stem cell-derived human dopaminergic precursors. PLoS One 2023; 18:e0263021. [PMID: 37751438 PMCID: PMC10521980 DOI: 10.1371/journal.pone.0263021] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 08/19/2023] [Indexed: 09/28/2023] Open
Abstract
Disease is a neurodegenerative disorder characterised by the progressive loss of dopaminergic cells of the substantia nigra pars compacta. Even though successful transplantation of dopamine-producing cells into the striatum exhibits favourable effects in animal models and clinical trials; transplanted cell survival is low. Since every transplant elicits an inflammatory response which can affect cell survival and differentiation, we aimed to study in vivo and in vitro the impact of the pro-inflammatory environment on human dopaminergic precursors. We first observed that transplanted human dopaminergic precursors into the striatum of immunosuppressed rats elicited an early and sustained activation of astroglial and microglial cells after 15 days' post-transplant. This long-lasting response was associated with Tumour necrosis factor alpha expression in microglial cells. In vitro, conditioned media from activated BV2 microglial cells increased cell death, decreased Tyrosine hydroxylase-positive cells and induced morphological alterations on human neural stem cells-derived dopaminergic precursors at two differentiation stages: 19 days and 28 days. Those effects were ameliorated by inhibition of Tumour necrosis factor alpha, a cytokine which was previously detected in vivo and in conditioned media from activated BV-2 cells. Our results suggest that a pro-inflammatory environment is sustained after transplantation under immunosuppression, providing a window of opportunity to modify this response to increase transplant survival and differentiation. In addition, our data show that the microglia-derived pro-inflammatory microenvironment has a negative impact on survival and differentiation of dopaminergic precursors. Finally, Tumour necrosis factor alpha plays a key role in these effects, suggesting that this cytokine could be an interesting target to increase the efficacy of human dopaminergic precursors transplantation in Parkinson's Disease.
Collapse
Affiliation(s)
| | | | | | - Corina Garcia
- Fundación Instituto Leloir—IIBBA-CONICET, Buenos Aires, Argentina
| | - Juan Beauquis
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Instituto de Biología y Medicina Experimental, CONICET, Buenos Aires, Argentina
- Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | - Carina Ferrari
- Fundación Instituto Leloir—IIBBA-CONICET, Buenos Aires, Argentina
| | | | | |
Collapse
|
4
|
Saadati H, Ghaheri S, Sadegzadeh F, Sakhaie N, Abdollahzadeh M. Beneficial effects of enriched environment on behavior, cognitive functions, and hippocampal brain-derived neurotrophic factor level following postnatal serotonin depletion in male rats. Int J Dev Neurosci 2023; 83:67-79. [PMID: 36342785 DOI: 10.1002/jdn.10238] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/04/2022] [Accepted: 10/31/2022] [Indexed: 11/09/2022] Open
Abstract
The neurotransmitter serotonin (5-HT) is one of the most important modulators of neural circuitry and has a critical role in neural development and functions. Previous studies indicated that changes in serotonergic system signaling in early life critically impact mental health, behavior, the morphology of hippocampal neurons, and cognitive functions across the lifespan. The enriched environment (EE) has indicated beneficial effects on behavior and cognitive functions in the developmental period of life, but its impacts on cognitive impairments and behavioral changes following postnatal serotonin depletion are unknown. Therefore, the present study aimed to evaluate the influences of the EE housing (postnatal days [PNDs] 21-60) following postnatal serotonin depletion (by para-chlorophenylalanine [PCPA], 100 mg/kg, s.c, in PNDs 10-20) on anxiety-related behaviors, cognitive functions, and brain-derived neurotrophic factor (BDNF) mRNA expression in the hippocampus of male rats. Memory and behavioral parameters were examined in early adulthood and after that, the hippocampi of rats were removed to determine the BDNF mRNA expression by PCR (PNDs 60-70). The findings of the present work indicated that adolescent EE exposure alleviated memory impairment, decreased BDNF levels, and anxiety disorders induced by experimental depletion of serotonin. Overall, these results indicate that serotonergic system dysregulation during the developmental periods can be alleviated by adolescent EE exposure.
Collapse
Affiliation(s)
- Hakimeh Saadati
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran.,Department of Physiology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Safa Ghaheri
- Students Research Committee, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Farshid Sadegzadeh
- Students Research Committee, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Nona Sakhaie
- Students Research Committee, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Maryam Abdollahzadeh
- Students Research Committee, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| |
Collapse
|
5
|
Effects of lifespan-extending interventions on cognitive healthspan. Expert Rev Mol Med 2022; 25:e2. [PMID: 36377361 DOI: 10.1017/erm.2022.36] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Ageing is known to be the primary risk factor for most neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease and Huntington's disease. They are currently incurable and worsen over time, which has broad implications in the context of lifespan and healthspan extension. Adding years to life and even to physical health is suboptimal or even insufficient, if cognitive ageing is not adequately improved. In this review, we will examine how interventions that have the potential to extend lifespan in animals affect the brain, and if they would be able to thwart or delay the development of cognitive dysfunction and/or neurodegeneration. These interventions range from lifestyle (caloric restriction, physical exercise and environmental enrichment) through pharmacological (nicotinamide adenine dinucleotide precursors, resveratrol, rapamycin, metformin, spermidine and senolytics) to epigenetic reprogramming. We argue that while many of these interventions have clear potential to improve cognitive health and resilience, large-scale and long-term randomised controlled trials are needed, along with studies utilising washout periods to determine the effects of supplementation cessation, particularly in aged individuals.
Collapse
|
6
|
Ghaheri S, Panahpour H, Abdollahzadeh M, Saadati H. Adolescent enriched environment exposure alleviates cognitive impairment in sleep-deprived male rats: Role of hippocampal BDNF. Int J Dev Neurosci 2021; 82:133-145. [PMID: 34937120 DOI: 10.1002/jdn.10165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/13/2021] [Accepted: 12/18/2021] [Indexed: 11/07/2022] Open
Abstract
Developmental life experience has long-lasting influences on the brain and behavior. The present study aims to examine the long-term effects of the enriched environment (EE), which was imposed during the adolescence period of life, on their passive avoidance and recognition memories as well as anxiety-like behaviors and hippocampal brain-derived neurotrophic factor (BDNF) levels, in sleep-deprived male rats. In the present study, the male pups were separated from their mothers in postnatal day 21 (PND21) and were housed in the standard or EE for 40 days. In PND 61, the rats were allocated in four groups: control, SD (sleep deprivation), EE, and EE+SD groups. Sleep deprivation was induced in rats by a modified multiple platform model for 24 hours. Open field, novel object recognition memory, and passive avoidance memory tests were used to examine behavior and cognitive ability. The expression of hippocampal BDNF levels was determined by PCR. The results revealed that SD increased anxiety-like behaviors and impaired cognitive ability, while adolescent EE housing alleviated these changes. In addition, EE reversed SD-induced changes in hippocampal BDNF level. We also demonstrated that EE not only has beneficial effects on the cognitive functions of normal rats but also declined memory deficits induced by sleep deprivation. In conclusion, our results suggest that housing in EE during the adolescence period of life reduces cognitive impairment induced by SD. The increase of the BDNF level in the hippocampus is a possible mechanism to alleviate cognitive performance in sleep-deprived rats.
Collapse
Affiliation(s)
- Safa Ghaheri
- Department of Physiology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Hamdollah Panahpour
- Department of Physiology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Maryam Abdollahzadeh
- Department of Physiology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Hakimeh Saadati
- Department of Physiology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| |
Collapse
|
7
|
Silva BA, Miglietta EA, Ferrari CC. Training the brain: could it improve multiple sclerosis treatment? Rev Neurosci 2020; 31:779-792. [PMID: 32712593 DOI: 10.1515/revneuro-2020-0014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 04/17/2020] [Indexed: 12/22/2022]
Abstract
Multiple sclerosis (MS) is a neurological disease characterized by neuroinflammation, demyelination and axonal degeneration along with loss of function in the central nervous system. For many years, research in MS has focused on the efficacy of pharmacological treatments. However, during the last years, many publications have been dedicated to the study of the efficacy of non-pharmacological strategies, such as physical exercise and cognitive training. Beneficial effects of the combination of both strategies on cognitive function have been described in both ageing adults and patients with neurodegenerative diseases, such as MS. The analysis of combining both physical and cognitive stimulation can be summarized by the environmental enrichment (EE) experiments, which are more suitable for animal models. EE refers to housing conditions consisting of exercise and cognitive and social stimulation. In this review, we will summarize the available studies that describe the influence of EE in both MS patients and MS animal models.
Collapse
Affiliation(s)
- Berenice Anabel Silva
- Instituto de Medicina Traslacional e Ingeniería Biomédica (IMTIB)-CONICET, Potosí 4240, Buenos Aires, C1181ACH, Argentina.,Leloir Institute Foundation, Institute for Biochemical Investigations, IIBBA-CONICET, Patricias Argentinas 435, C1405BWE, Buenos Aires, Argentina
| | - Esteban Alberto Miglietta
- Leloir Institute Foundation, Institute for Biochemical Investigations, IIBBA-CONICET, Patricias Argentinas 435, C1405BWE, Buenos Aires, Argentina
| | - Carina Cintia Ferrari
- Instituto de Medicina Traslacional e Ingeniería Biomédica (IMTIB)-CONICET, Potosí 4240, Buenos Aires, C1181ACH, Argentina.,Leloir Institute Foundation, Institute for Biochemical Investigations, IIBBA-CONICET, Patricias Argentinas 435, C1405BWE, Buenos Aires, Argentina
| |
Collapse
|
8
|
Zhou T, Lin L, Hao C, Liao W. Environmental enrichment rescues cognitive impairment with suppression of TLR4-p38MAPK signaling pathway in vascular dementia rats. Neurosci Lett 2020; 737:135318. [PMID: 32846221 DOI: 10.1016/j.neulet.2020.135318] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/17/2020] [Accepted: 08/20/2020] [Indexed: 01/23/2023]
Abstract
Increasing evidence demonstrated the promising effects of environmental enrichment (EE) on brain recovery and cognitive performance in animal models of various diseases. However, the effect and molecular mechanisms of EE on vascular dementia (VD) remain to be studied. The aim of this study was to explore the effect of EE on cognitive decline and its mechanism. Sprague-Dawley rats underwent 2-vessel occlusion (2-VO) surgery or sham operation. Subsequently, rats were kept in EE for 4 weeks. In Morris water maze (MWM) test, we demonstrated that EE significantly improved cognitive function in rats with VD. HE staining exhibited morphological changes of neurons and quantitative analysis of TUNEL showed increased apoptotic neurons in hippocampal CA1 region following 2-VO. Results from RT-qPCR showed up-regulation of tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) after 2-VO. Western blotting analysis revealed enhanced toll-like receptor 4 (TLR4), myeloid differentiation factor 88 (MYD88) and phosphorylated p38 mitogen-activated protein kinase (p-p38MAPK) in 2-VO rats. Whereas administration of EE reduced apoptotic neurons, down-regulated inflammatory factors. Moreover, EE suppressed protein expression of TLR4-p38MAPK pathway. Spearman correlation analysis showed that improved cognitive function was associated with decreased expression of TLR4 and p-p38MAPK proteins. Thus, our study proved that EE has a prominent effect on cognitive impairment and neuronal damage following 2-VO by attenuating inflammation and apoptosis, which may be realized via inhibiting the TLR4-P38MAPK signaling pathway.
Collapse
Affiliation(s)
- Tiantian Zhou
- Departmenta of Rehabilitation Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Lu Lin
- Departmenta of Rehabilitation Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Chizi Hao
- Departmenta of Rehabilitation Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| | - Weijing Liao
- Departmenta of Rehabilitation Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
9
|
Sakhaie N, Sadegzadeh F, Mohammadnia A, Dadkhah M, Saadati H. Sex-dependent effects of postweaning exposure to an enriched environment on novel objective recognition memory and anxiety-like behaviors: The role of hippocampal BDNF level. Int J Dev Neurosci 2020; 80:396-408. [PMID: 32416621 DOI: 10.1002/jdn.10038] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/02/2020] [Accepted: 05/05/2020] [Indexed: 01/18/2023] Open
Abstract
Exposure to enriched environment (EE) has been indicated to enhance cognitive functions, hippocampal neural plasticity, neurogenesis, long-term potentiation, and levels of the brain-derived neurotrophic factor (BDNF) in laboratory animals. Also, studies on the sex-dependent effects of exposure to EE during adolescence on adult cognitive functions are less. This is important because the beneficial effects of EE may be predominant in the adolescence stage. Therefore, the present study was designed to compare the effects of EE during adolescence (PND21-PND60) on novel objective recognition memory (NORM), anxiety-like behaviors, and hippocampal BDNF mRNA level in the adult male and female rats. Assessment of NORM and anxiety-like behaviors has been done by novel objective recognition task, open field (OF), and elevated plus maze (EPM), respectively. The expression of BDNF mRNA level was also evaluated by quantitative RT-PCR. Our findings demonstrated that housing in the EE during adolescence improves NORM in adult male rats. Also, exposure to EE during adolescence had a different effect on anxiety-like behaviors in both sexes. Additionally, our results indicated an augmented BDNF level in the hippocampus of male and female rats. In conclusion, adolescent exposure to EE has sex-dependent effects on cognitive functions and anxiety-like behaviors and increases BDNF mRNA expression in the hippocampus of both male and female rats; thus, BDNF is an important factor that can mediate the beneficial effects of EE and running exercise on cognitive functions and psychiatric traits.
Collapse
Affiliation(s)
- Nona Sakhaie
- Faculty of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Farshid Sadegzadeh
- Faculty of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Alireza Mohammadnia
- Faculty of Medicine, Department of Basic Sciences, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Masoumeh Dadkhah
- Pharmaceutical Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Hakimeh Saadati
- Faculty of Medicine, Department of Physiology, Ardabil University of Medical Sciences, Ardabil, Iran
- Physiological Studies Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| |
Collapse
|
10
|
Silva BA, Ferrari CC. Environmental enrichment as a promising strategy for aiding multiple sclerosis treatment. Neural Regen Res 2020; 15:1660-1661. [PMID: 32209769 PMCID: PMC7437581 DOI: 10.4103/1673-5374.276334] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Berenice Anabel Silva
- Instituto de Medicina Translacional e Ingeniería Biomédica del Hospital italiano (IMTIB-CONICET); Leloir Institute Foundation, Institute for Biochemical Investigations, IIBBA- CONICET, Buenos Aires, Argentina
| | - Carina Cintia Ferrari
- Instituto de Medicina Translacional e Ingeniería Biomédica del Hospital italiano (IMTIB-CONICET); Leloir Institute Foundation, Institute for Biochemical Investigations, IIBBA- CONICET, Buenos Aires, Argentina
| |
Collapse
|